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Abstract

Network science attempts to capture real-world phenomenon through mathematical

models. The underlying model of a network relies on a mathematical structure called

a graph. Having seen its early beginnings in the 1950’s, the field has seen a surge of

interest over the last two decades, attracting interest from a range of scientists in-

cluding computer scientists, sociologists, biologists, physicists, and mathematicians.

The field requires a delicate interplay between real-world modeling and theory, as

it must develop accurate probabilistic models and then study these models from a

mathematical perspective. In my thesis, we undertake a project involving computer

programming in which we generate random network samples with fixed degree se-

quences and then record properties of these samples. We begin with a real-world

network, from which we extract a sample of at least one-hundred vertices through

the use of snowball sampling. We record the degree sequence, D, of this sample and

then generate random models with this same degree sequence. To generate these

models, we use a well-known graph algorithm, the Havel-Hakimi algorithm, to pro-

duce an initial non-random sample GD. We then run a Monte Carlo Markov Chain

(MCMC) on the sample space of graphs with this degree sequence beginning at GD

in order to produce a random graph in this space. Denote this random graph by

HD. Lastly, we compute the eigenvalues of the Laplacian matrix of HD, as these

eigenvalues are intricately connected with the structure of the graph. In doing this,

we intend to capture local properties of the network captured by the degree sequence

alone. The programming of this project is done in Python and Matlab.
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Chapter 1

Background

1.1 Introduction

The field of complex networks is an exciting area of current study. Having been

a topic of interest since the middle of the last century, the field has very recently

seen a surge in interest from a broad range of disciplines. To help solve important

problems, the field has attracted attention from biologists, physicists, sociologists,

computer scientists, and mathematicians [5]. Thus its development has seen a delicate

interplay between theory and applications. Its beauty lies in its ability to model and

understand real-world phenomenon as well as demonstrate deep theoretical results.

At first glance, a network ultimately is an abstract representation of a set of dis-

crete objects and connections between these objects. In mathematical terms, a net-

work is a graph and thus the objects are referred to as vertices, and the connections

between them are referred to as edges. A network abstracts away from properties of

the underlying system it represents, and captures only topological and connectivity

properties of the system. One of the goals of network science is to understand and ex-

plain properties of a system by the structural connectedness properties of its network

representation. Many scientific phenomenon have very natural representations as net-

works. The internet and world wide web are two of the most studied and prominent

examples of networks. The world wide web is an example of a “directed” network.

Each webpage represents a vertex. Then if page u has a hyper-link to another page v,

we say that there is a directed edge from u to v . Note that this does not necessarily
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mean there is an edge from v to u. Thus the edge is “directed”. Many networks do

not distinguish direction in their edges, and thus, in these cases, two vertices sharing

an edge is not an ordered relationship. We would call this a “simple” network. Other

examples of networks include protein interaction networks, metabolic networks, and

social networks. In a social network, it could be the case that vertices are people and

edges represent relations among the people such as friendship or familial ties. See [3]

for many more examples.

One could claim that graph theory and network science have their origins in the

same story. In 1736, the mathematician Leonard Euler attempted to solve a question

involving bridges in the old city of Königsberg, Prussia. The city lie on the banks of

the Pregel River, and consisted of two islands in the middle of the river. Seven bridges

connected the islands with each other and both sides of the river. The problem was

to determine if there was a path along the network that crosses each bridge exactly

once. The is known as the Königsberg Bridge Problem. This is often cited as the

first problem of graph theory. By abstracting the network of different landmasses

and bridges connecting them to just represent vertices and edges, respectively, the

problem then turns into a graph theoretical question. It turns out that the graph

representing this network does not permit an Eulerian path, which is the correct

mathematical concept to describe the desired path that crosses each bridge exactly

once. Thus by considering this fact, one attains a negative answer to the question. [5]

Figure 1.1 shows the city [13], the network of bridges [31], and graph representation

of this network [32].

Since this time, both fields have been the subject of intense theoretical and prac-

tical study. Barabási et al. present a detailed summary of the field in the book The

Structure and Dynamics of Networks [5]. In this introduction, I present a brief his-

tory of the field along with a discussion of major theoretical developments. Most of

my introductory discussion is inspired by this book, and thus the interested reader is

2



City of Königsberg [13] Bridges of Königsberg [31] Graph representation of
bridges of Königsberg [32]

Figure 1.1 Representation of real life problem as a network

invited to consult the book for further details.

In the 1950’s, social scientists saw a need to quantify the methods of their sciences,

such as sociology and anthropology. Thus many adopted terms and concepts from

graph theory to help describe problems they faced. They used these ideas to help cre-

ate models as well as analyze collected empirical data, linking graph theoretical ideas

with social ideas such as “status, influence, cohesiveness, social roles, and identities

in social networks,” [5] page 3. Around the same time, graphs became an accepted

model for means of disease and information transmission. Furthermore, it was around

this time that the notion of random graphs saw its early developments. This new

approach saw graphs as stochastic, or probabilistic, objects rather than deterministic.

All these events thus produced a surge of interest in the new field of network science.

[5] chapter 1. Before any further discussion of the historical development of network

science, it is important to introduce several basic concepts from graph theory. For a

complete introduction to graph theory, see e.g. Diestel’s book Graph Theory [9].

1.2 Graph Theory

Notation 1.1. Let n ∈ N. [n] = {z ∈ Z : 1 ≤ z ≤ n}

Notation 1.2. If V is a set and k is a positive integer, then [V ]k is the set of all

k-element subsets of V .
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Notation 1.3. If V is a set and k is a positive integer, then V k is the set of all

k-tuples of elements of V .

Definition 1.4. A simple, non-directed graph G is a pair of sets (V,E) where V is a

set of objects which we call vertices and E ⊆ [V ]2, elements of which are referred to

as edges.

Note that we do not allow for more than one edge between any two vertices.

Definition 1.5. A directed graph is a graph G = (V,A), where A ⊆ V 2.

For this work, we always assume that V is of finite cardinality. If |V | = n, we can

create a bijection between [n] and V and refer to the vertices as vi, where i ∈ [n]. We

assume that a graph is non-directed and simple, unless otherwise stated.

Now we introduce several definitions associated with a graph. In the following,

assume G = (V,E) is a graph with n vertices.

Definition 1.6. A vertex v ∈ V is said to be incident upon an edge e ∈ E if

e = {v, w} for some w ∈ V . In words, v is incident upon e if v is an end-vertex of e.

Conversely, e is also said to be incident upon v.

Definition 1.7. A vertex v ∈ V is said to be adjacent to a vertex w ∈ V if they

share an edge, that is, if {v, w} ∈ E.

Definition 1.8. Two vertices are said to be neighbors if they are adjacent.

Definition 1.9. Given a vertex v ∈ V , its neighborhood is the set of its neighbors.

We denote it by N(v) = {y ∈ V : {y, v} ∈ E}.

Definition 1.10. Given a vertex v, its degree, denoted by d(v), is the number of

edges that it is incident with, or equivalently the number of vertices it is adjacent

with.
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Definition 1.11. Two edges e and f are said to be independent if they do not share

an end-vertex.

Definition 1.12. The order of G refers to the number of vertices in G. It is denoted

by |G| := |V |.

Definition 1.13. The size of G refers to the number of edges in G. It is denoted by

||G|| := |E|.

Definition 1.14. A path in G is a sequence of vertices v0, v1, . . . , vm where m ≥ 0

such that {{vi, vi+1} : 0 ≤ i ≤ m − 1} is a set of m different edges of G, and no

vertices are repeated with the exception that v0 could equal vm. Denote such a path

as a v0 − vm path.

Definition 1.15. A cycle is a path P = v0, v1, . . . , vm in which v0 = vm and m > 0.

Note that it follows that in a cycle, m ≥ 3.

Definition 1.16. The length of a path is the number of edges in the path.

Definition 1.17. The girth of G is the length of the shortest cycle in G.

Definition 1.18. Given two vertices, u and v, their distance is the length of the

shortest u− v path in G.

Definition 1.19. A subset U ⊆ V of vertices is connected if for every pair of vertices

v, w ∈ U , there exists a v − w path in G.

Definition 1.20. A graph G is connected if and only if the entire vertex set V is

connected.

Definition 1.21. A maximally connected set of vertices of a graph is called a com-

ponent. Thus a connected graph has one component.

Definition 1.22. A tree is a connected graph with no cycles.

5



v1

v2

v3

v4

Figure 1.2 Example Graph

Definition 1.23. A dominating set D is a subset of V such that every vertex not inD

has at least one neighbor in D. A dominating component is a connected dominating

set.

Definition 1.24. Two graphs G = (V1, E1) and H = (V2, E2) are isomorphic if there

exists a bijection φ : V1 → V2 such that {u,w} ∈ E1 if and only if {φ(u), φ(v)} ∈ E2.

Definition 1.25. If Ω is a set, then P(Ω) is the set of all subsets of Ω, called its

power set.

Definition 1.26. : Given a graph G on vertex set {v1, . . . , vn}, there exists an

associated degree sequence D. D is the list of non-negative integers (d1, d2, . . . , dn)

such that d(vi) = di.

Figure 1.2 is an example of a graph that has degree sequence (3, 3, 3, 3).

As the order and size of a graph becomes very large, it is often computationally

impractical to obtain exact measurements of graph parameters, such as the diameter,

girth, connectivity, etc. To mitigate this difficulty, it helps to look at the space of
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all graphs on a fixed number of vertices, n, as a probability space. Letting n go to

infinity, one can often obtain average measurements of these parameters in terms of

n. One can obtain a probability measure of the set of graphs on n vertices having

properties of interest. Thus a random graph in this space will have these properties

of interest with this associated probability. Thus it is important to understand some

basic notions from probability.

Modern probability relies on the mathematical axioms, definitions, and results

of set theory and mathematical analysis, specifically measure theory. By rigorously

defining probability spaces, one is able to use powerful tools from analysis. To begin

with, a probability space is a special kind of mathematical object called a measure

space. Several background definitions are needed. Many of the following definitions

are taken from Resnick’s book A Probability Path. See this for further reference [27].

1.3 Probability

Definition 1.27. An experiment is a hypothetical or realistic scenario in which a

range of outcomes are possible.

