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Abstract

Phylogenetic trees are used by biologists and geneticists as a way of classifying the

relationships between different taxonomic units. The branching of a tree represents

one unit evolving into two or more different units. The leaves of phylogenetic trees

are labeled with the units that are to be studied.

For any tree, and phylogenetic trees in particular, deleting an edge results in a

bipartion of the leaf label set. We call such deletions splits and represent the split

that results in bipartion sets A and B by A|B. A split σ is realized by a tree T if

there is an edge deletion of T that results in the bipartition expressed by σ. The set

of all splits realized by T is denoted Σ(T ). We discuss what it means for two splits to

be compatible and give a proof of the Splits-Equivalence Theorem which states that

for a collection Σ of splits, there is a tree T such that Σ = Σ(T ) if and only if the

splits of Σ are pairwise compatible.

Of interest are splits in which both |A| and |B| = 2. These are referred to

as quartets. We say that a set A of quartets infers a quartet s if every tree that

displays A must also display s. Such an inference is called a k-ary inference when

|A| = k. A k-ary inference is called primitive, if it can not be derived from lower-

order inferences. In his Master’s Thesis Reconstruction Methods for Derivation Trees ,

Dekker characterized all primitive binary and ternary inferences. Steele and Bryant

showed that for any positive integer k there are primitive k-ary inferences. We present

an independent recreation of a portion of Dekker’s work by listing all primitive binary

quartet split inferences, as well as show that the only primitive ternary inferences

involve < 8 leaves. We also provide an example of a valid ternary inference.
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Chapter 1

Preliminaries

1.1 Introduction

Biologists use phylogenetic (evolutionary) trees as a visual representation of evo-

lutionary events and the relationships between different taxonomic units (species,

genus, family, etc). When one taxonomic unit splits and forms two or more new

units, it is referred to as a speciation event. Biologists represent speciation events

using internal vertices of a phylogenetic tree. The idea to represent speciation events

using trees began with Charles Darwin as early as 1837 [6, 7]. Originally, the evo-

lutionary “closeness” of different species was determined using physical comparisons

but it was discovered that the appearance of similar traits did not always correlate

with an evolutionary ancestor as well as might be expected. For example, based

solely on appearance, it would seem that whales are more closely related to sharks

than to hippopotamuses but this is not the case [3]. It is also difficult to distinguish

between species that are extremely similar. In some cases, the only way to accurately

distinguish between members of different species is by using DNA testing [13]. With

the scientific advancements that came in the second half of the twentieth century,

including the use of DNA and the field of genomics, biologists were able to get a

much better picture of how different species are related and where to place them on

phylogenetic trees [1]. With time, these abilities will only improve.

A natural method for creating a large phylogenetic tree is to construct smaller

trees using only subsets of the taxonomic units and then attempt to merge these
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smaller trees together [4, 14]. In some cases however, there can be several different

ways to merge these small trees together. When this is the case, it is a necessary

endeavor to determine when these separate representations are compatible and can

be combined into one comprehensive tree.

While the use of phylogenetic trees is by far the dominant method for representing

evolutionary history, the methods used to place the different taxa on the trees are not

without complications. The majority of biologic relationships are determined using

genetic material. The chief means of transferring genetic information is referred to

as vertical gene transfer. Vertical transfer occurs when genetic material is passed

from parent to offspring. In multicellular organisms this is, with very few exceptions,

the only means of transfer. However, single-celled organisms, in particular bacteria,

have many methods of what is referred to as horizontal gene transfer [11]. Horizontal

transfer occurs when genetic material is spread in a manner that is not from parent

to offspring [9]. Bacteria can absorb and express foreign genetic materials. This is

the primary cause of antibiotic resistance in bacteria [5]. The process of transduction

involves bacteria and viruses [15]. Some viruses, called bacteriophages, have the abil-

ity to absorb bacterial DNA from a host organism and transfer that DNA to another

bacterium, that may not be a close relative of the host [5]. Some bacteria also have

the ability to transfer genetic material directly by means of cell-to-cell contact. In

these ways, essentially unrelated organisms can display the same genes.

Among more complex organisms, there are also several difficulties that result from

using genetic materials to infer evolutionary relationships. Hybridization can occur

throughout several different taxonomic levels. Interbreeding between different sub-

species within the same species is fairly common in nature: an example being mating

between a Bengal tiger and a Siberian tiger [18]. Hybrids can be formed between

different species within the same genus. Mules are the result of mating between a

donkey and a horse. Interspecies hybridization has also been found among differ-
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ent species of yaks and squirrels [16]. Although rare, hybrids may also form between

members of two different genera within the same family. While in general, the farther

apart the two organisms are genetically, the lower the chances of a successful hybrid,

such intergeneric hybrids do occur. The Leyland cypress is a result of the crossing

of a Monterey cypress with an Alaska cypress [19]. In many cases, especially with

organisms that are not closely related, these hybrids tend to be unable to reproduce,

but this is not always the case [7].

Convergent evolution is another problem when considering the evolution of com-

plex organisms. Plants, animals, fungi have so many traits, it is not out of the realm

of possibility that some similar traits may evolve independently in rather unrelated

taxa. When lineages that are not closely related develop similar traits independently,

it is called convergent evolution [12]. A prime example involves birds and bats. The

most recent common ancestor of birds and bats did not have wings, yet both have de-

veloped them over time. Convergent evolution can also occur at the DNA level with

different organisms developing similar enzymes and proteins that display as similar

traits independently of each other [10].

While genetic materials and information are readily available for living organisms,

biologists must gather information about extinct species using the fossil record. This

clearly results in a large amount of lost information. It is evident that some organ-

isms that have become extinct, either were not fossilized or have yet to be discovered.

Even among the organisms that have been discovered, only hard tissues are abun-

dantly fossilized; although advancements are allowing for the inverstigation of some

soft tissues [2]. The farther back in time an organism lived, the less information can

be gained from the remains. Longer-extinct species tend to have more ambiguous

evolutionary histories.

Even with these difficulties, the field of phylogenetics has the ability to straighten

the tangled evolutionary history of the organisms on Earth. In this thesis, we intend
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to demonstrate how the idea of phylogenetic trees can be used to help visualize the re-

lationships that biologists discover through the use of DNA sequencing and genomics.

We begin by defining some fundamental ideas in graph theory. We then explore the

idea of splits in a tree and ways in which these splits can be used to reconstruct

the tree. Two important types of splits (quartets and rooted triples) are expounded

upon separately in Chapter 3. Chapters 4 and 5 demonstrate how one can use an

incomplete set of quartet splits to infer other compatible quartets.

1.2 Fundamental Definitions

As with any subject, in order to understand the complex, one must have a grasp of

the basic. We give several essential definitions in this section. For readers who desire

a more in depth introduction, see Introduction to Graph Theory by Trudeau [17].

Definition 1.1. A tree is a connected graph that contains no cycles.

Definition 1.2. A tree in which some vertices (including every vertex of degree one

or two) are labeled with disjoint subsets of a set X is called an X-tree. Note that

vertices of degree greater than two may or may not be labeled.

Example 1.3. Figure 1.1 below displays an X-tree where X = {1, . . . , 25}. Note

that there are some vertices of degree greater than 2 that are labeled and that some

vertices are labeled by single elements of X.

Definition 1.4. A tree that has no vertices of degree two and has each leaf uniquely

labelled by a singleton subset of the set X is called a phylogenetic tree or a phyloge-

netic X-tree.

Definition 1.5. A rooted phylogenetic tree is a pylogenetic tree that has an internal

vertex that is distinguished and is called the root. The root is denoted by ρ and may

have degree two. All internal vertices other than the root must have degree greater

4



1, 2, 4

3, 6, 11

7

5, 21

8, 15

16, 17, 18

10, 13, 19 20, 22

14

9

24, 25

12, 23

Figure 1.1: An X-tree with X = {1, . . . , 25}

than or equal to three. In this thesis the term “phylogenetic tree” will refer to the

unrooted case.

