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Abstract

Jim Propp’s P -machine, also known as the ‘rotor router model’ is a
simple deterministic process that simulates a random walk on a graph.
Instead of distributing chips to randomly chosen neighbors, it serves
the neighbors in a fixed order.

We investigate how well this process simulates a random walk. For
the graph being the infinite path, we show that, independent of the
starting configuration, at each time and on each vertex, the number of
chips on this vertex deviates from the expected number of chips in the
random walk model by at most a constant c1, which is approximately
2.29. For intervals of length L, this improves to a difference of O(log L),
for the L2 average of a contiguous set of intervals even to O(

√
log L).

All these bounds are tight.

1 The Propp Machine

The following deterministic process was suggested by Jim Propp as an at-
tempt to derandomize random walks on infinite grids Zd:
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Rules of the Propp machine: Each vertex x ∈ Zd is associated with a
‘rotor’ and a cyclic permutation of the 2d cardinal directions of Zd. Each
vertex may hold an arbitrary number of ‘chips’. In each time step, each
vertex sends out all its chips to neighboring vertices in the following manner:
The first chip is sent into the direction the rotor is pointing, then the rotor
direction is updated to the next direction in the cyclic ordering. The second
chip is sent in this direction, the rotor is updated, and so on. As a result,
the chips are distributed highly evenly among the neighbors.

This process has attracted considerable attention recently. It turns out
that the Propp machine in several respects is a very good simulation of
a random walk. Used to simulate internal diffusion limited aggregation
(repeatedly, a single chip is inserted at the origin, performs a rotor router
walk until it reaches an unoccupied position and occupies it), it was shown
by Levine and Peres [LP05] that this derandomization produces results that
are extremely close to what a random walk would have produced. See also
Kleber’s paper [Kle05], which adds interesting experimental results: Having
inserted three million chips, the closest unoccupied site is at distance 976.45,
the farthest occupied site is at distance 978.06. Hence the occupied sites
almost form a perfect circle!

In [CS05, CS04], the authors consider the following question: Start with an
arbitrary initial position (that is, chips on vertices and rotor directions), run
the Propp machine for some time and compare the number of chips on a
vertex with the expected number of chips a random walk run for the same
amount of time would have placed on that vertex. Apart from a technicality,
which we defer to the end of Section 2, the answer is astonishing: For any grid
Zd, this difference (discrepancy) can be bounded by a constant, independent
of the number of chips, the run-time, the initial rotor position and the cyclic
permutation of the cardinal directions.

In this paper, we continue this work. We mainly regard the one-dimensional
case, but as will be visible from the proofs, our methods can be extended
to higher dimensions as well. Besides making the constant precise (approx-
imately 2.29), we show that the differences become even better for larger
intervals (both in space and time). We also present a fairly general method
to prove lower bounds (the ‘arrow forcing theorem’). This shows that all our
upper bounds are actually sharp, including the aforementioned constant.

Instead of talking about the expected number of chips the random walk
produces on a vertex, we find it more convenient to think of the following
‘linear’ machine. Here, in each time step each vertex sends out exactly the
same (possibly non-integral) number of chips to each neighbor. Hence, for
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a given starting configuration, after t time-steps the number of chips in the
linear model is exactly the expected number of chips in the random walk
model.

2 Our Results

We obtain the following results (again, see the end of the section for a slight
technical restriction): Fix any starting configuration, that is, the number
of chips on each vertex and the position of the rotor on each vertex. Now
run both the Propp machine and the linear machine for a fixed number
of time-steps. Looking at the resulting chip configurations, we have the
following:

• On each vertex, the number of chips in both models deviates by at most
a constant c1 ≈ 2.29. One may interpret this to mean that the Propp
machine simulates a random walk extremely well. In some sense, it is
even better than the random walk. Recall that in a random walk a
vertex holding n chips only in expectation sends n/2 chips to the left
and the right. With high probability, the actual numbers deviate from
this by Ω(n1/2).

• In each interval of length L, the number of chips that are in this
interval in the Propp model deviates from that in the linear model by
only O(log L) (instead of, e.g., 2.29L).

• If we average this over all length L intervals in some larger interval of
Z, things become even better. The average squared discrepancy in the
length L intervals also is only O(log L).

We may as well average over time. In the setting just fixed, denote by
f(x, T ) the sum of the numbers of chips on vertex x in the last T time steps
in the Propp model, and by E(x, T ) the corresponding number for the linear
model. Then we have the following discrepancy bounds:

• The discrepancy on a single vertex over a time interval of length T is
at most |f(x, T ) − E(x, T )| = O(T 1/2). Hence a vertex cannot have
too few or too many chips for a long time (it may, however, alternate
having too few and too many chips and thus have an average Ω(1)
discrepancy over time).
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• We may extend this to discrepancies in intervals in space and time:
Let I be some interval in Z having length L. Then the discrepancy in
I over a time interval of length T satisfies∣∣∣ ∑

x∈I

f(x, T )−
∑
x∈I

E(x, T )
∣∣∣ =

{
O(LT 1/2) if L ≤ 2T 1/2,

O(T log(LT−1/2)) otherwise.