Examples include rolling a six-sided dice or flipping a two-sided coin.

Definition 1.28. The set of outcomes that can occur in an experiment is referred to

as the sample space. A sample space is typically denoted by Ω. Flipping a coin, the

sample space could be {0, 1} where 0 represents a tails and 1 represents a heads.

Definition 1.29. Given an experiment, we can associate probabilities to each out-

come in the sample space. This is called a probability distribution.

Definition 1.30. If Ω is a an arbitrary set, then a set, A, of subsets of Ω is a σ-algebra

on Ω provided that the following conditions hold:

(i) Ω ∈ A;

(ii) If {Ci, i ∈ N} is a countable collection of elements of A, then ∪i∈NCi ∈ A;
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(iii) If C ∈ A, then its complement C ′ = Ω− C ∈ A.

Condition (ii) is referred to as being closed under countable unions. It quickly

follows from these axioms that ∅ ∈ Ω, and A is closed under countable intersections.

P(Ω) is a simple example of a σ-algebra on Ω.

Definition 1.31. : A measurable space is a pair (Ω,A) where Ω is a set and A is a

σ-algebra over Ω.

Definition 1.32. Let A be a σ-algebra on a set Ω. A measure on A is a function

µ : A → R ∪ {+∞} which obeys the following axioms:

(i) Empty set: µ(∅) = 0;

(ii) Non-negativity: µ(E) ≥ 0 for all E ∈ Ω;

(iii) Countable additivity: For a countable collection {Ci}i∈N of pairwise disjoint

elements in Ω, µ(∪∞i=1Ci) = ∑∞
i=1 µ(Ci).

Definition 1.33. A measure space is a triple (Ω,A, µ) where Ω is a set, A is a

σ-algebra of subsets of Ω, and µ is a measure on A.

Definition 1.34. A probability space is a measure space (Ω,A, P ) where P (Ω) = 1.

A probability distribution can be thought of as a probability measure on the sample

space.

Definition 1.35. : Given a probability space (Ω,A, P ), each element of A is called

an event.

So if Ω is the set of all possible outcomes of an experiment, an event A ∈ A is a

subset of outcomes. We say that the event A occurs if the outcome of the experiment

is an element of A.

Definition 1.36. : Given a sample space Ω, a random variable is a measurable

function X : Ω→ R. A random variable is often used to represent an experiment.

8



For example, suppose that a two-sided coin is tossed n times. Using the same

encoding as before, let the n-tuple (o1, o2, . . . , on) represent a possible outcome of the

n tosses where oi ∈ {0, 1} for 1 ≤ i ≤ n. Thus Ω consists of all 2n such n−tuples.

Then the variable X : Ω → {0, . . . , n} is a random variable where X outputs the

number of heads of a given outcome. Given a random variable X and a probability

measure P on Ω, there is an associated probability distribution (measure), D, on

R. That is, for y ∈ R, D(y) = P (X−1(y)). In the example above, supposing each

outcome has an equal probability of 1
2n , D(k) = (n

k)
2n for 0 ≤ k ≤ n. Several common

distributions arise frequently and thus are given names. When necessary, we will

define such a distribution.

Definition 1.37. Given a random variable X on a probability space (Ω,A, P ), the

expected value of X is defined formally as the Lebesgue integral E[X] =
∫

Ω XdP . In

the discrete case, this turns out to be ∑i xipi where xi ranges over all possible values

of X and X takes the value of xi with probability pi.

The expected value of a random variable can be viewed as its average value. Here

we talk about the notion of dependence between events in a probability space, as this

is important in understanding Markov Chains, to be discussed later.

Definition 1.38. If E,F are events in some sample space Ω with P (F ) 6= 0, we define

the conditional probability of the event E occurring given that F occurs as P (E|F ) =
P (E∩F )
P (F ) . This can be generalized to an arbitrary number of events. If A,E1, E2, . . . , En

are events with P (∩ni=1Ei) 6= 0, then P (A|E1, E2, . . . , En) = P (A∩(∩n
i=1Ei))

P (∩n
i=1Ei) is the prob-

ability of A given the occurrence of the events E1, . . . , En.

Definition 1.39. : Two events E,F in a probability space are said to be independent

if P (E ∩ F ) = P (E) · P (F ). If P (F ) 6= 0, this is equivalent with P (E|F ) = P (E).

Independence is important in understanding random graph processes. As said

before, with the types of probability spaces one is typically interested in in combina-
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torics and graph theory, the asymptotic limiting behavior of a random process is of

most importance. Also, one often speaks of an event occurring with high probability.

We will define this formally.

Definition 1.40. Given some property A and a probability space (Ω,A, P ), it is said

that A holds almost surely if there exists a set N ∈ A such that P (N) = 0 and for

w ∈ N ′, A holds. Thus A will hold always, except for on a set of probability zero.

Definition 1.41. Given an arbitrary function real-valuled f , limn→∞ f(n) = Lmeans

that given an arbitrary ε > 0, there exists N ∈ N such that for all n ≥ N , |f(n)−L| <

ε. L is the asymptotic limit of f .

Sometimes, an exact limit of a function is not known. But it is known that its

limiting behavior is similar to that of a simpler function which is better understood.

Thus a function is spoken about with reference to its asymptotic order. Let f(n), g(n)

be two non-negative functions. The following notation is used:

f(n) ∈ O(g(n)) means that there exists n0 such that for all n ≥ n0, f(n) ≤ kg(n)

for some positive constant k.

f(n) ∈ Ω(g(n)) means that there exists n0 such that for all n ≥ n0, f(n) ≥ kg(n)

for some positive constant k.

f(n) ∈ Θ(g(n)) means that there exists n0 such that for all n ≥ n0, k2g(n) ≤

f(n) ≤ k1g(n) for some positive constants k1, k2.

f(n) ∈ o(g(n)) means that for every ε > 0, there exists n0 such that for all

n ≥ n0, f(n) ≤ εg(n).

f(n) ∼ g(n) means that f(n)− g(n) ∈ o(g(n)).

These definitions can be found in [2].
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1.4 History

Here we will discuss several developments historically important to the field, develop-

ments coming from biologists, sociologists, and mathematicians. Graph theorists are

familiar with the Erdős-Rényi random graph model, introduced by Paul Erdős and

Alfréd Rényi in the 1960 paper, “On The Evolution of Random Graphs” [11]. It is

interesting to note, though, that several of the basic notions were actually introduced

a decade earlier by the biologists Anatol Rapoport and Ray Solomonoff in their 1951

paper, “Connectivity of Random Nets” [29]. Rapoport, one of the earliest mathemat-

ical biologists, was interested in statistical aspects of networks. This was a new notion

at the time, looking at averages over random models rather than individual graphs.

In their paper, they considered a random graph model. They studied the component

structure of networks, and predicted a deep theoretical result proven by Erdős-Rényi,

that is the phase transition of the component structure. Their model is essentially

the same as the Erdős-Rényi model in that it considers a set of vertices with edges

randomly placed between them. For a randomly chosen vertex, they looked at its ex-

pected component size, referred to by them as “weak connectivity”. They concluded

that the weak connectivity is dependent on the mean degree a of the vertices. For

a < 1, the network has many small components, but for a > 1, a giant, dominating

component arises. This is essentially the phase transition of the component structure

proven rigorously by Erdős-Rényi. The authors suggest several problems for which

their model might be useful. These problems involve neural networks, epidemiology,

and genetics [5], page 11-12.

Erdős and Rényi were not aware of the contributions by Solomonoff and Rapoport

and treated the subject independently of them. Nonetheless, the Erdős-Rényi treat-

ment was mathematically thorough and delved deeper into the subject than their

predecessors. They produced many papers and results involving random graphs over

the next decade, and this work serves as the foundation for much future research in
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network science as well as for the purely mathematical topic of probabilistic com-

binatorics, or rather the so-called “probabilistic method”. See Alon and Spencer’s

book The Probabilistic Method for an exhaustive treatment of this subject [2]. This

random graph model is one of the points where network science shares an unclear

boundary with deep theoretical, mathematical results. We will discuss particulars of

this model later when we also introduce several other network models [5], page 12.

One of the most influential sociological papers was put forth in 1978 by the po-

litical scientist Ithiel de Sola Pool and the mathematician Manfred Kochen in their

paper “Contacts and Influence” [8]. The paper concerns social network structure and

patterns. Written in 1958, it was not published until twenty years later because the

authors were not satisfied with the depth of their work. A manuscript was produced

though, and the paper was un-officially circulated amongst the relevant research com-

munity. The paper put forth many of the crucial issues that came to define the field

for some time after. In this network, they treat people as vertices and acquaintances

between two people as an edge. Issues addressed involve an individual person’s de-

gree, degree distributions, average and range of degrees, high-degree people, network

structure, probability of a random acquaintance, probability of shared acquaintances

or neighbors, and shortest path lengths. Due to the insufficiency of empirical data,

they used the random graph model. They were also the first to scientifically intro-

duce the notion of the small-world effect, popularized as “6 degrees of separation”,

which refers to the idea that everybody in the world is within a relatively short social

distance of everybody else [5], page 15.

The scientific community itself also gives rise to several networks. One of these

was first studied by Derek de Solla Price in his 1965 paper “Networks of Scientific

Papers” [24]. In this directed network, each paper is a vertex, and a citation of another

paper is represented by a directed edge from the first to the cited. Each paper has an

in-degree and an out-degree. He studied statistical properties of these two degrees,
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namely the distributions of them and discovered that they have power-law tails. This

phenomenon has later been observed in many naturally occurring networks, and a

network with such a degree distribution is referred to as a “scale-free network.” In

1976, he published another paper which proposed an explanation for the existence

of power-laws in certain networks. This explanation has been widely accepted and

adopted and is known today as “preferential attachment” [25]. The explanation claims

that “citations receive further citations in proportion to the number they already

have” [5], page 18. Thus vertices with a large degree are more likely to accumulate

more neighbors. Preferential attachment and scale-free networks are notions of much

interest in network science today [5], page 17-18.