Definition 1.6. A tree in which every internal vertex has degree three is called a

binary tree. A binary phylogenetic tree and a rooted binary phylogenetic tree, shown

in Figure 1.2, are defined similarly. In a rooted binary phylogenetic tree however, the

root still has degree two.

3
4

1

5

6 2

ρ

Figure 1.2: A rooted binary phylogenetic tree with label set {1, . . . , 6, ρ}

Definition 1.7. Let the label set of an X-tree T be denoted L(T ). The deletion of

any edge of T results in exactly two smaller subtrees T1 and T2 of T . This deletion

also partitions L(T ) into two subsets L(T1) and L(T2) where L(T1) 6= ∅, L(T2) 6= ∅

and L(T1) ∪̇ L(T2) = L(T ). We call this partition of L(T ) a split of T . Splits are
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sometimes called X-splits. We will denote by Σ(T ), the collection of all the splits of

T formed in this fashion. We call Σ(T ) the split set of T . The split that results in

the partition of L(T ) into sets A and B will be denoted A|B. Note that the split

A|B is the same as the split B|A.

Example 1.8. Consider the tree below in Figure 1.3. The split corresponding

to deleting edge e1 is {1, 2}|{3, 4, 5, 6} while the split corresponding to edge e2 is

{1, 2, 3, 4}|{5, 6}.

1

2
3

4

5

6

e1

e2

Figure 1.3: A phylogenetic tree

Definition 1.9. Let T be a tree and e be an edge of T with end vertices u and

v. The new tree T ′ = T/e is the tree formed by the contraction of e. The tree

is formed by replacing vertices u and v with the single vertex ν such that N(ν) =

(N(u) \ {v}) ∪ (N(v) \ {u}).

Example 1.10. The trees in Figure 1.4 demonstrate an edge contraction. The tree on

the right has had the edge e contracted. It is important to notice that contracting an

edge, removes a split from the tree. When considering phylogenetic trees, contracting

an edge results in a loss of resolution. It takes two separate speciation events and

joins them into one. It is then impossible to distinguish which event happened first.

For biologists, the best case scenario for representing evolutionary data would be

a rooted binary phylogenetic tree. This tree would have a root that corresponds to

the common ancestor from which all of the leaves evolved. Each internal vertex of the
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8

3
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6
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11

Figure 1.4: A tree T and the tree T/e after edge contraction

tree would have degree three and would correspond to the creation of exactly two new

taxanomic units. A tree that displays all the information possible for its set of leaf

labels is said to be “fully resolved.” Since normally the information collected about

the evolutionary relationships among a given set of taxa is not perfect, it cannot be

expected that all data sets result in fully resolved trees. When a tree is not fully

resolved, there are vertices of degree 4 or higher. This corresponds to a speciation

event that resulted in 3 or more new taxa. Since this is rarely the case in nature, it is

highly likely that this vertex of degree 4 represents two or more seperate speciation

events whose order cannot be determined.
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Chapter 2

Splits

This chapter will discuss splits on the label sets of phylogenetic trees. Definitions will

include: split, split set, compatibility of splits, compatibility of trees, edge contraction

and induced subtree. Theorems will include: Splits-Equivalence Theorem.

Definition 2.1. Let T be an unrooted phylogenetic tree and A be a subset of L(T ).

Let T (A) be the minimal subtree of T that includes each element of A. Suppressing

all vertices of T (A) with degree two results in the subtree of T induced by A which

is denoted T|A. If T is a rooted phylogenetic tree, then distinguish the vertex of T (A)

that was closest to the root and suppress any other vertices of degree two in order

the form T |A. Induced subtrees are called restricted trees in Semple-Steele.

Definition 2.2. Let T and S be phylogenteic trees. Then we say that T is compatible

with S if S can be formed by contractions of an induced subtree of T or S is an induced

subtree of a contraction of T . We denote that T is compatible with S by S E T .

Proposition 2.3. The relation E is a partial order

Proof. Let T be a tree. Clearly T E T since the induced subtree T |L(T ) = T along

with the empty set of contractions again results in T .

Now suppose that S E T and T E S. Then L(S) ⊂ L(T ) and L(T ) ⊂ L(S), hence

L(S) = L(T ). Also, we know that S is T with all degree two vertices suppressed.

But, since T was a phylogenetic tree, it had no degree two vertices from the beginning.

So we see that S = T .

Now suppose that for phylogenetic trees S, T, U we know that S E T and T E U .

8



Then L(S) ⊂ L(T ) ⊂ L(U). Now, T is formed from contractions of edges from U

and S is formed from contractions of T . Hence S is formed from contractions of U

and we see that S E U . So we have shown that E is in fact a partial order.

The principle result of this section will be a proof of the Splits-Equivalence The-

orem first proved by Buneman in 1971. We will first discuss several definitions and

lemmata to aid in the proof of the theorem.

Definition 2.4. The pair of splits A1|B1 and A2|B2 are said to be compatible if any

of the following intersections is empty

A1 ∩ A2, A1 ∩B2, A2 ∩B1, B1 ∩B2.

If a set Σ of splits is such that each pair of splits in Σ are compatible, we say that Σ

is consistent.

Definition 2.5. A split of the form A|B where min{|A|, |B|} = 1 is called a

trivial split. For a finite set X, a trivial split is of the form {x}|{X \ {x}} where x is

an element of X.

Proposition 2.6. A trivial split of a set X is compatible with every X-split.

Proof. Let x ∈ X. Then {x}|{X \ {x}} is the trivial split corresponding to x. Let

A|B be another X-split. Notice that either x ∈ A or x ∈ B but not both. Without

loss of generality, say x ∈ A. Then for the two splits {x}|{X \ {x}} and A|B we

see that {x} ∩ B = ∅ and from Definition 2.4 we know that these two splits are

compatible.

Lemma 2.7. T is a phylogenetic X−tree if and only if T displays the set Σtriv(X)

of trivial splits of X.
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Proof. (⇒) Let T be a phylogenetic X−tree for some finite set X. From the definition

of a phylogenetic tree (Definition 1.4) we know that every leaf is labeled uniquely by

a single element of a set X. The splits corresponding to deleting the pendant edges

of T are precisely the trivial splits Σtriv(X).

(⇐) Let T be an X−tree that displays Σtriv(X). Then for each xi ∈ X there is an

edge ei such that T − ei results in the split xi|{X \ {xi}}. Since xi is split from the

rest of X it is clear that some vertex of T is labeled by the singleton set {xi}. We

need to show that this vertex is a leaf. Suppose not. Then this is an internal vertex

and it corresponds to a branching of T . This must then lead to one or more leaves

of T . But since T is an X−tree, all vertices of degree one (leaves) must be labeled.

Suppose L is the set of labels from these leaves. Then T − ei would result in the

split {{xi} ∪ L}|{X \ {{{xi} ∪ L}} which is a contradiction. So we see that there is

a leaf that is labeled by the singleton set {xi} for every xi ∈ X and therefore T is a

phylogenetic X−tree.

Lemma 2.8. (Robinson and Foulds 1981) Let T be an X-tree and let σ1 and σ2

be elements of Σ(T ) such that σ1 6= σ2. Then X can be partitioned into three sets

X1, X2, X3 such that σ1 = X1|(X2 ∪ X3) and σ2 = (X1 ∪ X2)|X3. Furthermore,

X1 ∩X3 = ∅.