Hence if L is small compared to T 1/2, we get L times the single vertex
discrepancy in a time interval of length T (no significant cancellation
in space); if L is of larger order than T 1/2, we get T times the O(log L)
bound for intervals of length L (no cancellation in time, the discrep-
ancy cannot leave the large interval in short time).

All bounds stated above are sharp, that is, for each bound there is a starting
configuration such that after suitable run-time of the machines we find the
claimed discrepancy on a suitable vertex, in a suitable interval, etc.

A technicality: There is one limitation, which we only briefly mentioned,
but without which our results are not valid. Note that since Zd is a bipartite
graph, the chips that start on even vertices never mix with those which start
on odd positions. It looks as if we would play two games in one. This is
not true, however. The even chips and the odd ones may interfere with each
other through the rotors. Even worse, we may use the odd chips to reset the
arrows and thus mess up the even chips. Note that the odd chips are not
visible if we look at an even position after an even run-time. An extension
of the arrow-forcing theorem presented below shows that we can indeed use
the odd chips to arbitrarily reset the rotors. This is equivalent to running
the Propp machine in an adversarial setting, where an adversary may decide
each time where the extra odd chips on a position is sent to. It is clear that in
this setting, the results above cannot be expected. We therefore assume that
the starting configuration has chips only on even positions (“even starting
configuration”) or only on odd positions (“odd starting configuration”). An
alternative, in fact equivalent, solution would be to have two rotors on each
vertex, one for even and one for odd time steps.

3 The Basic Method

For numbers a and b set [a..b] = {z ∈ Z | a ≤ z ≤ b} and [b] = [1..b]. For
integers m and n, we write m ∼ n if m and n have the same parity, that is,
if m− n is even.
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For a fixed starting configuration, we use f(x, t) to denote the number of
chips at time t at position x and arr(x, t) to denote the value of the arrow
at time t and position x, i.e., +1 if it points to the right, and −1 if it points
to the left. We have:

f(x, t + 1) = f(x− 1, t)/2 + f(x + 1, t)/2
+arr(x− 1, t)(f(x− 1, t) mod 2)/2
−arr(x + 1, t)(f(x + 1, t) mod 2)/2,

arr(x, t + 1) = (−1)f(x,t)arr(x, t).

Note that after an even starting configuration if x ∼ t does not hold, then
we have f(x, t) = 0 and arr(x, t + 1) = arr(x, t).

We consider the machine to be started at time t = 0. Being a deterministic
process, the initial configuration (i.e., the values f(x, 0) and arr(x, 0), x ∈
Z) determines the configuration at any time t > 0 (i.e., the values f(x, t)
and arr(x, t), x ∈ Z). The totality of all configurations for t > 0 we term a
game. We call a configuration even if no chip is at an odd position. Similarly,
a position is odd if no chip is at an even position. Clearly, an even position
is always followed by an odd position and vice versa.

By E(x, t) we denote the expected number of chips on a vertex x after
running a random walk for t steps (from the implicitly given starting con-
figuration). As described earlier, this is equal to the number of chips on x
after running the linear machine for t time-steps.

In the proofs, we need the following mixed notation. Let E(x, t1, t2) be the
expected number of chips at location x and time t2 if a simple random walk
were performed beginning from the Propp machine’s configuration at time
t1. In other words, this is the number of chips on vertex x after t1 Propp
and t2 − t1 linear steps.

Let H(x, t) denote the probability that a chip arrives at location x at time
t ≥ 0 in a simple random walk begun from the origin, i.e., H(x, t) =
2−t

(
t

(t+x)/2

)
, if t ∼ x, and H(x, t) = 0 otherwise. For t > 0 let inf(y, t)

denote the “influence” of a Propp step of a single chip at distance y with
t linear steps remaining (compared to a linear step). More precisely, we
compare the two probabilities that a chip on position y reaches 0 if (a) it is
first sent to the right (by a single Propp step) and then does a random walk
for the remaining t − 1 time steps, or (b) it just does t random walk steps
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starting from y. Hence,

inf(y, t) := H(y + 1, t− 1)−H(y, t).

A simple calculation yields

inf(y, t) = −y
t H(y, t). (1)

This shows in particular, that inf(y, t) ≤ 0 for y ≥ 0 and inf(y, t) ≥ 0 for
y ≤ 0. We have inf(0, t) = 0.