As for the current state of the field, networks have seen a very recent surge in

scientific interest over the last two decades. The most influential reason for this is

probably the advent of the use of computers, the internet, and the world wide web

in everyday society. With this surge, the field has also undergone some changes in

the way research is conducted. Barabási highlights three major points in this change

in [5]. He claims that there is more emphasis on empirical questions than before;

networks are seen as evolving rather than static; and the dynamical structure of the

underlying system on which the network lies is being taken into consideration more,

thus viewing the network no longer as a purely topological object [5], chapter 1.2.

There is now a concerted effort to find accurate models of the empirical networks

at hand. One reason this has not been a practical concern up until now is the

inability to sufficiently collect meaningful data. Obviously, we need the computer

to facilitate this [5], page 4-5. Networks evolve in the real sense that a person’s

number of acquaintances might change over time in a social network, the number of

citations of a paper can change in a citation network, and a web-page can add or

delete hyper-links with time. Thus models capturing time-evolving networks rather

than static models are necessary [5], page 7. When considering dynamical structures
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of the system underlying a network, it is important to take real properties of the

network into account. For example, in epidemiology, it should not be assumed that

all people have equal interaction probabilities. Social rules will dynamically affect

the probability of two specific vertices interacting. Corresponding models need to

account for that [5], page 8.

It is important to look at the theoretical models that have been developed and used

over time. Given real networks with certain properties of interest, we want models

that accurately capture these properties. To find such models and then analyze them

from a theoretical standpoint is obviously one of the tasks of network science. We

discuss theoretical properties of several models and highlight where they have fallen

short. [5] highlights three significant models: the Erdős-Rényi random graph, the

small-world model, and the scale-free model.

The Erdős-Rényi random graph model takes two different forms: G(n, p) and

G(n,m). G(n,m) refers to the space of all graphs with n vertices and m edges,

equipped with uniform probability. For 0 ≤ p ≤ 1, G(n, p) refers to the space of all

graphs on [n], in which for i, j ∈ [n], Pr[{i, j} ∈ E(G)] = p. For any two possible

edges e, f , the events that e ∈ E(G) and f ∈ E(G) are independent. We will focus

on G(n, p). In this space, each graph has a certain probability which is a function

of n, p, and its size m: pm(1 − p)(
n
2)−m. One is concerned with the behavior of the

space asymptotically, as n → ∞. p is typically treated as a function of n, denoted

p(n), and in this sense we can define threshold functions. Given some graph property

A, one wishes to determine whether there is a threshold function r(n), such that

when r(n) ∈ o(p(n)), the probability that G(n, p) satisfies A goes to 1 and when

p(n) ∈ o(r(n)), this probability goes to 0. Thus when we say that a certain property

holds in G(n, p) for certain p, we are saying that the property holds almost surely as

n goes to infinity. The most noted result regarding this model is the phase transition

its component structure undergoes as p changes. Let ε > 0 be a small constant. The
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evolution of G(n, p) goes as follows: (1) when p < 1−ε
n
, all components are trees or

unicyclic, having one cycle, and of size ≤ o(ln(n)); (2) when p > 1+ε
n
, there exists

a giant component of size Θ(n), and all other components are of size o(ln(n)); (3)

when p = 1+λn
1
3

n
for λ a real constant, the largest component has size Θ(n 2

3 ); (4)

p ∼ (1 + o(1)) ln(n)
n

is the threshold for G(n, p) being connected [2].

Also of note in this model is that it can be proven that its underlying probabilistic

structure only allows for the existence of one large component. This, as well as the

predicted component framework, is reflected in many real-world networks [5], page

230. The problem with this model though is that it does not accurately reflect degree

distributions. Given a random vertex v, the probability that it has degree k is given

by pk =
(
n−1
k

)
pk(1− p)n−k−1, i.e. the binomial distribution. This is because for each

choice of k neighbors from the remaining n−1 vertices, there is a probability of pk that

all k of them are neighbors and a (1−p)n−k−1 probability that the remaining n−k−1

vertices are non-neighbors. Note that the expected value of the degree is (n − 1)p.

If a model assumes that the average (or expected) value of the degree is constant,

i.e. p(n) = c
n−1 , then as n → ∞, pk → (pn)ke−pn

k! . Thus the degree distribution of

any vertex v approaches the Poisson distribution as n → ∞. [5] claims that this

distribution is not the degree distribution seen in many empirical networks. This

is an important issue, since the degree distribution significantly affects the network

structure [5], page 233. We discuss random graphs with given degree distributions or

sequences at a further point, as this is directly related to our project.

The small-world model attempts to capture two properties that appear in many

real-world networks. The first of these is the condition that the distance between

two vertices in a network is relatively short. Specifically, the average distance is a

logarithmic function of the order of the network and thus is growing slowly with the

number of vertices in the network. Secondly, the network experiences high clustering,

which means that the probability of two vertices being adjacent increases if they also
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share a neighbor. A noteworthy fact about this model is that it has some connections

to statistical physics [5], page 286. See Watts and Strogatz for the first appearance

of and further details to this model [33].

The last model of discussion, the scale-free network, has only recently been of

intense interest. A scale-free network is characterized by the fact that its degree

distribution follows a power law. A power law is a function which outputs a power of

the input value. For example, F (k) = k−2 is a power law function. There has been

recent interest in them, because it has been shown that many real-world networks

follow power laws. The random graph and small-world models do not follow power

laws, in their general form, even though the random graph model can be modified

to follow any desired distribution [1]. Thus the need for models which follow power

laws along with their mathematical analysis has arisen. This problem has attracted

attention from some of the most well-known network scientists and mathematicians.

The celebrated first paper on scale-free networks was by Barabási and Albert in 1999,

titled “Emergence of Scaling in Random Networks” [4]. The paper put forth several

ideas. First, they argued that power-law distributions are common among many

networks, evidencing this with the World Wide Web, a network of film actors [33], and

citation networks [26]. Next, they put forth a model with allows for growth and claim

that models of this kind help explain the existence of power-laws [5], page 335. The

explaining properties of such a model are that they grow, continuously adding new

vertices, and that a vertex gains new edges at a rate proportional to its current degree.

This second property is known as preferential attachment in the literature. In the

real world, it makes sense that the aforementioned networks follow these properties.

The model put forth by Barabási and Albert treats the network as a discrete growth

process, in which at each time step a new vertex is added along with m edges incident

with this vertex and already existent vertices randomly chosen proportionally to their

current degrees. This model has degree distribution P (k) ≈ k−3. Variations of the
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preferential attachment model have been developed since, and give rise to exponents

in the power law varying from 2 to ∞ depending on the parameters of the model,

thus allowing for a good deal of flexibility [5], page 335-337. Barabási and Albert’s

analytical treatment of their model falls short from a mathematical perspective. Thus

Bollobás et al. took on the role of performing such an analysis [6]. They gave a

mathematical confirmation of the results of Barabási and Albert, rigorously defining

the model and proving the main claim of [4]. They later went on to derive new results

as well, such as the calculation of average path lengths between all pairs of vertices

in Barabási-Albert’s model. This is an interesting example in which phenomenon

were predicted heuristically to later be proven mathematically. Likewise, Aiello,

Chung, and Lu [1] devoted attention to random scale-free networks, thus signifying

an effort from the mathematical community to develop theory pertaining to real-world

networks [5], page 345-346.
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Chapter 2

Project

2.1 Degree Sequence

Any graph on vertex set {v1, . . . , vn} has an associated degree sequence, i.e. a finite

sequence of integers (d1, . . . , dn) such that d(vi) = di. The converse is not always true

though: given an arbitrary finite sequence of non-negative integers L, there does not

necessarily exist a simple graph which has L as its degree sequence. We give a name

to sequences which are the degree sequence of some simple graph.

Definition 2.1. A finite sequence D of n non-negative integers is called graphical if

there exists a graph on n vertices which has D as its degree sequence. Likewise, we

call such a sequence non-graphical if no such graph exists.

Definition 2.2. If a degree sequence, D, is graphical, we call a realization of D a

graph which has D as its degree sequence.

For example, D = (3, 3, 1, 1) is non-graphical. To see this, assume GD is a real-

ization of D with vertex set {v1, v2, v3, v4}. Then v1 and v2 are attached to all others.

Then since v3 and v4 are adjacent with both v1 and v2, the degree of both is greater

than 1. Thus we have a contradiction and see that D is not graphical.

In general, a realization of a graphical sequence, D = (d1, . . . , dn), is not unique.

Let SD refer to the set of graphs which have D as its degree sequence. Obviously SD

is finite. Generating all graphs in SD is in general not an easy problem. But once at

least one graph in SD is generated, there is an operation called “switching” (sometimes

referred to as “swapping”) which theoretically allows one to generate every graph in
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v1

v2

v3
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v5

Figure 2.1 Switch in which {v1, v4} and {v3, v5} are deleted, and {v1, v5} and
{v3, v4} are added

SD. That is, given a graph G with a prescribed degree sequence D, performing a

“switch” produces a different graph with the same degree sequence, given that G is

not the unique realization of D. Switching goes as follows:

1. Find two independent edges {u, v}, {w, x} such that both {u,w} and {v, x}

are non-edges.

2. Switch end-vertices to produce a graph G′ in which {u, v} and {w, x} are no

longer edges and {u,w} and {v, x} are edges.

Note that all involved vertices maintain the same degree, and thus G′ has the

same degree sequence as G. Thus this operation is closed with respect to the state

space SD. Figure 2.1 shows an example of a switch.

As stated above, provided that one has a realization, switching allows one to

generate every graph in SD. That is, every realization in SD can be reached by every

other realization in SD by a finite sequence of switches. We prove this below. We can

think of the state space SD as a graph, in which each event (realization) is a vertex,

and there is an edge between two realizations if and only if one can be reached from

the other by one switch. Note that switching is commutative, in that if realization A

can be reached from realization B then B can be reached from A. Thus this graph
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is non-directed. Since there is an A − B path from each realization to every other

realization, we say that this state space is connected with respect to switching.

Lemma 2.3. Given a realizable degree sequence D on n ≤ 3 vertices, the state space

SD is connected with respect to switching.

Proof: For n = 1, 2, and 3, for any degree sequence on n vertices, the corresponding

state space is a single point, and so it is connected.