Proof. Let T be an X-tree and σ1, σ2 ∈ Σ(T ). By definition, σ1 corresponds to T \ e1

where e1 = {u1, v1} is an edge of T connecting vertices u1 and v1. Similarly, σ2

corresponds to T \ e2 with e2 = {u2, v2}. Since σ1 6= σ2 we see that e1 and e2 are

also distinct. Since T is a tree, there exists a unique path from u1 to u2 in T . Note

that u1 6= u2 but it may be the case that v1 = v2. Either way, we can see that X

can be divided into three subsets, X1, X2, X3 as follows. Consider the components of

T \ {e1, e2}. Let C1 be the component that includes u1, C2 be the component that
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includes v1 and C3 be the component that includes u2. Setting L(Ci) = Xi, we

have found the desired sets.

Example 2.9. Consider the tree from Figure 1.3, that is reproduced below. Let

σ1 bet the split T \ e1 and σ2 be T \ e2. Defining X1 = {1, 2}, X2 = {3, 4}, and

X3 = {5, 6} results in the partition described above. We see that σ1 = X1|(X2 ∪X3)

and σ2 = (X1 ∪X2)|X3. Also, X1 ∩X3 = ∅.

1

2
3

4

5

6

e1

e2

Now consider any tree T . Let f be a function from a finite set X into the vertex

set V (T ). In other words, each vertex of T is labeled by one or more elements from

X and thus T is an X-tree. Color the elements of X either red or blue. We now

color the vertices of the tree based on this coloring of X in the following way. Let

v ∈ V (T ) be an element of f(X). If every element of f−1(v) is the same color, then

assign this color to v. If there are elements in f−1(v) of both colors, then color v red

and blue. This coloring of the vertex set is referred to as the coloring of V induced

by f . We say that a subgraph T ′ of T is monochromatic if all of the vertices in V (T ′)

have the same color.

Lemma 2.10. Let T be a tree and f be a function from a finite set X into the vertices

of T . Consider the coloring of V (T ) induced by f as described above. Now, suppose

that for each edge e ∈ E(T ) that precisely one component of T \ e is monochromatic

in the induced coloring. Then there exists a unique vertex v ∈ V such that every

component of T \ v is monochromatic.
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Proof. First we prove the existence of such a vertex. Begin by assigning an orientation

to each edge of T away from the monochromatic component of T \e. Call this oriented

graph ~T . With this orientation, there must be a vertex v ∈ V (T ) such that the out-

degree of v is 0. If this were not the case then every vertex would have at least

one edge directed away from it and we could construct an infinite directed path in

~T . Now, if we consider T \ v we see that every component is monochromatic. Thus

we have found a vertex that satisfies the proposition. Now we will show that this

vertex in unique. Suppose this is not the case. Then there are two distinct vertices

v, v′ ∈ V (T ) such that v and v′ both have the desired property. Since T is a tree, there

is a unique path P that connects v to v′. Since v 6= v′ this path P is at least one edge

long. Select any edge e of P . Then from the statement of the proposition, exactly

one component of T \ e is not monochromatic. Assume without loss of generality

that this is the component containing vertex v. This leads to a contradiction. We

assumed that every component of T \ v′ was monochromatic but we have just shown

that the component containing vertex v is not. So we have shown that such a vertex

exists and is unique.

Lemma 2.11. Let A|B be an X-split and let T be an X-tree so that A|B is not

a split of T but A|B is compatible with with every split in Σ(T ). Then there is a

unique vertex v of T such that, for each component Ti of T \ v either L(Ti) ⊂ A or

L(Ti) ⊂ B.

Proof. Let f : X → V (T ) be the function that assigns the labels to the vertices of

T . Color the elements of A red and the elements of B blue and consider the coloring

of V (T ) induced by f . Now suppose that A1|B1 is a split of T . Then since A1|B1 is

compatible with A|B we know that one of the following intersections is empty

A ∩ A1, A ∩B1, B ∩B1, B ∩ A1.
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Without loss of generality, suppose that B ∩B1 = ∅. Then, since A and B partition

V (T ) we can see that B1 ⊂ A and hence B1 is red. Since the split A1|B1 corresponds

to deleting some edge e1 of T , we know that T \ e1 has a monochromatic component.

If A1 were a subset of B and B1 were a subset of A, then it would be the case that

A|B = A1|B1 which would contradict the assumption that A|B /∈ Σ(T ). Now we see

that T \ e1 has exactly one monochromatic component for each e ∈ E(T ) and we can

appeal to Lemma 2.10. So we know that there exists a unique vertex v ∈ V (T ) such

that every component of T \ v is monochromatic. In other words, each component

Ti of T \ v is either completely red or completely blue and hence L(Ti) ⊂ A or

L(Ti) ⊂ B.

We will now prove the Splits-Equivalence Theorem as stated below.

Theorem 2.12. (Splits-Equivalence Theorem) Let Σ be a collection of X-splits.

Then, there is an X-tree T such that Σ = Σ(T ) if and only if the splits of Σ are pair-

wise compatible. Furthermore, if such an X-tree T exists, then up to isomporphism,

T is unique.

Proof. Suppose that Σ is a collection of X-splits induced by the edges of some X-tree.

Let σ1 and σ2 be distinct elements of the split set Σ. We know from Lemma 2.8 that

there must be a partition of X into sets X1, X2, X3 such that σ1 = X1|(X2 ∪X3) and

σ2 = (X1 ∪X2)|X3. Since X1 ∩X3 = ∅, we can see from Definition 2.4 that the splits

σ1 and σ2 are compatible. Therefore all the splits of Σ must be pairwise compatible.

Now, suppose that Σ is a collection of pairwise compatible X-splits. We will show

by induction on the cardinality of Σ to show that Σ = Σ(T ) for some tree T and also

that, up to isomorphism, this tree T is unique. Base Case: Suppose that |Σ| = 0.

Then, up to isomorphism, there is a unique X-tree T for which Σ = Σ(T ). In this

case, we see that T the tree consisting of one vertex labeled by all of X. Induction

Step: Now suppose that |Σ| = k + 1 where k ≥ 0 and that the theorem is true for
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|Σ| = k. Now let A|B be an element of Σ. Since Σ is a set of pairwise compatible

X-splits we see that Σ − A|B must be also. So by the induction hypothesis, there

exists, up to isomorphism, a unique tree T ′ where Σ−A|B = Σ(T ′). Let the function

f ′ : X → V (T ′) label the vertices of T ′. Using Lemma 2.11, we see that there is a

vertex v′ ∈ V (T ′) such that for every component T ′i of T ′ \ v′, either L(T ′i ) ⊂ A or

L(T ′i ) ⊂ B. We now create a tree T in the following manner. Replace v′ in T ′ by two

new vertices vA and vB so that {vA, vB} ∈ E(T ). Now attach the vertices of f ′(A)

to the new vertex vA and attach the vertices of f ′(B) to vB. Now we define a new

function f as follows

f(x) =


f ′(x) if f ′(x) 6= v′

vA if f ′(x) = v′ and x ∈ A

vB if f ′(x) = v′ and x ∈ B

This new function f labels the vertices of our new tree T . It is clear that T is an X-

tree. Any split of T ′ is also a split of T and also, by construction T \{vA, vB} = A|B.

So we have constructed a tree T so that Σ = Σ(T ). By the induction hypothesis, we

know that T ′ is the only tree, up to isomporphism, that displays Σ−A|B. It follows

then, that, up to isomorphism, T is the only tree that has split set Σ.
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Chapter 3

Quartets and Rooted Triples

3.1 Quartets

This chapter will discuss quartet splits and rooted triples. Definitions will include:

quartet, rooted triple, span, quartet set and rooted triple set. Proofs of several

lemmas on tree compatibility will be given.

Definition 3.1. An unrooted binary tree with four leaves is called a quartet. We will

denote the quartet with leaf pairs {a, b} and {c, d} joined by a single internal edge as

ab|cd. We use this notation because deleting the single non-pendant edge results in

the splitting of the two vertex pairs. For this reason, quartets are sometimes referred

to as quartet splits.

a

b

c

d

Figure 3.1: The quartet ab|cd

Definition 3.2. For a set Q of quartets, the span of Q, which we denote 〈Q〉, is the

set of all unrooted trees that are compatible with each quartet in Q and have leaves

labelled by L(Q).
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Definition 3.3. For an unrooted tree T the quartet set q(T ) is the set of all quartets

that are induced subtrees of T . That is, the set of quartets that can be formed by

contracting edges of induced subtrees of T .