For notational convenience we extend the definitions of H(x, t) and inf(x, t)
by letting H(x, t) = 0 for t < 0 and inf(x, t) = 0 for t ≤ 0.

Note that

inf(y, t) = 1
2H(y + 1, t− 1)− 1

2H(y − 1, t− 1). (2)

Therefore, the first Propp step with arrow pointing to the left has an influ-
ence of −inf(y, t).

Using this notation, we can conveniently express the (signed) discrepancy
f(x, t) − E(x, t) on a vertex x using information about when “odd splits”
occurred. It suffices to prove the result for the vertex x = 0. Clearly,
E(0, t, t) = f(0, t) and E(0, 0, t) = E(0, t), so that

f(0, t)− E(0, t) =
t−1∑
s=0

(E(0, s + 1, t)− E(0, s, t)) . (3)

In comparing E(0, s + 1, t) and E(0, s, t), note that whenever there are two
chips on some vertex at time s, then these chips can be assumed to behave
identically no matter whether the next step is a linear or a Propp step.
Denote by odds the set of locations which are occupied by an odd number
of chips at time s. Then

E(0, s + 1, t)− E(0, s, t)

=
∑

y∈odds

(H(y + arr(y, s), t− s− 1)−H(y, t− s))

=
∑

y∈odds

arr(y, s) inf(y, t− s).

6



Therefore, appealing to (3),

f(0, t)− E(0, t) =
t−1∑
s=0

∑
y∈odds

arr(y, s) inf(y, t− s).

Using inf(y, u) = 0 for u ≤ 0 we can extend the summation above for all
non-negative integers s.

Let si(y) be the ith time that y is occupied by an odd number of chips,
beginning with i = 0. Switching the order of summation and noting that
the arrows flip each time there is an odd number of chips on a vertex, we
have

f(0, t)− E(0, t) =
∑
y∈Z

∑
i≥0

arr(y, si(y)) inf(y, t− si(y))

=
∑
y∈Z

arr(y, 0)
∑
i≥0

(−1)i inf(y, t− si(y)). (4)

This equation will be crucial in the remainder of the paper. It shows that
the discrepancy on a vertex only depends on the initial arrow positions and
the set of location-time pairs holding an odd number of chips.

In the remainder, we show that we can construct starting configurations
with arbitrary initial arrow positions and odd number of chips at arbitrary
sets of location-time pairs. This will be the heart of our lower bound proofs
in the following sections. Here N0 denotes the set of non-negative integers.

Theorem 1 (Parity-forcing Theorem). For any initial position of the arrows
and any π : Z × N0 → {0, 1}, there is an initial even configuration of the
chips such that for all x ∈ Z, t ∈ N0 such that x ∼ t, f(x, t) and π(x, t) have
identical parity.

Since rotors change their direction if and only if the vertex has an odd
number of chips, the parity-forcing theorem is a consequence of the following
arrow-forcing statement.

Theorem 2 (Arrow-forcing Theorem). Let ρ(x, t) ∈ {−1,+1} be arbitrarily
defined for t ≥ 0 integer and x ∼ t. Then there exists an even initial
configuration that results in a game with arr(x, t) = ρ(x, t) for all such x
and t. Similarly, if ρ(x, t) is defined for x ∼ t + 1 a suitable odd initial
configuration can be found.
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Proof. By symmetry, it is enough to prove the first statement.

Assume the functions f and arr describe the game following an even ini-
tial configuration, and for some T ≥ 0, we have arr(x, t) = ρ(x, t) for
all 0 ≤ t ≤ T + 1 and x ∼ t. We modify the initial position by defining
f ′(x, 0) = f(x, 0) + εx2T for even x, while we have f ′(x, 0) = 0 for odd x
and arr′(x, 0) = arr(x, 0) for all x. Here, εx ∈ {0, 1} are to be determined.

Observe that a pile of 2T chips will split evenly T times so that the arrows
at time t ≤ T remain the same. Our goal is to choose the values εx so
that arr′(x, t) = ρ(x, t) for 0 ≤ t ≤ T + 2 and x ∼ t. As stated above
this holds automatically for t ≤ T as arr′(x, t) = arr(x, t) = ρ(x, t) in
this case. For t = T + 1 and x − T − 1 even we have arr′(x, T + 1) =
arr′(x, T ) = arr(x, T ) = arr(x, T + 1) = ρ(x, T + 1) since we start with
an even configuration. To make sure the equality also holds for t = T +2 we
need to ensure that the parities of the piles f ′(x, T ) are right. Observe that
arr′(x, T + 2) = arr′(x, T ) if f ′(x, T ) is even, otherwise arr′(x, T + 2) =
−arr′(x, T ). So for x − T even we must make f ′(x, T ) even if and only if
ρ(x, T +2) = ρ(x, T ). At time T the “extra” groups of 2T chips have spread
as in Pascal’s Triangle and we have