Claim 2.4. Let G be a graph with degree sequence (d1, d2, . . . , dn) where d1 ≥ d2 ≥

. . . ≥ dn−1, dn > 0. For a graph with such a degree sequence, let its vertex set be

{v1, v2, . . . , vn}, where deg(vi) = di. Let G(G) be the set of graphs that can be realized

from G by a sequence of switches. Then there exists a graph G0 in G(G) such that

NG0(vn) = {v1, v2, . . . , vdn}.

Proof: Clearly dn ≤ n− 1. If dn = n− 1, then NG(vn) = {v1, . . . , vn−1} and so we

are done. So assume dn < n−1. Let G0 ∈ G(G) be such that |NG0(vn)∩{v1, . . . , vdn}|

is maximal. Assume NG0(vn) 6= {v1, . . . , vdn}. Let i be the smallest index such

that vi /∈ NG0(vn). There exists j > dn such that vjvn ∈ E(G0). Now note that

i < j implies that di ≥ dj. Since vn ∈ NG0(vj) \ NG0(vi), there must exist some

k /∈ {i, j, n} such that vk ∈ NG0(vi) \ NG0(vj). Then {vi, vk}, {vn, vj} ∈ E(G0)

while {vi, vn}, {vk, vj} /∈ E(G0). So we can perform a switch, making vi ∈ NG0(vn),

contradicting the maximality of G0. Thus the claim is proven.

Lemma 2.5. Given a realizable degree sequence D on n vertices, the state space SD

is connected with respect to switching.

Proof: The proof goes by induction on n. By Lemma 2.3, we know the statement

holds for n = 1, 2, and 3. These serve as the base cases. So now assume the statement

holds for any graph on n − 1 vertices. Let D = (d1, d2, . . . , dn) be a realizable

sequence. Without loss of generality, we can assume that d1 ≥ d2 ≥ . . . ≥ dn.
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Let G,H ∈ SD. If dn = 0, then vn is isolated in both G and H. Define G∗ = G \ {vn}

and H∗ = H \ {vn}. By the inductive hypothesis, there exists a sequence of switches

from G∗ to H∗ that is also a sequence of switches from G to H. In this case, we

are done. So assume dn > 0. By Claim 2.4, we know that there exists a graph

G0 ∈ SD such that NG0(vn) = {v1, . . . vdn}, and there exists a sequence S1 of switches

that take G to G0. Likewise, there is such a graph H0 with the same property,

and there exists a sequence S3 of switches that take H to H0. Now observe that

NG0(vn) = NH0(vn) = {v1, . . . , vdn}. This if we remove vn from both G0 and H0, we

remove the same edges from both, that is {vn, vi} for 1 ≤ i ≤ dn. Then both G0\{vn}

andH0\{vn} have the same degree sequences d1−1, d2−1, . . . , ddn−1, ddn+1, . . . , dn−1.

So by the induction hypothesis, there exists a sequence of switches S2 from G0 \ {vn}

to H0 \ {vn}. Note that the switches in S2 are also switches from G0 to H0 since the

switches do not involve any edges with vn as an end-vertex. Let S ′3 be the reversal of

S3. Then S1S2S ′3 is a sequence of switches from G to H. Since G and H are arbitrary,

we see that SD is connected. Since D is arbitrary, we see that for any degree sequence

on n vertices, its state space is connected. By induction, the statement holds for all

n ∈ N.

A natural question involving degree sequences is how to determine whether a

given finite sequence of non-negative integers, L, is graphical or not. Call this the

Graphicality Problem. One quick way to attain a negative answer to this question

relies on one of the most fundamental theorems of graph theory:

Lemma 2.6. (Handshaking [9]) - The sum of the degrees of the vertices of G equals

twice the size of G and thus is always even. Notationally, ∑v∈V (G) deg(v) = 2 · |E|.

So if the sum of the elements of L is odd, L must be non-graphical. A more

substantial answer to the Graphicality Problem is given by the Erdős-Gallai theorem

which uses this fact plus an extra condition to establish a complete characterization

of graphical sequences.
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Theorem 2.7. (Erdős-Gallai [10]) A sequence of non-negative integers d1 ≥ . . . ≥ dn

is graphical if and only if ∑n
i=1 di is even and ∑k

i=1 di ≤ k(k − 1) +∑n
i=k+1min(di, k)

holds for 1 ≤ k ≤ n.

This theorem answers the Graphicality problem. It does not provide a concrete

realization in the affirmative case though. The Havel-Hakimi Theorem provides a

simple algorithm to determine whether a sequence is graphical, and in the affirmative

case actually produces a realization of the prescribed degree sequence. The proof was

given independently by Havel in 1955 [15] and Hakimi in 1962 [14].

Theorem 2.8. (Havel-Hakimi) A sequence of integers d1 ≥ d2 ≥ . . . ≥ dn > 0 is

graphical if and only if (d2− 1, d3− 1, . . . , dd1+1− 1, dd1+2, dd1+3, . . . , dn) is graphical.

Proof: This is a quick corollary of Claim 2.4 (we need to renumber vertices).

As stated, if the sequence is graphical, this theorem provides an iterative algorithm

to produce a realization. The algorithm follows the following steps:

1. Start with an empty graph, G, and a dictionary L of n vertices as the keys

and a residual degree requirement assigned as the values. The starting list of residual

values will be the degree sequence.

2. If all residual degrees are zero, output G and stop. If any residual degree is

less than 0, output FAILURE and stop.

3. Maintain the dictionary in non-increasing order according to the residual degree

values.

4. Assume the first vertex in the dictionary has a degree requirement of d. For the

next d vertices in the list, attach an edge between each vertex and the first vertex.

5. Remove the first vertex from the dictionary and decrease the degree requirement

of these next d vertices by 1.

6. Go back to Step 2.
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Figure 2.2 Iterations of Havel-Hakimi algorithm for degree sequence (3, 3, 3, 2, 1)

Figure 2.2 shows the graphs that are produced after each iteration of the Havel-

Hakimi algorithm when (3, 3, 3, 2, 1) is the input degree sequence. The numbers in

parentheses next to the vertices represent the residual degree requirement of the

corresponding vertex after that iteration.

When dealing with SD for a given D, it is natural to ask how many graphs are

realized by this sequence and thus lie in this space. We can easily characterize when

this space only has one graph. Note that for every n ∈ N, there is a uniquely realizable

graph on n vertices, that is, a graph which is the only graph which realizes its degree
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sequence. The complete graph on n vertices provides a trivial example. There is a

way to characterize all such uniquely realizable graphs.

Define a graph G to be a threshold graph if for every vertex x, y ∈ V (G), N(x) ⊆

N(y)\{x} or N(y) ⊆ N(x)\{y}. The name of threshold graphs comes from the fact

that they can also be obtained as follows: assign non-negative weights to vertices and

set a threshold T . Let {i, j} ∈ E(G) if and only if w(i) + w(j) > T .

Lemma 2.9. Threshold graphs are precisely those that are uniquely realizable.

Proof: Suppose that a graph G is not a threshold graph. Then there is x, y ∈ V (G)

such that neither N(x) 6⊆ N(y) \ {x} nor N(y) 6⊆ N(x) \ {y}. Then neither x nor y

is isolated, and there exists a vertex w ∈ N(x) \N(y) and a vertex v ∈ N(y) \N(x).

This means that {x,w}, {v, y} ∈ E(G) and {x, v}, {y, w} /∈ E(G); also x 6= v and

y 6= w. Thus we can perform a switch from {x,w} and {y, v} to {x, v} and {y, w},

making a new graph with the same degree sequence. So G is not uniquely realizable.

On the other hand, suppose that G is a threshold graph. Let {x,w} and {y, v}

be two independent edges in G. Since N(x) ⊆ N(y) \ {x} or N(y) ⊆ N(x) \ {y}, we

have v ∈ N(x) \ {y} or w ∈ N(y) \ {x}. In either case, a switch from these two edges

is not permitted. Since these are arbitrary independent edges, we see that no switch

is permitted and thus G is uniquely realizable.

Thus we may speak of uniquely realizable graphs in terms of threshold graphs.

We make several claims.

Claim 2.10. Let I be the set of isolated vertices of the graph G. G is a threshold

graph if and only if G \ I is a threshold graph.

This is self-evident.

Claim 2.11. If G is a threshold graph and contains no isolated vertices, then there

exists a vertex x ∈ V (G) such that d(x) = |V (G)| − 1, i.e. N(x) = V (G) \ {x}.
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Proof: Let x be a vertex of maximal degree in G. Suppose that d(x) < |V (G)|−1,

i.e. N(x) 6= V (G)\{x}. Then there exists a vertex y such that y /∈ N(x)∪{x}. Since

there are no isolated vertices, there is an edge {y, z} in G for some vertex z 6= x.

Since G is a threshold graph, either N(z) ⊆ N(x) \ {z} or N(x) ⊆ N(z) \ {x}. Since

y ∈ N(z) \ N(x), N(z) 6⊆ N(x) \ {z}. Suppose N(x) ⊆ N(z) \ {x}. Then |N(x)| ≤

|N(z)|. Then since the degree of x is maximal, |N(x)| = |N(z)| which further implies

that N(x) = N(z). But y ∈ N(z), and y /∈ N(x), which is a contradiction. Thus we

see that N(x) = V (G) \ {x}.

From the previous two claims and the definition, the following claim follows:

Claim 2.12. If G is a graph and x is adjacent with every other vertex in the graph,

then G is a threshold graph if and only if G \ {x} is a threshold graph.

Thus from these three claims, we have an iterative algorithm to check whether a

graph G is uniquely realizable or not:

1. Delete all isolated vertices. If the remaining graph is empty, stop and output

that G is a threshold graph.

2. Search for a vertex that is adjacent with every other vertex. If not found, then

stop and output that G is not uniquely realizable. If found, then delete that vertex

and all its incident edges. Go back to Step 1.

This characterizes situations in which the state space consists of a single graph.