3.2 Rooted Triples

This section will discuss rooted triples

Definition 3.4. A rooted binary tree with exactly three leaves is called a rooted

triple. We will denote the rooted triple with leaf set {a, b} connected by the root the

leaf c by ab|c.

a b c

ρ

Figure 3.2: The rooted triple ab|c

Definition 3.5. For a set R of rooted triples, the span of R, which we denote 〈R〉 is

the set of all rooted trees that are compatible with each rooted triple in R and have

leaves labeled by L(R).

Definition 3.6. For a rooted tree T the rooted triple set r(T ) is the set of all rooted

triples that are induced subtrees of T . That is, the set of rooted triples that can be

formed by contracting edges of induced subtrees of T .

Recall from definition 2.2 that for two trees S and T , we say S E T if S is formed

by contractions of an induced subtree of T or if S is an induced subtree of contractions

of T . We showed in proposition 2.3 that E is a partial order. Below, in Theorem 3.2

we give a way to determine, for trees S and T , if T is compatible with S, i.e. S E T .
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Lemma 3.7. For a phylogenetic tree S, if λ|λ̄ is a split of S, with min{|λ|, |λ̄|} ≥ 2

then ab|cd is a quartet split of S for all pairs a, b ∈ λ and c, d ∈ λ̄.

Proof. Since λ|λ̄ is a split of S, there is an edge e ∈ S so that S − e produces the

split λ|λ̄ where λ ∩ λ̄ = ∅ and λ ∪ λ̄ = L(S). Let a, b ∈ λ and c, d ∈ λ̄, then clearly,

S − e results in ab|λ̄ and λ|cd. Therefore S − e results in the quartet split ab|cd and

we see that ab|cd ∈ q(S).

Lemma 3.8. If T is a phylogenetic tree and ab|cd ∈ q(T ) for all pairs {a, b} ∈ λ and

{c, d} ∈ λ̄, then λ|λ̄ is a split of T .

Proof. Let T be a phylogenetic tree. Let a, a′ be elements of λ and let u0 be the

vertex at which the tree splits into the separate branches leading to a and a′. Here

we use induction on |λ̄|. Base Case: If |λ̄| = 2 then clearly λ|λ̄ ∈ Σ(T ). Induction

Step: Assume that |λ̄| = n and the statement is true for all sets of size < n. Let

x0 ∈ λ̄. Then, by the induction hypothesis, the split aa′|{λ̄ \ {x0}} is in Σ(T ) since

this set is of size one less than λ̄. This means that there is an edge e0 = {u0, v0}

so that T \ e0 produces the aforementioned split. Also, for each xi ∈ λ̄ there is an

edge ei whose removal results in aa′|x0xi. Consider one such edge e1. Suppose that

e0 6= e1. Then e1 = {u0, v1}. But now, u0—v1—x1—v0—u0 is a cycle inside T (shown

in Figure 3.3) which is a contradiction since T is a tree. So we see that for all i, it

must be that ei = e0 and that removing e0 from T results in aa′|λ̄. There must be

such an edge for each pair of vertices in λ and a similar argument shows that λ|λ̄

must be a split of T .

Lemma 3.9. For phylogenetic trees S and T on the same label set L, if Σ(S) ⊂ Σ(T ),

then S E T .

Proof. Let T and S be phylogenetic trees on the same label set L such that Σ(S) ⊂

Σ(T ). For each edge ei ∈ E(S), S − ei results in some split α|β. Since Σ(S) ⊂ Σ(T ),
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the split α|β must correspond to T − e′i for some edge e′i ∈ E(T ). However, there

may be splits in Σ(T ) that have no corresponding edge in E(S). So we can see that

S is formed by contracting exactly these edges of T . So S is formed by contractiosn

on the edges of the induced tree T |L and therefore S E T .

a

a′
u0 e0 v0

v1

x0

e1
x1

λ̄ \ {x}

Figure 3.3: Contradictory cycle showing that aa′|λ̄ ∈ Σ(T )

Theorem 3.10. Let S and T be unrooted phylogenetic trees. T is compatible with S

(i.e. S E T ) if and only if q(S) ⊂ q(T ) and L(S) ⊂ L(T ).

Proof. (⇒) Assume that S E T . If the split ab|cd is in q(S), then surely S is

compatible with the quartet with leaf sets {a, b} and {c, d} since the quartet can be

formed by contracting edges of S|{a,b,c,d}. We showed in Proposition 2.3 that E is

transitive and so the quartet ab|cd E S and S E T implies that ab|cd E T . Therefore

ab|cd ∈ q(T ). Since S E T by assumption, it is clear that L(S) ⊂ L(T ).

(⇐). Suppose that q(S) ⊂ q(T ) and L(S) ⊂ L(T ). Clearly, if T |L(S) is compatible

with S then T is also compatible with S. So we can restrict ourselves the case when

L(S) = L(T ). Let λ|λ̄ be a split of S. By Lemma 3.7, we see that ab|cd ∈ q(S) for all

a, b ∈ λ and c, d ∈ λ̄. From the assumption, we see that this means ab|cd ∈ q(T ) for

all such pairs and therefore λ|λ̄ ∈ Σ(T ) by Lemma 3.8. This accounts for every split

λ|λ̄ where min{|λ|, |λ̄|} ≥ 2. If, without loss of generality, |λ| = 1, then the split λ|λ̄

is a trivial splits. We know from Lemma 2.7 that since S and T are both phylogenetic

trees, they both display all the trivial splits. So we see that Σ(S) ⊂ Σ(T ). Since we

restricted T to L(S) we can appeal to Lemma 3.9 to show that S E T .
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Chapter 4

Binary Inferences

Definition 4.1. We say that a set of quartet splits Q infers the quartet split s

when every tree T that displays every split in Q also displays s. If Q infers s it

is denoted Q → s. When |Q| = k these are called k-ary inferences. If Q → s for

some Q of size k and there is no proper subset of Q that infers s, this is called a

primitive k-ary inference.

Bryant and Steel showed that there are primitive k-ary inferences for all k [4]. In

his Master’s Thesis from 1986, Reconstruction Methods for Derivation Trees, M.C.H.

Dekker enumerated all binary and ternary quartet split inferences[8]. His results were

not available to me and I have therefore not seen any of Dekker’s work. What follows

is an independent re-creation of a portion of his Master’s Thesis.

Let A be a set of two quartet splits A1 and A2. Let s be quartet split such that

s /∈ A. We wish to know under what circumstances does A → s. We let the label

set L(A) of A be {L(A1) ∪ L(A2)}.

Lemma 4.2. If |L(A) ∩ L(s)| < 2 then A 6→ s.

Proof.

Case 1. Let |L(A)∩L(s)| = 0 and let T be a tree that displays both splits in A. Let

s be the split ab|cd where {a, b, c, d} ∩ L(A) = ∅. Now choose some internal vertex

v of T and attach four new edges to v with one edge leading to each of the four new

vertices {a, b, c, d}. Call this new tree T ′. Since a, b, c and d are all adjacent to the

vertex v there is no way to split a, b from c, d in T ′. It is clear that q(T ) ⊂ q(T ′) and
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therefore T ′ displays A but T ′ does not display s. Since we have created a tree that

displays A and not s we see that A 6→ s.

Case 2. Let |L(A)∩L(s)| = 1 and let T be a tree that displays both splits in A. Let

s be the split ab|cd where {a, b, c, d} ∩L(A) = {a} without loss of generality. Choose

an internal vertex v of T and attach three new edges to v with one edge leading to

each of the new vertices {b, c, d}. Again, there is no split that separates {a, b} from

{c, d}. T ′ is an example of a tree that displays A but not s. So we see that A 6→ s.

Lemma 4.3. If |L(A) ∩ L(s)| = 2 then A 6→ s.

Proof. Let L(A) ∩ L(s) = {a, b} without loss of generality. So we have that L(s) =

{a, b, s1, s2}. Let T be a tree that displays both splits in A. If we add s1 and s2 to

T in such a way that s1 and s2 are adjacent to the same internal vertex of T , then

there can be no splits of the form v1s1|v2s2 where v1, v2 ∈ L(A) as seen in Figure 4.1.

s1

s2

Figure 4.1: The tree T along with new vertices s1, s2

So suppose that s is of the form v1v2|s1s2. Add s1 to T so that it is adjacent to

v1 and add s2 so that it is adjacent to v2. We see that T ∪{s1, s2} cannot display the

split s. There are no more possibilities for the arrangement of s and so we see that

when |L(A) ∩ L(s)| = 2, A 6→ q.
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Lemma 4.4. If |L(A) ∩ L(s)| = 3 then A 6→ s.

Proof. Suppose that L(A) ∩ L(s) = {a, b, c}. Then without loss of generality, let s

be the split ab|cs1. Let T be a tree that displays both splits in A. Since s1 /∈ L(A)

we see that s1 can be added so that it is adjacent to any internal vertex of T . In

particular, s1 can be added so that it is adjacent to vertex a. Since a is adjacent to

s1 there is no split that will separate a from s1. Hence for any split s we see that

A 6→ s.

Note that we have now shown that if A → s then it must be the case that

|L(A) ∩ L(s)| ≥ 4. Since |L(s)| = 4, we see that when A → s it must be that

L(q) ⊂ L(A). In order for an inference to be made, we see from definition 4.1 that

all trees displaying A must also display s. That is, if T is the set of all trees T that

display A, and A→ s, then s ∈ q(T). It is clear then that if some number of trees in

T are shown to have no common quartet splits other than A then it has been shown

that there are no inferences to be made from A.

Theorem 4.5. The following is an exhaustive list of binary inferences involving quar-

tet splits. The set {a, b, c, d, e} represents the leaves of each tree T that displays the

quartet splits.

ab|cd, ab|ce→ ab|de

ab|cd, ac|be→ ae|cd

ab|cd, ac|be→ ad|be

ab|cd, ac|be→ be|cd
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Proof. We can see that |L(A)| ∈ {5, 6, 7, 8}. We will prove the theorem by cases.

Case 1. Suppose that |L(A)| = 8 i.e. |L(A1)∩L(A2)| = 0. Without loss of generality

let A1 be ab|cd and A2 be ef |gh.

e

f

a

b

g

h

c

d

g

h

a

b

e

f

c

d

Figure 4.2: Trees T1 and T2

We can see from Figure 4.2 that the trees T1 and T2 both display the splits of A but

have no other splits in common. From this we can see that the splits of A do not

infer any other quartet splits.

Case 2. Suppose that |L(A)| = 7 i.e. |L(A1)∩L(A2)| = 1. Without loss of generality

let A1 be ab|cd and A2 be ae|fg.

c

d

g

f
b

e

a

a

b

f

g

c

d

e

a

e

c

d

b

f

g

Figure 4.3: Trees T1, T2, and T3 share no common splits other than A.

In Figure 4.3, we have three trees that all display both A1 and A2. If it were the

case that A infered another quartet split s, then T1, T2, and T3 would all display s.

Since there are not splits that are common to all three trees, other than those in A,

we can see than no inferences can be made when |L(A)| = 7.
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Case 3. Suppose that |L(A)| = 6 i.e. |L(A1) ∩ L(A2)| = 2. Here we must look

at several subcases for there are four possible arrangements of the leaves in which

|L(A)| = 6.

Subcase 3.1. Suppose that A1 is the quartet split ab|cd and A2 is the quartet split

ab|ef . It is clear from Figure 4.4 that these two splits do not infer a third.

c

d

e

f
b

a
a

b

c

d

e f

Figure 4.4: Trees T1 and T2 share no common splits other than A.

Subcase 3.2. Subcase 3.2 Suppose that A1 is the quartet split ab|cd and A2 is the

quartet split ac|ef . As seen in Figure 4.5, there are no splits that can be infered from

A1 and A2.

a

b

c

d

e f

a c

d

b

e

f

c a

b

d

e

f

Figure 4.5: Trees T1, T2, and T3 share no common splits other than A.

Subcase 3.3. Suppose that A1 is the quartet split ab|cd and A2 is the quartet split

ae|cf . As evidenced by the trees in Figure 4.6, the splits in A do not infer a third

quartet split.

Subcase 3.4. Suppose that A1 is the quartet split ab|cd and A2 is the quartet split

ae|bf . It is shown in Figure 4.7 that no inferences can be made from these two quartet

splits.
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Figure 4.6: Trees T1, T2, and T3 share no common splits other than A.
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Figure 4.7: Trees T1, T2, and T3 share no common splits other than A.

We have now exhausted all possibilities for two quartet splits A1 and A2, for which

|L(A1)∩L(A2)| ≤ 6. The only remaining case involves splits between which only one

leaf in different.

Case 4. Now, assume that |L(A1) ∩ L(A2)| = 3 i.e. |L(A)| = 5. Without loss of

generality, let A1 be the split ab|cd. In this scenario, we can consider a 4-leaf tree

T that displays quartet split A1 and explore the possible locations for our fifth leaf.

Consider Figure 4.8 below.

a

b

c

d

1

2 3
4

5

6

7

Figure 4.8: Tree showing possible locations for additional leaf
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There are 7 possible locations to which the fifth leaf can be added to T . We will

consider a second quartet split A2, with L(A2) = {a, b, c, e}, and determine which of

these positions would be valid locations for the new leaf f . We will then determine if

there are inferences to be made from A1 and A2.

Subcase 4.1. Suppose that A1 is the quartet split ab|cd as above, and A2 is the

quartet split ab|ce. To form a new tree T ′ = T + {e} that will display A1 as well

as A2, we see that e can be attached at positions 4, 5, 6, or 7. If e were added to

positions 1, 2 or 3, the resulting tree T ′ would not display A2. Now let us consider

the trees in Figure 4.9. By construction, each of these trees displays splits A1 and A2

and we determined using Figure 4.8 that these are the only trees that do so. Notice,

however, that each of these trees also displays the quartet split ab|de.

a

b
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de
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b

c

d

e

a

b

c

d

e

a

b

c

d

e

Figure 4.9: Trees with leaf e added in positions 4, 5, 6, and 7

Since every tree that dislays A also displays ab|de, we have shown that

ab|cd, ab|ce→ ab|de.

This is the first of the four binary inferences.
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Subcase 4.2. Again, we let A1 be the split ab|cd. If A2 is the split ac|be then, from

Figure 4.8, we see that the only possible location for leaf e is in position 2.

a

b

c

d

e

Figure 4.10: Tree with leaf e attached to position 2

In Figure 4.10 we see that the only tree that displays A1 and A2 also displays three

other splits. So from this tree we can determine the following binary inferences

ab|cd, ac|be→ ae|cd

ab|cd, ac|be→ ad|be

ab|cd, ac|be→ be|cd

As there are no other possibilities for A1 and A2 we have shown that these four binary

inferences are precisely the inferences that can be drawn from two quartet splits.
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Chapter 5

Ternary Inferences

We continue the work of the previous chapter, this time letting A = {A1, A2, A3}.

Since the size of A is now 3, we refer to any inferences found from such a set ternary

inferences.

Lemma 5.1. If |L(A)| = 12 then there is no quartet split s such that A→ s.