There are several results regarding the enumeration of graphs with certain degree

sequences. Linyuan Lu and László Székely apply the Lovász Local Lemma to the

space of random multi-graphs with a given degree sequence to obtain asymptotic

enumeration results in [19]. See [2] for an overview of the Lovász Local Lemma, a

celebrated tool in the probabilistic method. They also outline a brief history of results

involving enumeration of d-regular graphs, that is graphs in which every vertex has

degree d. They attribute the strongest result to McKay and Wormald (strongest in

the sense that the range of d is the largest). In [21], McKay and Wormald give the
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following best asymptotic boundary on the regularity d. Let (N − 1)!! = N !
N/2)!2N/2

for N even. They show that the number of simple graphs in which all vertices have

degree d for d ∈ o(n1/2) is

(1 + o(1))e
1−d2

4 − d3
12n

+O( d2
n

) (dn− 1)!!
(d!)n .

Lu and Székely first state a result involving d-regular graphs and then generalize

to a larger class of degree sequences. We state the generalization here. Let xi be real

numbers and assume xi > 0 for each i ∈ [n] for some n ∈ N. Define x = (∑n
i=1 xi)/n

and x̃ = (∑n
i=1 x

2
i )/x.

Theorem 2.13. Let di ∈ N for i ∈ [n]. Assume N = d1 + d2 + . . . + dn is even,

d ≥ 3, and every di ≥ 2. Let Di = di(di − 1). Then the number of graphs with degree

sequence d1, d2, . . . , dn and girth g ≥ 3 is

(1 + o(1))(N − 1)!!∏
i di!

exp(−
g−1∑
i=1

1
2i(

D

d
)i)

assuming that

(g
2

n
+ g2

n2
D̃

d
)(D
d

)g−1 = o(1)

and

g6(D
d

)2g−4d2
n = o(N).

This is the state of the art with respect to the enumeration of graphs with general

degree sequences.

There has been significant attention devoted to random generation of graphs with

given degree distributions, a task of importance to network science. Much significant

work has been done by treating degree sequences rather than distributions. This

distinction is not problematic though in that they correspond to each other: one

determines the other. Since the Havel-Hakimi algorithm produces a graph in SD and

we theoretically can attain every other graph in SD by switches, these methods serve

as useful tools in this modeling and generation effort. In our work, for a fixed D,
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we generate a realization, G, of D via the Havel-Hakimi algorithm. We then run a

Monte-Carlo Markov Chain on SD with starting point GD via the use of switches.

We define Markov Chains in the next section.
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2.2 Markov Chains

The following definitions are taken from [16], chapters 1,2, and 3. A Markov chain

is a specific kind of probabilistic model. It is an example of a more general notion

called a stochastic process.

Definition 2.14. A stochastic process is a family of random variables defined on

some sample space Ω.

For our purposes, there is a countable number of random variables, and so we

enumerate them asX0, X1, X2, X3, . . .. Intuitively, the indices of the random variables

refer to the time-step of the process. When we say that the process lies in state i at

the nth step, we really mean that Xn takes on the value i. This is called a discrete-

time process. We define the state space of the stochastic process as the union of the

possible values of the individual random variables.

Definition 2.15. A Markov chain, C, consisting of the random variables {Xk}, k =

0, 1, 2, . . . with state space S is a stochastic process that satisfies the following prop-

erties:

1. It is a discrete-time process.

2. S is countable or finite.

3. Markov property: If for everym and all states i1, i2, . . . , im where ij is a possible

value of Xj, it is true that

P (Xm = im|Xm−1 = im−1, Xm−2 = im−2, . . . , X1 = i1) = P (Xm = im|Xm−1 = im−1)

In words, the proximate value of a random variable at a point in time only depends

on its current value and does not depend on previous values in the process. The

process is “memoryless.” Intuitively, a Markov chain travels along a state space. We

will only work with finite state spaces, so we may say S = [N ] for some N ∈ N. At

each time-step, the random variable corresponding to that step takes on values of
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the state space with a given probability. The factors determining the movement of a

Markov chain are governed by the set of conditional probabilities

P (Xm = j|Xm−1 = k)

for every pair of states k, j in the state space. We can also refer to these as transitional

probabilities at time m. We can further classify these processes according to whether

these conditional probabilities are time-dependent or not.

Definition 2.16. AMarkov chain is homogeneous in time if the transition probability

from any given state to any other given state is independent of the time-step. That

is, for arbitrary m and every pair j, i ∈ S,

P (Xm = j|Xm−1 = i) = P (Xm+k = j|Xm−1+k = i)

for all k such that −(n− 1) ≤ k.

The Markov Chain we use is finite and homogeneous. Set N = |S|. We can

describe the transition probabilities by an N ×N transition matrix, T = (pi,j), where

pi,j = P [X1 = j|X0 = i] = P (Xm+1 = j|Xm = i).

It follows from this definition that

1 = P [X1 ∈ [N ]|X0 = i] =
N∑
j=1

pi,j.

The transition matrix serves as a very useful tool in understanding a Markov chain.

In fact, the analysis of a Markov chain can often be done completely by looking at

its transition matrix. One might ask what is the probability that the chain lies in a

given state at a given time. Transition matrices aid in answering this question.

First, given a current state at time k, the transition matrix can be used to calculate

the probability of being in all other states after m steps for m ≥ 1. This probability

is given by Tm. The entry Tmi,j represents P (Xk+m = j|Xk = i). Now suppose
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that we have some information about the starting point in the chain, specifically we

have a probability distribution for X0. We may encode this information as a vector

α0 = (p1, p2, . . . , pN) where pi refers to the probability that X0 is in state i. Note that

this allows for a deterministic or non-deterministic starting point. If deterministic,

then we assign a probability of 1 to its determined value in α0 and a probability of 0

everywhere else. It turns out that T and α0 is all that is needed to give a probability

distribution for the state of C at a certain time, or rather a probability distribution

of Xm. Let αm = α0 · Tm. Then αm gives this probability distribution. That is, αmi

gives the probability that C lies in state i at the mth step given the starting vector

α0. Note that this is not a contradiction of being homogeneous. The distinction is

that the probabilities of transitioning from a specific state to another do not change

with time, but rather the probability that C lies in a certain state do change with

time. Often, one is not interested in the behavior of a Markov chain, C, at a specific

point in time but rather interested in its long-term behavior. Does αm converge as

m→∞? Some Markov chains do have this property while some do not.

Definition 2.17. State i is accessible from state j if Pr(Xn = i|X0 = j) > 0 for some

n ∈ N.

Definition 2.18. State i and j communicate if state i is accessible from state j and

state j is accessible from state i.

Definition 2.19. A Markov chain is said to be irreducible if for every pair of states

i < j, i and j communicate.

Using the language we used above with the degree sequence, this is the same as

saying that the state space is connected.

Definition 2.20. The period, R, of a state i is defined as

gcd{n : Pr(Xn = i|X0 = i) > 0},
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where gcd is the greatest common denominator.

Definition 2.21. A state i is said to be aperiodic if its period is 1.

Definition 2.22. A Markov chain is said to be aperiodic if each state is aperiodic.

Definition 2.23. A vector π that satisfies π = π·T is called a steady-state distribution

of C.

Theorem 2.24. A time-homogeneous, irreducible and aperiodic Markov chain with

a finite state space has a unique steady-state distribution.

Note that for a time-homogeneous, irreducible and aperiodic Markov chain, π =

limm→∞ α0 ·Tm for any initial distribution α0, i.e. the chain converges to the steady-

state distribution regardless of the initial distribution.

Definition 2.25. Suppose a Markov Chain, C, converges to a steady-state distribu-

tion π. Then the mixing time t of C is the minimum t such that |Pr(Xm = i)−π(i)| ≤

1/4 for all m ≥ t and all states i in the sate space.

Intuitively, the mixing time refers to how many steps are necessary to get suffi-

ciently close to the steady-state distribution. Before we describe our project exactly,

it is important to give an introduction to one more theoretical concept, that is spectral

graph theory.

The Markov Chain we use will have state space SD for some realizable degree

sequence D. The steps of the chain will be defined as follows: Given D, X0 = H,

where H is created by the Havel-Hakimi algorithm. The transition steps will be time-

independent (thus, the chain is homogeneous); and each step will be defined either

as a switch or staying in place, i.e. P (Xm+1 = G′|Xm = G) > 0 if and only if G′ = G

or G′ can be reached from G by a single switch. We will describe these probabilities

in Section 2.4.
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2.3 Laplacian Spectrum

Many structural properties are captured by algebraic properties of a graph. Thus

the study of certain matrices associated with graphs has proven fruitful. Spectral

graph theory is the study of how properties of a graph related to the characteristic

polynomial, eigenvalues and eigenvectors of matrices associated with the graph (such

as the adjacency matrix or Laplacian matrix). In the following definitions, assume

the graph has n vertices.

Definition 2.26. The degree matrix D of a graph is the n×nmatrix with (i, j)-entry:

deg(vi) for i = j and 0 for i 6= j. The degree matrix essentially encodes the degrees

of the individual vertices along the diagonals.

Definition 2.27. The adjacency matrix of a graph is the n × n matrix with (i, j)-

entry: 1 if vi is adjacent with vj and 0 otherwise.

Definition 2.28. If D is the degree matrix of a graph and A is its adjacency matrix,

then its Laplacian matrix is the n×n matrix L = D−A. Thus the (i, j)-entry of L is

deg(vi) for i = j; −1 for i 6= j and vi, vj adjacent; 0 for i 6= j and vi, vj non-adjacent.

Note that all three of these matrices are symmetric, that is the (i, j)-entry is equal

to the (j, i)-entry for all i, j.

Definition 2.29. Given an n-dimensional square matrix M over R, its eigenvalues

are the values λ such that MX = λX for some vector X ∈ Rn \ {0}. If MX = λX

for some λ, then X is called an eigenvector of M . The spectrum of the matrix is

the multiset of eigenvalues, where the eigenvalue λ has multiplicity dim(V ), where

V ⊆ Rn is the maximal subspace such that all X ∈ V,MX = λX.

It is not necessarily true that such a matrix M will have eigenvalues, but for the

Laplacian matrix of a graph, it is true. The follows results are summarized in [34].
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Lemma 2.30. ([20]) The Laplacian L of a graph G is a singular, positive semi-

definite, symmetric matrix, and thus has n nonnegative eigenvalues. 0 ≤ λ1 ≤ λ2 ≤

. . . ≤ λn. Since each row sum of L equals 0, for V = (1, 1, . . . , 1), we have V L =

(0, 0, . . . , 0) = 0V , i.e. λ1 = 0.