Proof. Without loss of generality, let A1 = ab|cd, A2 = ef |gh, and A3 = ij|kl. The

proof of the above lemma is clear from Figure 5.1 below. We can see that since

the pairs {ef} and {gh} can be interchanged and the pairs {ij} and {kl} can be

interchanged that there are no inferences that can be drawn from the tree below.

a

b

c

d

e

f

g

h

i

j

k

l

Figure 5.1: A tree with quartet splits A1,A2, and A3

Lemma 5.2. If |L(A)| = 11 then there are no inferences that can be made.

Proof. Without loss of generality we can let A1 = ab|cd, A2 = ef |gh, and A3 = ai|jk.

If we can find a collection of trees that display each of these three splits but have
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no others in common, then we have proved the lemma. Consider Figure 5.2 below.

These five trees each display A1, A2, A3 but have no other splits common to all five.
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Figure 5.2: These five trees share only the splits A1, A2, A3

Lemma 5.3. If |L(A)| = 10 then there are no inferences that can be made.

Proof. When |L(A)| = 10 we are forced to consider two cases, each of which lead

to several subcases. We can see that with a label set of size 10, that there are two

different ways to choose our first two splits. Without loss of generality, let A1 = ab|cd.

Now, A2 must be such that |L(A1) ∩ L(A2)| ∈ {0, 1, 2} in order to get 10 distinctly

labeled leaves. Note however, that if |L(A1) ∩ L(A2)| = 2, then since there are 10

total leaves, it must be that |L(A1) ∩L(A3)| = 0. Since we can arbitratily designate

which split is A2 and which is A3 this is essentially the same as the case when
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|L(A1) ∩ L(A2)| = 0. This realization allows us to only consider the two cases when

|L(A1) ∩ L(A2)| ∈ {0, 1}.

Case 5. Suppose that |L(A1) ∩ L(A2)| = 0. Then, without loss of generality, A1 =

ab|cd and A2 = ef |gh. Here we consider each possible arrangement of A3.

Subcase 5.1. We have the following three splits:

A1 = ab|cd A2 = ef |gh A3 = ac|ij

We can see from Figure 5.3 below that these three splits do not infer a fourth.
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Figure 5.3: The five trees above have only three common splits

Subcase 5.2. We have the following three splits:

A1 = ab|cd A2 = ef |gh A3 = ae|ij

We can see from Figure 5.4 below that these three splits do not infer a fourth.
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Figure 5.4: The three trees above share only splits A1, A2, and A3

Subcase 5.3. We have the following three splits:

A1 = ab|cd A2 = ef |gh A3 = ai|cj

We can see from Figure 5.5 below that these three splits do not infer a fourth.
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Figure 5.5: The four trees above share only splits A1 A2 and A3.
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Subcase 5.4. We have the following three splits:

A1 = ab|cd A2 = ef |gh A3 = ab|ij

We can see from Figure 5.6 below that these three splits do not infer a fourth.
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Figure 5.6: The three trees above share only splits A1, A2, and A3

Subcase 5.5. We have the following three splits:

A1 = ab|cd A2 = ef |gh A3 = ai|ej

We can see from Figure 5.7 below that these three splits do not infer a fourth.
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Figure 5.7: The five trees above share only splits A1, A2, and A3
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Subcase 5.6. We have the following three splits:

A1 = ab|cd A2 = ef |gh A3 = ai|bj

We can see from Figure 5.8 below that these three splits do not infer a fourth.
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Figure 5.8: The four trees above share only splits A1, A2, and A3

Case 6. Now suppose that |L(A1) ∩ L(A2)| = 1. Then, without loss of generality,

A1 = ab|cd and A2 = ae|fg. Here we consider each possible arrangement of A3.

Subcase 6.1. We have the following three splits:

A1 = ab|cd A2 = ae|fg A3 = ah|ij

We can see from Figure 5.9 below that these three splits do not infer a fourth.

Subcase 6.2. We have the following three splits:

A1 = ab|cd A2 = ae|fg A3 = bh|ij

We can see from Figure 5.10 below that these three splits do not infer a fourth.
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Figure 5.9: The four trees above share only splits A1, A2, and A3
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Figure 5.10: The five trees above share only splits A1, A2, and A3

Subcase 6.3. We have the following three splits:

A1 = ab|cd A2 = ae|fg A3 = ch|ij

We can see from Figure 5.11 below that these three splits do not infer a fourth.
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Figure 5.11: The four trees above share only splits A1, A2, and A3

Lemma 5.4. If |L(A)| = 9, there are no inferences that can be made.

Proof. When we consider three quartet splits with a total of 9 distinct leaf labels, we

see that the possibilities are divided into 5 cases depending on the intersections of

the label sets of each of the three quartet pairs. We have splits A1, A2, and A3 and

we therefore have
(
3
2

)
= 3 intersections between them. For convenience, we always

let A1 = ab|cd. We can assume without loss of generality that |L(A1) ∩ L(A2)| ≥

|L(A1)∩L(A3)|. If this is not the case, we can simply relabel A2 and A3 so that this

is true. We also notice that |L(A1) ∩ L(A2)| ∈ {0, 1, 2, 3} since two quartet splits on

the same 4 leaves are either the same split or they are imcompatible. The four cases

of our proof will be based on intersection triples which will be ordered triples where

the coordinates are the sizes of the intersections between the three quartet splits.

The first coordinate of the intersection triple will be |L(A1) ∩ L(A2)|, the second

|L(A1) ∩ L(A3)|, and the third coordinate will be |L(A2) ∩ L(A3)|.

Case 1. First assume that |L(A1) ∩ L(A2)| is as large as possible, namely 3. Since

there must be exactly 9 distinct leaves, and only 5 are coming from splits A1 and

A2, we see A3 must consist of 4 previously unused labels. Therefore, we have the
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intersection triple (3,0,0). Notice that by relabeling and using our above assumption

that |L(A1)∩L(A2)| is a largest intersection that (3,0,0) is equivalent to (0,3,0) and

(0,0,3). This equivalence greatly reduces the number of subcases we must check. So

we are considering sets where splits A1 and A2 share three leaves which, without loss

of generality, we will name a, b, c. We now have two subcases to consider.

Subcase 1.1. We have the following three splits

A1 = ab|cd A2 = ab|ce A3 = fg|hi

Notice that splits A1 and A2 imply the third split ab|de from Theorem 4.5. Since this

inference is made by only two of our splits it is not considered a ternary inference.

We can see from Figure 5.12 below that these three splits yield no ternary inferences.
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Figure 5.12: The two trees above share only splits A1, A2, A3 and the aforementioned
binary inference

Subcase 1.2. We have the following three splits

A1 = ab|cd A2 = ac|be A3 = fg|hi

Notice that splits A1 and A2 imply the splits ae|cd, ad|be, and be|cd from Theorem

4.5. Since these inferences are made by only two of our splits the are not considered

ternary inferences. The tree in Figure 5.13 below is the only way to display both A1

and A2 as found during the proof of the Binary Inferences Theorem. Since the leaves

f, g, h, i can be attached arbitrarily to this tree so long as split A3 is realized, we see

that there can be no inferences drawn other than the three mentioned previously.
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Figure 5.13: This tree shows that A1, A2, A3 can yield no ternary inferences

Case 2. Now we consider the case when the intersection triple is (2,1,1). From the

second coordinate we can see that |L(A1) ∩ L(A3)| = 1. Since we assume that A1 is

always ab|cd, we can let this single element of the intersection be a. We now have

four leaves from A1 plus two additional leaves from A2, which means that we must get

three unused leaves from the remainder of A3. From this we see that it must be that

a ∈ L(A2). We know that A2 must have two leaves in common with A1 and that one

of these has to be a. We can see that this points us toward two possible combinations,

a, b and a, c. From this information, we arrive at the four subcases below.