As said before, eigenvalues contain a lot of information about the structural prop-

erties of a graph. We list a few main results here to give the reader a flavor of the

connection between a graph and the eigenvalues of its Laplacian.

One of the most celebrated and earliest results involves the number of spanning

trees of a graph:

Theorem 2.31. (Kirchhoff Matrix Tree Theorem [17]) Let L(i|j) be the (n − 1) ×

(n − 1) submatrix of L, obtained by deleting the ith row and jth column. Denote by

τ(G) the number of spanning trees in G. Then τ(G) = (−1)i+j detL(i|j) = 1
n

∏n
i=2 λi.

As a corollary of Theorem 2.31, λ2 > 0 if and only if G is connected, i.e. it has at

least one spanning tree. Thus we call the second smallest eigenvalue of L the algebraic

connectivity of G. This is because it gives an indication of whether G is connected

or not. On a further note, the multiplicity of 0 as an eigenvalue gives the number

of connected components of G [22]. The value of the second smallest eigenvalue has

been shown to have many other connections with structural parameters of a graph,

as we will see presently.

The question of how highly connected an arbitrary graph is has been a topic

of intense study over the years. This notion has often been linked with various

other structural properties of a graph. There are many interesting results relating

connectivity and Laplacian eigenvalues. First though, we need to formally define the

notion of vertex and edge connectivity, notions which quantify how highly “connected”

a graph is.
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Definition 2.32. The (vertex) connectivity K(Kn) of the complete graph Kn on n

vertices is n − 1. If G is a graph that is not complete, a vertex cut of G is a set of

vertices whose removal disconnects the graph G, and K(G) is the minimum size of

any vertex cut. The graph is k-connected if its vertex connectivity is at least k.

There is a similar notion involving the edges of a graph.

Definition 2.33. An edge cut of a graph G on at least two points is a set of edges

whose removal disconnects the graph. The edge connectivity, E(G) is the minimum

size of an edge cut.

The following result is due to Fielder:

Theorem 2.34. ([12]) Let G be any simple graph on n vertices other than the com-

plete graph. Assume G has vertex connectivity K(G) and edge connectivity E(G).

Then

2E(G)(1− cos(π/n)) ≤ λ2 ≤ K(G) ≤ E(G).

Now we give a few results concerning some other structural aspects of a graph.

Remember that a dominating set D is a subset of V such that every vertex not in D

has at least one neighbor in D. Define γ(G) to be the minimum size of a dominating

set in G. Call this the domination number of G. Nikiforov [23] gives an upper bound

on the second smallest eigenvalue in terms of the domination number:

Theorem 2.35. ([23]) If G is a connected graph other than the complete graph, then

λ2(G) ≤ n− γ(G).

The diameter of G is an important graph parameter. The diameter of a connected

graph G is the maximum distance among all pairs of vertices of G. Denote this value

by diam(G). Lu gives a bound on λ2 from below in terms of diam(G), its size, and

order:
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Theorem 2.36. ([20]) Let G be a simple connected graph of order n, size m, and

diameter diam(G). Then λ2 ≥ 2n
2+n(n−1)(diam(G)−2m(diam(G))) with equality if and only

if G is a path of order 3 or the complete graph.

Definition 2.37. A graph is called bipartite if its vertex set V can be partitioned

into vertex sets A,B such that all edges of G connect a vertex of A to a vertex of B.

The following theorem gives a necessary and sufficient condition for a graph being

bipartite and regular.

Theorem 2.38. ([28]) Assume that the degree sequence of G is d1 ≥ d2 ≥ . . . ≥ dn.

Then λn ≤ dn + 1
2 +

√
(dn − 1

2)2 +∑n
i=1 di(di − dn) with equality if and only if G is a

regular bipartite graph.
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2.4 Program

As a significant contribution to my thesis, we have undertaken a project whose goal

is to determine how local structure of a network is determined by the degree sequence

alone of local samples of the network. In determining this structure, we are interested

in those structural properties captured by the Laplacian spectrum of the studied

samples. To this end, we have taken four local snowball samples of the network

and determined their degree sequence and spectrum. For each sample, we ran a

Monte-Carlo Markov chain (MCMC) on the space of graphs with the corresponding

degree sequence to produce a large number of random graphs with this corresponding

degree sequence. We computed the spectrum of each random graph and then created

an empirical probability density function for these spectra to see whether there are

any observable localized eigenvalues. Appendix B contains this data, in which one can

see the degree sequence and spectrum of each network sample as well as the empirical

probability density function for the corresponding MCMC generated spectra.

We will now describe this project in more detail. We received a data representation

of a massive empirical real-world scale-free network that was generously provided to

us by Dr. Zoltán Toroczkai. As stated, we extract local connected sample of this

network according to a technique called snowball sampling which goes as follows: we

randomly select with uniform probability a vertex v from the network and add v to

a list; we add all vertices within a distance of d from v to the list where d is the

minimum integer such that at least 100 vertices are in the list. After this, we take

the induced subgraph on the vertices added to the list, and we refer to this as a local

sample.

The next step is to record the degree sequence of the local sample, D. Since D

is taken directly from a graph, we know it is realizable. So we use the Havel-Hakimi

algorithm to create a realization of this sequence, GD. We run a Monte-Carlo Markov

chain (MCMC), on SD, in which each step is a switch between two graphs in SD.
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Denote the Markov chain by X = {Xi}∞i=1. Each random variable Xi : Ei−1 → SD

outputs a graph in SD as its value, where Ei−1 is the set of pairs of edges that permit

a switch in the graph that Xi−1 takes on as a value. GD provides a starting state for

the Markov chain. That is, X0 takes on the value GD with probability one. Suppose

that D is of length n i.e. there are n vertices in the local sample. Then we run X for

n2 steps to produce a graph GD
i . We run the MCMC t times, ultimately generating

an ensemble of t graphs with the degree sequence D: {GD
1 , . . . , G

D
t }. Denote this

ensemble by GD.

Next, we generate the Laplacian matrix and compute the spectrum of this Lapla-

cian for each graph GD
i ∈ GD. Let λD be the multiset of all values λ such that λ is

an eigenvalue of some graph GD
i ∈ GD. λD has nt values counted with multiplicities.

We divide the real line into bin widths of length .001. Then for each bin, b, let Zb

be the number of eigenvalues (counted with multiplicity) from λD that lie in b. Let

f(b) = Zb

nt·.001 . LetQ be the set of bins q such that f(q) 6= 0. Then∑q∈Q f(q)·.001 = 1.

This empirical function can be viewed as a representation of the following: let δ be the

Dirac delta function. Formally, δ = 0 everywhere except at 0, and
∫∞
−∞ δ(x)dx = 1.

Then our function is a representation of g(x) = 1
nt

∑
z∈λD

δ(x−z). Appendix B shows

the graph of this empirical probability distribution function for each of the four de-

gree sequences. There is a normal and zoomed in picture of each graph, where the

zoom is on the y-axis.

We will now describe practical concerns of the project. The majority of this work

is done in the computer language Python. We take an object-oriented approach, the

objects being graphs, as this allows for easy alteration of the graphs. We created a

class object to represent a graph. We also created several methods that carry basic

information about the graph and also allow one to alter the graph. In representing

the empirical network, we first used the data form given to us by Dr. Toroczkai to

create a graph object representing this network. To induce a subgraph, we create a
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new graph object to represent the subgraph and only add appropriate edges. In all

random selections used, we use Python’s built in random number generator. From a

programming aspect, extracting the snowball sample amounts to adding all vertices at

a specific distance to a list, starting at a distance of one with v′s neighbors, and then

checking whether the order of the list has reached 100 yet. If not, then add all those

vertices at the next distance from v, which are the neighbors of those added in the

last step. The sample “snowballs” in this way. Since the program adds all vertices

at a distance of d and does not stop when it has exactly reached 100, in practice

the samples most likely will contain more than 100 vertices. All of the samples we

extracted in fact do.

The Markov chain is implemented rather computationally easy due to the object-

oriented nature of the graphs. We randomly select two edges {x, y}, {v, w} and check

if a switch is permitted. If two switches are permitted, that is, we can switch to

{x, v}, {y, w} or{x,w}, {y, v}, then we randomly choose between which switch. If

only one is permitted, we perform that switch. If no switches are permitted, then we

do not switch. Then we select two more random edges and repeat the process. To

perform the switch, we simply call the methods to delete and add edges and leave

the rest of the graph unchanged. This process only requires a delicate alteration of

the graph and does not have to create a whole new object.

To obtain the transition matrix T for this MCMC, one must look at the structure

of this state space, which relies on the structure of the different realizations. Let

SD = {G1, G2, ..., GN}. Let Gi ∈ SD. For all graphs Gj 6= Gi which are not adjacent

to Gi, specifically graphs that can not be attained by one switch, the probability of

transitioning from Gi to Gj and vice-versa is zero. That is, pi,j = pj,i = 0. The

program randomly picks two edges from Gi. The way in which it does this allows

for the same edge to be chosen twice. Suppose that there are e edges in Gi. Then

there are e2 choices of pairs of edges. Let p be the fraction of pairs of edges which
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do not permit a switch. Then the set of edge-pairs which do permit a switch has

probability 1− p. Assume that we have s pairs of edges that allow for a switch and

a total of u switches that can be made. Note that as some pairs of edges may allow

for two switches, one immediately obtains that u ≤ s ≤ 2u. Let m be the number

of times we select an edge pair that does not allow for a switch before we select

one that does. Note m can be any non-negative integer. The probability of this is

pm(1 − p). If we want to see what the probability that we will make a fixed switch

in this step, we need to divide our analysis into two parts. First, assume that this

switch belongs to an edge pair that only allows a single switch. Then we will perform

this switch with probability 1
s
at this point (as we only have to have selected the

edge-pair corresponding to this switch), so the probability that this switch is made

after the (m + 1)-st step is pm(1−p)
s

, and the probability that this is the switch that

we will use to move from our graph to another one is ∑∞m=0
pm(1−p)

s
= 1

s
. Similarly, if

we assume that the switch we are interested in belongs to an edge-pair that allows

for two switches, the probability that our selected switch will be performed in the

(m+ 1)-st step is pm(1−p)
2s , and the probability that we will use this selected switch is

1
2s . Thus, this program does not select all possible switches with equal probability.

We know that this Markov chain converges to a steady-state distribution. The-

orem 2.24 gives sufficient conditions for a Markov chain with a finite state space to

converge to a steady-state distribution. These conditions are aperiodicity and irre-

ducibility. In Lemma 2.3, we proved that SD is connected with respect to switching.

Thus with positive probability, each state is reached from every other. In other words,

the state space is irreducible. By [7], the state space is aperiodic. Thus we see that

there is in fact convergence to the steady-state distribution. The hope is that if the

MCMC is run “sufficiently” long enough, then each graph in SD will be chosen ac-

cording to the steady-state distribution. Note that the steady- state distribution is

not known in general, and the mixing time of X is not known either. Supposing the
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graphs in SD have n vertices, we run X for n2 steps as this is thought possibly to be

sufficient time to allow for mixing.

We utilize an open-source software package NetworkX to create the Laplacian.

This package is built on Python and contains an extensive library of tools for working

with graphs [18]. To compute the eigenvalues, we use Matlab R©[30]. For Sample 1,

we ran the Markov Chain approximately 300,000 times. For Samples 2, 3, and 4, we

ran the Markov chain 400,000 times each. See Appendix A for the Python code and

the next section for an analysis of the data.
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2.5 Results

Table 2.1 summarizes the degree sequences of the four local samples that we extracted

from the network. Appendix B displays the PDF eigenvalue spectrum data. For each

network sample, we include the PDF of the spectrum of the actual sample. We then

include a frequency count for each degree in the degree sequence. Lastly, we include

a broad-range view and zoomed in view of the PDF of the spectrum of the MCMC

generated samples with the degree sequence of the network sample.

Theorem 2.38 gives an upper bound on the largest Laplacian eigenvalue of a graph

in terms of its degree sequence. For the degree sequence of Sample 1, we get a bound

of 85.81. For the degree sequence of Sample 2, we get a bound of 67.45. For the

degree sequence of Sample 3, we get a bound of 48.34. For the degree sequence of

Sample 4, we get a bound of 56.10. Observing the spectral data in Appendix B,

one sees that the range of the average spectrum for each sample falls within these

respective bounds.

Comparing the spectrum of the network samples with the average spectrum from

the ensemble MCMC generated samples, we see that the pictures look very similar.

We will refer to the network sample as the “Sample” and the respective MCMC

generated sample spectrum as the “Average”. Sample and Average 1 have many

eigenvalues clustered within the range of 0 to 14. Both the Sample and Average have

a small spike around 21 and 71. Sample and Average 2 have a cluster of eigenvalues

within the range of 0 to 11. The Average has several isolated eigenvalues around

14, 15.5, 17, 22, 23, 27, and 31. In the Average, we see a triple hump between 20 and 25

and a double hump around 15. Sample 3 has eigenvalues dispersed throughout, more

densely packed from 0 to 7 and becoming more spread out up till 21. Average 3 sees

the same phenomenon with single humps around 17, 19, 21. Sample 4 has eigenvalues

packed tightly from 0 to 15 with a spike around 19 and 32. Average 4 sees the

same tight packing as the sample, two double humps between 15 and 20, and a spike

41



Sample Order Degree Sequence
1 134 70, 21, 12, 12, 11, 11, 10, 9, 8, 8, 8, 8, 8, 8, 7, 7, 7,

7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

2 141 29, 26, 22, 22, 21, 17, 14, 14, 10, 9, 8, 8, 7, 7, 6, 6,
6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1

3 101 20, 18, 16, 13, 13, 12, 12, 9, 9, 8, 8, 7, 7, 6, 6, 5, 5,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1

4 172 31, 17, 16, 13, 12, 11, 11, 9, 9, 9, 9, 8, 7, 7, 7, 7, 6,
6, 6, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

Table 2.1 Local Samples’ Degree Sequences

around 31. It is highly plausible that localized spikes seen in the Samples correspond

to humps localized at the same eigenvalue range in the Averages.

For all of the samples, there was not a significant contribution coming from inte-

ger eigenvalues except for 0, 1, 2, 3, and 4. As said before, the multiplicity of 0 as an

eigenvalue gives the number of components. For Average 1, 0 accounts for approxi-

mately .01588 ≈ 2
134 of all eigenvalues. Thus on average, graphs from this ensemble
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have 2 components. For Average 2, 0 accounts for approximately .02035 ≈ 3
141 of all

eigenvalues. Thus on average, graphs from this ensemble have 3 components. For

Average 3, 0 accounts for approximately .03396 ≈ 3.75
101 of all eigenvalues. Thus on

average, graphs from this ensemble have 3.75 components. For Average 4, 0 accounts

for approximately .03876 ≈ 7.6
172 of all eigenvalues. Thus on average, graphs from this

ensemble have 7.6 components.

A phenomenon we do see in the Averages is a hump starting approximately one

value above the greatest degree. For each degree sequence, D of length n, we compute

the weight, W = m/1000 of these humps, where m refers to the measure of the hump

in the PDF. We compare this number to 1/n, to get an approximate weight of how

many eigenvalues are on average accounted for in this hump. For Average 1, this

number is .0074 ≈ 1
134 = .0074. Thus this hump accounts for 1 eigenvalue from

each graph on average. For Average 2, this number is .0069 ≈ 1
141 = .0074. For

Average 3, this number is .0099 ≈ 1
101 = .0099. The two humps between 15 and

20 each account for approximately one eigenvalue. For Average 4, this number is

.0058 ≈ 1
172 = .0058. The two double humps centered between 15 and 20 each

account for half of an eigenvalue. So in conclusion, we see that the humps located

at approximately one value larger than the largest degree account for approximately

exactly one eigenvalue in each graph on average for each degree sequence. This could

be investigated further. For each degree sequence, we see that the Sample spectra

and the corresponding Average spectra do have many similar properties.
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Appendix A

Code

c l a s s Graph :

de f __init__( s e l f ) :

s e l f . o rder=0

s e l f . s i z e=0

s e l f . graph={}

s e l f . vertexNbhd=[ ]

s e l f . c h e ck s i z e=0

s e l f . edges =[ ]

de f addVertex ( s e l f , vertex , ne ighbor ) :

s e l f . vertexNbhd=[ ]

s e l f . vertexNbhd . append ( ne ighbor )

s e l f . graph [ ver tex ]= s e l f . vertexNbhd

s e l f . o rder=s e l f . o rder+1

de f Inc identVertex ( s e l f , index ) :

i f index==0:

re turn 1

i f index==1:

re turn 0

de f addEdge ( s e l f , edge ) :
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f o r i in range ( 2 ) :

ve r tex=edge [ i ]

nbhd=s e l f . graph . get ( vertex , Fa l se )

i f nbhd != False :

j=edge [ s e l f . Inc identVertex ( i ) ]

s e l f . graph [ ver tex ] . append ( j )

e l s e :

j=edge [ s e l f . Inc identVertex ( i ) ] )

s e l f . addVertex ( vertex , j )

s e l f . s i z e=s e l f . s i z e+1

s e l f . edges . append ( edge )

de f de leteEdge ( s e l f , edge ) :

f o r i in range ( 2 ) :

ve r tex=edge [ i ]

nbhd=s e l f . graph . get ( vertex , Fa l se )

nbhd . remove ( edge [ s e l f . Inc identVertex ( i ) ] )

s e l f . edges . remove ( edge )

de f CheckSize ( s e l f ) :

s e l f . c h e ck s i z e=0

nbhds=s e l f . graph . va lue s ( )

f o r i in nbhds :

s e l f . c h e ck s i z e=s e l f . c h e ck s i z e+len ( i )

s e l f . c h e ck s i z e=s e l f . c h e ck s i z e /2
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de f Ve r t i c e s ( s e l f ) :

r e turn s e l f . graph . keys ( )

de f NbhdList ( s e l f , ve r tex ) :

nbhd=s e l f . graph . get ( vertex , Fa l se )

re turn nbhd

de f main ( data ) :

graph1=Graph ( )

f o r edge in data :

graph1 . addEdge ( edge )

graph1 . CheckSize ( )

re turn graph1

from GraphClass import Graph

from random import randrange

import networkx as nx

#1. opens the date f i l e o f edges

#2. reads the f i l e as t ex t s t r i n g s but

# then conver t s them to i n t e g e r s

#3. saves the v e r t i c e s in an edge as a l i s t

#4. c r e a t e s an emp i r i c a l network by repea t ed ly

# adding the edges to DataGraph

de f CreateDataGraph ( ) :

DataGraph=Graph ( )

i n f i l e=open ( " DataCopy . txt " , " r " )

f o r l i n e in i n f i l e :
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Found=False

l ength=len ( l i n e )−1

j=0

whi le Found==False :

i f l i n e [ j ]==" " :

breakindex=j

Found=True

e l s e :

j=j+1

V1=l i n e [ : j ]

V2=l i n e [ j +1: ]

V1=in t (V1)

V2=in t (V2)

edge=[V1 ,V2 ]

DataGraph . addEdge ( edge )

re turn DataGraph

#g iv e s a random in t e g e r to be used as the

#index f o r our random vertex

#hence e s s e n t i a l l y produces a random vertex

de f RandomVertex ( ) :

randVtx=randrange (1 ,49277)

re turn randVtx

#takes a graph object , a random vertex , and

#a given number o f v e r t i c e s to

#c r ea t e a ver tex sample o f the network
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#centered around the random vertex

#and i t s d−neighborhood with the sma l l e s t

#d such that the subgraph w i l l have

#at l e a s t n v e r t i c e s

de f VertexSample ( graphObject ,V_0, n ) :

SampleVertexSet =[ ]

PrimaryVertex=graphObject . graph . keys ( ) [V_0]

SampleVertexSet . append ( PrimaryVertex )

proxNBHD=graphObject . graph . get ( PrimaryVertex , Fa l se )