Subcase 2.1. We have the following three splits

A1 = ab|cd A2 = ab|ef A3 = ag|hi

Notice that splits A1 and A2 imply the third split ab|de from Theorem 4.5. Since this

inference is made by only two of our splits it is not considered a ternary inference.

We can see from Figure 5.14 below that these three splits yield no ternary inferences.
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Figure 5.14: The trees above share only splits A1, A2, A3
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Subcase 2.2. We have the following three splits

A1 = ab|cd A2 = ae|bf A3 = ag|hi

We can see from Figure 5.15 below that these three splits yield no ternary inferences.

a

b

c

d

e

f

g

h

i

a

g
c

d

b f

e

h i

a

g
b

f

c d

e

h i
a

b c

d

e

f

g

h i

b

a c

d

f

e

h

g

i

Figure 5.15: The trees above share only splits A1, A2, A3

Subcase 2.3. We have the following three splits

A1 = ab|cd A2 = ac|ef A3 = ag|hi

We can see from Figure 5.16 below that these three splits yield no ternary inferences.

Subcase 2.4. We have the following three splits

A1 = ab|cd A2 = ae|cf A3 = ag|hi

We can see from Figure 5.17 below that these three splits yield no ternary inferences.
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Figure 5.16: The trees above share only splits A1, A2, A3
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Figure 5.17: The trees above share only splits A1, A2, A3

Case 3. Now we consider the case when the intersection triple is (2,1,0). Since the

first coordinate tells us that |L(A1) ∩ L(A2)| = 2 we can say that this intersection

must either be {a, b} or {a, c}. Suppose that A2 = ab|ef . Then in order to conform

to the intersection triple, A3 must be either cg|hi or dg|hi. Looking at the symmetry

of A1 (ab|cd = ab|dc) we see that these two splits are essentially the same. Using

these principles, we arrive at the following four subcases.
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Subcase 3.1. We have the following three splits

A1 = ab|cd A2 = ab|ef A3 = cg|hi

We can see from Figure 5.18 below that these three splits yield no ternary inferences.
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Figure 5.18: The trees above share only splits A1, A2, A3
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Subcase 3.2. We have the following three splits

A1 = ab|cd A2 = ae|bf A3 = cg|hi

We can see from Figure 5.19 below that these three splits yield no ternary inferences.
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Figure 5.19: The trees above share only A1, A2, A3

Subcase 3.3. We have the following three splits

A1 = ab|cd A2 = ac|ef A3 = bg|hi

We can see from Figure 5.20 below that these three splits yield no ternary inferences.

Subcase 3.4. We have the following three splits

A1 = ab|cd A2 = ae|cf A3 = bg|hi

We can see from Figure 5.21 below that these three splits yield no ternary inferences.
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Figure 5.20: The trees above share only splits A1, A2, A3
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Figure 5.21: The trees above share only splits A1, A2, A3

Case 4. Now we consider the case when the intersection triple is (1,1,1). For the

first coordinate, we can set A1 ∩A2 = {a} without loss of generality. So in each case

we have A1 = ab|cd and A2 = ae|fg. The only variety comes from A3. It must have

one leaf in common with each of A1 and A2 but this leaf cannot be a. If a were an
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element of L(A3), then it would have the form ah|ij, but this gives us more than 9

leaves. So we see that L(A3) must contain exactly one of the following pairs in each

case:

{b, e} {b, f} {c, e} {c, f}

However, if we consider these four possibilities closely we will notice that there essen-

tially is no difference between the pair {b.f} and the pair {c, e}. Thus we have three

choices that lead to 6 subcases in the proof of our lemma.

Subcase 4.1. We have the following three splits

A1 = ab|cd A2 = ae|fg A3 = be|hi

We can see from Figure 5.22 below that these three splits yield no ternary inferences.
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Figure 5.22: The trees above share only splits A1, A2, A3
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Subcase 4.2. We have the following three splits

A1 = ab|cd A2 = ae|fg A3 = bh|ei

We can see from Figure 5.23 below that these three splits yield no ternary inferences.
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Figure 5.23: The trees above share only splits A1, A2, A3

Subcase 4.3. We have the following three splits

A1 = ab|cd A2 = ae|fg A3 = bf |hi

We can see from Figure 5.24 below that these three splits yield no ternary inferences.

Subcase 4.4. We have the following three splits

A1 = ab|cd A2 = ae|fg A3 = bh|fi

We can see from Figure 5.25 below that these three splits yield no ternary inferences.
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Figure 5.24: The trees above share only splits A1, A2.A3
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Figure 5.25: The trees above share only splits A1, A2, A3

Subcase 4.5. We have the following three splits

A1 = ab|cd A2 = ae|fg A3 = cf |hi

We can see from Figure 5.26 below that these three splits yield no ternary inferences.
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Figure 5.26: The trees above share only splits A1, A2, A3

Subcase 4.6. We have the following three splits

A1 = ab|cd A2 = ae|fg A3 = ch|fi

We can see from Figure 5.27 below that these three splits yield no ternary inferences.
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Figure 5.27: The trees above share only splits A1, A2, A3
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Lemma 5.5. If |L(A)| = 8, there are no inferences that can be made.

Proof. When we consider three quartet splits with a total of 8 distinct leaf labels,

we see that the possibilities are divided into 6 cases depending on the intersections

of the label sets of each of the three quartet pairs. Again for convenience, we always

let A1 = ab|cd. We can assume without loss of generality that |L(A1) ∩ L(A2)| ≥

|L(A1)∩L(A3)|. If this is not the case, we can simply relabel A2 and A3 so that this

is true. We also notice that |L(A1) ∩ L(A2)| ∈ {0, 1, 2, 3} since two quartet splits on

the same 4 leaves are either the same split or they are imcompatible. The six cases

of our proof will again be based on intersection triples.

Case 1. First we consider the intersection triple (3,1,1). This scenario results in two

possible subcases.

Subcase 1.1. We have the following three splits

A1 = ab|cd A2 = ab|ce A3 = af |gh.

First, notice that A1 and A2 imply the split ab|de. We can see from Figure 5.28 below

however, that these splits do not yield any ternary inferences.
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Figure 5.28: The trees above share only splits A1, A2, A3
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Subcase 1.2. We have the following three splits

A1 = ab|cd A2 = ac|be A3 = af |gh.

First, notice that A1 and A2 imply the splits ae|cd ad|be and be|cd. We can see from

Figure 5.29 below however, that these splits do not yield any ternary inferences.
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Figure 5.29: The trees above share only splits A1, A2, A3

Case 2. Now we consider the intersection triple (3,1,0). This scenario results in two

possible subcases.

Subcase 2.1. We have the following three splits

A1 = ab|cd A2 = ab|ce A3 = df |gh.

First, notice that A1 and A2 imply the split ab|de. We can see from Figure 5.30 below

however, that these splits do not yield any ternary inferences.
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Figure 5.30: The trees above share only splits A1, A2, A3
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Subcase 2.2. We have the following three splits

A1 = ab|cd A2 = ac|be A3 = df |gh.

First, notice that A1 and A2 imply the splits ae|cd, ad|be and be|cd. We can see from

Figure 5.31 below however, that these splits do not yield any ternary inferences.
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Figure 5.31: The trees above share only splits A1, A2, A3

Case 3. Now we consider the intersection triple (2,2,2). This scenario results in six

possible subcases.

Subcase 3.1. We have the following three splits

A1 = ab|cd A2 = ab|ef A3 = ab|gh.

We can see from Figure 5.32 below however, that these splits do not yield any ternary

inferences.
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Figure 5.32: The trees above share only splits A1, A2, A3
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Subcase 3.2. We have the following three splits

A1 = ab|cd A2 = ab|ef A3 = ag|bh.

We can see from Figure 5.33 below however, that these splits do not yield any ternary

inferences.
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Figure 5.33: The trees above share only splits A1, A2, A3

Subcase 3.3. We have the following three splits

A1 = ab|cd A2 = ae|bf A3 = ag|bh.