SampleVertexSet2=SampleVertexSet

whi l e l en ( SampleVertexSet)<n :

NBHD=proxNBHD

proxNBHD=[]

f o r ne ighbor in NBHD:

SampleVertexSet2 . append ( ne ighbor )

f o r ne ighbor in NBHD:

temp=graphObject . graph . get ( neighbor , Fa l se )

f o r ver tex in temp :

i f ve r tex not in SampleVertexSet2 :

i f ve r tex not in proxNBHD:

proxNBHD. append ( ver tex )

SampleVertexSet=SampleVertexSet2

re turn SampleVertexSet

#re tu rn s the induced subgraph o f the network

#on the ver tex sample produced from
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#VertexSample ( )

de f InduceSample ( graphObject , VertexL i s t ) :

SampleGraph=Graph ( )

f o r ver tex in VertexL i s t :

nbhd=graphObject . graph . get ( vertex , Fa l se )

f o r ne ighbor in nbhd :

i f ne ighbor in VertexL i s t :

j=VertexLi s t . index ( ver tex )

i f Ver texL i s t . index ( ne ighbor)> j :

SampleGraph . addEdge ( [ vertex , ne ighbor ] )

r e turn SampleGraph

#re tu rn s the degree sequence o f a graph

de f DegreeSequence ( graphObject ) :

dsequ =[ ]

nbhds=graphObject . graph . va lue s ( )

f o r item in nbhds :

l ength=len ( item )

dsequ . append ( l ength )

dsequ . s o r t ( )

dsequ . r e v e r s e ( )

re turn dsequ

#given a g raph i c a l degree sequence , r e tu rn s

#a r e a l i z a t i o n o f t h i s sequence

de f HavelHakimi ( sequ ) :
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ResVer=[ ]

HHGraph=Graph ( )

l ength=len ( sequ )

f o r i in range ( l ength ) :

ResVer . append ( [ i , sequ [ i ] ] )

ResVer2=ResVer

whi l e ResVer2 [ 0 ] [ 1 ] !=0:

deg=ResVer [ 0 ] [ 1 ]

f o r j in range (1 , deg+1):

edge=[ResVer [ 0 ] [ 0 ] , ResVer [ j ] [ 0 ] ]

HHGraph . addEdge ( edge )

ResVer [ j ] [ 1 ]= ResVer [ j ] [ 1 ] −1

ResVer . pop (0 )

ResVer . s o r t ( key=lambda x : x [ 1 ] )

ResVer . r e v e r s e ( )

ResVer2=ResVer

re turn HHGraph

#randomly p i ck s two edges . i f the edges permit a

#HH switch , i t per forms the switch and re tu rn s

#True and the new graph . i f i t does not permit the

#switch , then i t r e tu rn s the same graph and Fal se

de f MCMCStep(GraphObject ) :

GoodStep=True

vtc s =[ ]

edgese t=GraphObject . edges

l ength=len ( edgese t )
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R1=randrange ( l ength )

R2=randrange ( l ength )

E1=edgese t [R1 ]

E2=edgese t [R2 ]

V10=E1 [ 0 ]

V11=E1 [ 1 ]

V20=E2 [ 0 ]

V21=E2 [ 1 ]

v tc s . append (V10)

vtc s . append (V11)

vtc s . append (V20)

vtc s . append (V21)

f o r item in vtc s :

i f v t c s . count ( item )>1:

GoodStep=False

nbhd10=GraphObject . graph . get (V10 , Fa l se )

nbhd11=GraphObject . graph . get (V11 , Fa l se )

nbhd20=GraphObject . graph . get (V20 , Fa l se )

nbhd21=GraphObject . graph . get (V21 , Fa l se )

newgraph=GraphObject

i f GoodStep==True :

i f V20 not in nbhd10 and V21 not in nbhd11 :

i f V21 not in nbhd10 and V20 not in nbhd11 :

s e l e c t=randrange (2 )

i f s e l e c t ==0:

T=E1

P=E2
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j =[V20 , V10 ]

k=[V21 , V11 ]

newgraph=MCMCSwitch(GraphObject ,T,P, j , k )

i f s e l e c t ==1:

T=E1

P=E2

j =[V20 , V11 ]

k=[V21 , V10 ]

newgraph=MCMCSwitch(GraphObject ,T,P, j , k )

e l s e :

j =[V20 , V10 ]

k=[V21 , V11 ]

newgraph=MCMCSwitch(GraphObject , E1 , E2 , j , k )

e l i f V21 not in nbhd10 and V20 not in nbhd11 :

j =[V20 , V11 ]

k=[V21 , V10 ]

newgraph=MCMCSwitch(GraphObject , E1 , E2 , j , k )

e l s e :

GoodStep=False

re turn newgraph , GoodStep

#func t i on that performs the phy s i c a l switch .

#c a l l e d in MCMCStep as a func t i on

de f MCMCSwitch(GraphObject , E1 , E2 , newE1 , newE2 ) :

GraphObject . de leteEdge (E1)
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GraphObject . de leteEdge (E2)

GraphObject . addEdge (newE1)

GraphObject . addEdge (newE2)

re turn GraphObject

#c a l l s MCMCStep n^2 " good " t imes to perform

#the walk . we mean " good " in that

#an ac tua l switch i s performed . i f a

#switch i s not performed , then the index

#does not i t e r a t e and thus does not con t r i bu t e

#to the walk at a l l . Begins by c r e a t i n g a new

#graph in s t ance in newgraph that dup l i c a t e s the g iven

#graphObject . i t then walks along t h i s copy .

#th i s i s done so that the o r i g i n a l graphObject

#i s not a l t e r e d and thus we are l e f t with the o r i g i n a l and

#f i n a l s tep in the walk

de f MCMCWalk(GraphObject , t e x t f i l e ) :

N=GraphObject . order

i=0

newgraph=Graph ( )

f o r edge in GraphObject . edges :

newgraph . addEdge ( edge )

whi l e i<N∗N:

switch=MCMCStep( newgraph )

i f switch [ 1 ] == True :

newgraph=switch [ 0 ]

i=i+1
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Laplace ( newgraph , t e x t f i l e )

r e turn newgraph

#F i r s t c r e a t e s a graph accord ing to the Networkx format .

#Computes the Laplac ian Matrix o f the graph

#Saves the Laplac ian to a text f i l e that w i l l then be used

#by MatLab to compute the e i g enva lu e s

de f Laplace (GraphObject , t e x t f i l e ) :

G=nx . Graph ( )

order=GraphObject . order

f o r edge in GraphObject . edges :

V1=edge [ 0 ]

V2=edge [ 1 ]

G. add_edge (V1 ,V2)

l a p l a c e=nx . l i n a l g . l ap l a c i anmat r i x . lap lac ian_matr ix (G)

o u t f i l e=open ( t e x t f i l e , " a " )

#o u t f i l e . wr i t e ( "M\n " )

#o u t f i l e . wr i t e ( s t r ( order )+"\n " )

o u t f i l e . wr i t e ( s t r ( order )+ ’\n ’ )

f o r row in l a p l a c e :

f o r entry in row :

s t r i n g=s t r ( entry )

o u t f i l e . wr i t e ( s t r i n g )

o u t f i l e . wr i t e ( "\ n " )

#o u t f i l e . wr i t e ( "M\n " )

o u t f i l e . c l o s e ( )

re turn l a p l a c e
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#The main con t r o l o f the program

#Performs the complete program as de s c r ib ed in the paper

de f main ( ) :

#data=CreateDataGraph ( )

#V=RandomVertex ( )

#vertexsample= VertexSample ( data ,V,100 )

#inducedgraph=InduceSample ( data , vertexsample )

#sequ=DegreeSequence ( inducedgraph )

i n f i l e=open ( " DegreeSequenceC . txt " , " r " )

#i n f i l e . wr i t e ( s t r ( l en ( sequ ))+ ’\n ’ )

#f o r degree in sequ :

# i n f i l e . wr i t e ( s t r ( degree )+ ’\n ’ )

sequ =[ ]

f o r l i n e in i n f i l e :

deg=in t ( l i n e )

sequ . append ( deg )

i n f i l e . c l o s e ( )

HH=HavelHakimi ( sequ )

#Laplace ( inducedgraph , "E:\ Matr ices \SampleMatrixC . txt " )

f o r j in range (100000 ) :

MCMCWalk(HH, "E:\ Matr ices \LapMatrices1C . txt " )

i f j%1000==0:

p r i n t j

f o r j in range (100000 ) :

MCMCWalk(HH, "E:\ Matr ices \LapMatrices2C . txt " )

i f j%1000==0:
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pr in t j

f o r j in range (100000 ) :

MCMCWalk(HH, "E:\ Matr ices \LapMatrices3C . txt " )

i f j%1000==0:

p r i n t j

f o r j in range (100000 ) :

MCMCWalk(HH, "E:\ Matr ices \LapMatrices4C . txt " )

i f j%1000==0:

p r i n t j

main ( )
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Appendix B

Spectral Data

Figure B.1 Spectrum of Network Sample 1
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Figure B.2 Degree Multiplicity of Degree Sequence of Network Sample 1
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Figure B.3 Spectrum of MCMC Generated Graphs with Degree Sequence of
Network Sample 1

Figure B.4 Zoomed in view of Figure B.3
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Figure B.5 Spectrum of Network Sample 2

Figure B.6 Degree Multiplicity of Degree Sequence of Network Sample 2
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Figure B.7 Spectrum of MCMC Generated Graphs with Degree Sequence of
Network Sample 2

Figure B.8 Zoomed in view of Figure B.7
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Figure B.9 Spectrum of Network Sample 3

Figure B.10 Degree Multiplicity of Degree Sequence of Network Sample 3
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Figure B.11 Spectrum of MCMC Generated Graphs with Degree Sequence of
Network Sample 3

Figure B.12 Zoomed in view of Figure B.11
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Figure B.13 Spectrum of Network Sample 4

Figure B.14 Degree Multiplicity of Degree Sequence of Network Sample 4
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Figure B.15 Spectrum of MCMC Generated Graphs with Degree Sequence of
Network Sample 4

Figure B.16 Zoomed in view of Figure B.15
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