We can see from Figure 5.34 below however, that these splits do not yield any ternary

inferences.

Subcase 3.4. We have the following three splits

A1 = ab|cd A2 = ac|ef A3 = ac|gh.

We can see from Figure 5.35 below however, that these splits do not yield any ternary

inferences.
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Figure 5.34: The trees above share only splits A1, A2, A3
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Figure 5.35: The trees above share only splits A1, A2, A3

Subcase 3.5. We have the following three splits

A1 = ab|cd A2 = ac|ef A3 = ag|ch.

We can see from Figure 5.36 below however, that these splits do not yield any ternary

inferences.

50



a

b

c

d

e h

g

f

c

d

a

b

e g

h

f

a

b

c

de

f

g

h

c

d

a

be

f

h

g

Figure 5.36: The trees above share only splits A1, A2, A3

Subcase 3.6. We have the following three splits

A1 = ab|cd A2 = ae|cf A3 = ag|ch.

We can see from Figure 5.37 below however, that these splits do not yield any ternary

inferences.
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Figure 5.37: The trees above share only splits A1, A2, A3
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Case 4. Now we consider the intersection triple (2,2,1). This scenario results in

seven possible subcases.

Subcase 4.1. We have the following three splits

A1 = ab|cd A2 = ab|ef A3 = ac|gh.

We can see from Figure 5.38 below however, that these splits do not yield any ternary

inferences.
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Figure 5.38: The trees above share only splits A1, A2, A3

Subcase 4.2. We have the following three splits

A1 = ab|cd A2 = ab|ef A3 = ag|ch.

We can see from Figure 5.39 below however, that these splits do not yield any ternary

inferences.

Subcase 4.3. We have the following three splits

A1 = ab|cd A2 = ae|bf A3 = ac|gh.

We can see from Figure 5.40 below however, that these splits do not yield any ternary

inferences.
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Figure 5.39: The trees above share only splits A1, A2, A3
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Figure 5.40: The trees above share only splits A1, A2, A3

Subcase 4.4. We have the following three splits

A1 = ab|cd A2 = ae|bf A3 = ag|ch.

We can see from Figure 5.41 below however, that these splits do not yield any ternary

inferences.

53



b

a

c

d

f

h
g

e

a

b

c

d

e

h

g

f

b

a

c

d

fh
e

g

a

b

c

d

e

f g

h

Figure 5.41: The trees above share only splits A1, A2, A3

Subcase 4.5. We have the following three splits

A1 = ab|cd A2 = ac|ef A3 = ad|gh.

We can see from Figure 5.42 below however, that these splits do not yield any ternary

inferences.
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Figure 5.42: The trees above share only splits A1, A2, A3
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Subcase 4.6. We have the following three splits

A1 = ab|cd A2 = ac|ef A3 = ag|dh.

We can see from Figure 5.43 below however, that these splits do not yield any ternary

inferences.
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Figure 5.43: The trees above share only splits A1, A2, A3

Subcase 4.7. We have the following three splits

A1 = ab|cd A2 = ae|cf A3 = ag|dh.

We can see from Figure 5.44 below however, that these splits do not yield any ternary

inferences.
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Figure 5.44: The trees above share only splits A1, A2, A3

Case 5. Now we consider the intersection triple (2,2,0). This scenario results in six

possible subcases.

Subcase 5.1. We have the following three splits

A1 = ab|cd A2 = ab|ef A3 = cd|gh.

We can see from Figure 5.45 below however, that these splits do not yield any ternary

inferences.
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Figure 5.45: The trees above share only splits A1, A2, A3
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Subcase 5.2. We have the following three splits

A1 = ab|cd A2 = ab|ef A3 = cg|dh.

We can see from Figure 5.46 below however, that these splits do not yield any ternary

inferences.
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Figure 5.46: The trees above share only splits A1, A2, A3

Subcase 5.3. We have the following three splits

A1 = ab|cd A2 = ae|bf A3 = cg|dh.

We can see from Figure 5.47 below however, that these splits do not yield any ternary

inferences.

Subcase 5.4. We have the following three splits

A1 = ab|cd A2 = ac|ef A3 = bd|gh.

We can see from Figure 5.48 below however, that these splits do not yield any ternary

inferences.
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Figure 5.47: The trees above share only splits A1, A2, A3
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Figure 5.48: The trees above share only splits A1, A2, A3

Subcase 5.5. We have the following three splits

A1 = ab|cd A2 = ac|ef A3 = bg|dh.

We can see from Figure 5.49 below however, that these splits do not yield any ternary

inferences.

58



a

b

c

d

e

g

h

f

c

d

a

b

e

h

g

f

a

b

g

ce

f

d

h

a

b

c

de

f

h

g

Figure 5.49: The trees above share only splits A1, A2, A3

Subcase 5.6. We have the following three splits

A1 = ab|cd A2 = ae|cf A3 = bg|dh.

We can see from Figure 5.50 below however, that these splits do not yield any ternary

inferences.
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Figure 5.50: The trees above share only splits A1, A2, A3
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Case 6. Now we consider the intersection triple (2,1,1). This scenario results in

seven possible subcases.

Subcase 6.1. We have the following three splits

A1 = ab|cd A2 = ab|ef A3 = ce|gh.

We can see from Figure 5.51 below however, that these splits do not yield any ternary

inferences.
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Figure 5.51: The trees above share only splits A1, A2, A3

Subcase 6.2. We have the following three splits

A1 = ab|cd A2 = ab|ef A3 = cg|eh.

We can see from Figure 5.52 below however, that these splits do not yield any ternary

inferences.

a

b

d

c

e
f

h

g
a

b

c

d

e

f

g h a

b

c

d

e f

g

h

Figure 5.52: The trees above share only splits A1, A2, A3
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Subcase 6.3. We have the following three splits

A1 = ab|cd A2 = ae|bf A3 = ce|gh.

We can see from Figure 5.53 below however, that these splits do not yield any ternary

inferences.
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Figure 5.53: The trees above share only splits A1, A2, A3

Subcase 6.4. We have the following three splits

A1 = ab|cd A2 = ae|bf A3 = cg|eh.

We can see from Figure 5.54 below however, that these splits do not yield any ternary

inferences.

Subcase 6.5. We have the following three splits

A1 = ab|cd A2 = ac|ef A3 = be|gh.

We can see from Figure 5.55 below however, that these splits do not yield any ternary

inferences.
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Figure 5.54: The trees above share only splits A1, A2, A3
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Figure 5.55: The trees above share only splits A1, A2, A3

Subcase 6.6. We have the following three splits

A1 = ab|cd A2 = ac|ef A3 = bg|eh.

We can see from Figure 5.56 below, that these splits do not yield any inferences.
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Figure 5.56: The trees above share only splits A1, A2, A3

Subcase 6.7. We have the following three splits

A1 = ab|cd A2 = ae|cf A3 = be|gh.

We can see from Figure 5.57 below however, that these splits do not yield any ternary

inferences.
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Figure 5.57: The trees above share only splits A1, A2, A3
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We can see that there do exist ternary influences from the example below.

Example 5.6. Consider the quartet splits

A1 = ab|cd A2 = ab|ef A3 = ce|df

We refer back to Figure 4.8 from Chapter 4, reproduced below.
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2 3
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7

We need to adjoin the two new leaves e and f to this tree so that splits A2 and A3

are realized. We see from A2 that neither e nor f can be placed at positions 1,2, or 3.

Also, from A3 we see that e and f cannot be adjacent to the same vertex. It is clear

however that there are positions that will allow all three splits to be displayed by

the same tree: for example, e at position 6 and f at postion 7. We can see that any

valid positioning of e and f at positions 4,5,6, or 7 will indeed infer the new quartet

ab|ce. This new split, along with the original three, then implies other splits using

the binary inference rules from Theorem 4.5.
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