f ′(x, T ) = f(x, T ) +
∑

y

εy

(
T

T+x−y
2

)
where x ∼ T and the sum is over the even values of y with |y − x| ≤ T . As
f(x, T ) are already given it suffices to set the parity of the sum arbitrarily.
For T = 0 the sum is εx so this is possible. For T > 0 we express∑

y

εy

(
T

T+x−y
2

)
= εx+T + h + εx−T

where h depends only on εy with x − T < y < x + T . We now determine
the εy sequentially. We initialize by setting εy = 0 for −T < y ≤ T . The
values εy for y > T are set in increasing order. The value of εy is set so that
the sum at x = y − T (and thus f ′(y − T, T )) will have the correct parity.
Similarly, the values εy for y ≤ −T are set in decreasing order. The value of
εy is set so that the sum at x = y + T (and thus the f ′(y + T, T )) will have
the correct parity.

Note that the above procedure changes an even initial configuration that
matches the prescription in ρ for times 0 ≤ t ≤ T + 1 into another even
initial configuration that matches the prescription in ρ for times 0 ≤ t ≤
T + 2. We start by defining f(x, 0) = 0 for all x (no chips anywhere) and
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arr(x, 0) = ρ(x, 0) for even x, while arr(x, 0) = ρ(x, 1) for odd x. We now
have arr(x, t) = ρ(x, t) for 0 ≤ t ≤ 1 and x ∼ t. We can apply the above
procedure repeatedly to get an even initial configuration that satisfies the
prescription in ρ for an ever increasing (but always finite) time period 0 ≤
t < T . Notice however, that in the procedure we do not change the initial
configuration of arrows arr(x, 0) at all, and we change the initial number
of chips f(x, 0) at position x only if |x| ≥ T . Thus at any given position
x the initial number of chips will be constant after the first |x| iterations.
This means that the process converges to an (even) initial configuration. It
is simple to check that this limit configuration satisfies the statement of the
theorem.

4 Discrepancy on a Single Vertex

Theorem 3. There exists a constant c1 ≈ 2.29, independent of the initial
(even) configuration, the time t, or the location x, so that

|f(x, t)− E(x, t)| ≤ c1.

The proof needs the following elementary fact. Let X ⊆ R. We call a
mapping f : X → R unimodal, if there is an m ∈ X such that f is mono-
tonically increasing in {x ∈ X |x ≤ m} and f is monotonically decreasing
in {x ∈ X |x ≥ m}.

Lemma 4. Let f : X → R be non-negative and unimodal. Let t1, . . . , tn ∈ X
such that t1 < . . . < tn. Then∣∣∣∣∣

n∑
i=1

(−1)if(ti)

∣∣∣∣∣ ≤ max
x∈X

f(x).

Proof of Theorem 3. It suffices to prove the result for x = 0. In case t is even
we start with an even configuration, if t is odd, then with an odd configura-
tion (otherwise both f(0, t) and E(0, t) would be zero with no discrepancy).

First we show that inf(y, u) with a fixed y < 0 is a non-negative unimodal
function of u if restricted to the values u ∼ y. We have already seen that it
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is non-negative. For the unimodality let y < 0 and u > 2, u ∼ y. We have

inf(y, u)− inf(y, u + 2) = −y

u
H(y, u) +

y

u + 2
H(y, u + 2)

=
4 + 3u− y2

(u + 2− y)(u + 2 + y)
inf(y, u),

whenever u ≥ y. Hence the difference is non-negative if u ≥ (y2 − 4)/3
and it is non-positive if u ≤ (y2 − 4)/3. Thus we have unimodality, with
inf(y, u) taking its maximum at the smallest value of u exceeding (y2−4)/3
with u ∼ y. Let tmax (y) := b(y2 − 4)/3c+2. It is easy to check that
tmax (y) ∼ y always holds, so we have that inf(y, u) takes its maximum for
fixed y < 0 at u = tmax (y). For y > 0 the values inf(y, u) are non-positive
and by symmetry the minimum is taken at u = tmax (y). For y = 0 we have
inf(y, u) = 0 for all u. We have just proved the following:

Lemma 5. For y ∈ Z, the function |inf(y, t)| is maximized over all integers
t at tmax (y) = b(y2 − 4)/3c+ 2.

To bound |f(0, t)−E(0, t)| we use the formula (4) where the inner sums are
alternating sums, for which we can apply Lemma 4, as y ∼ t − si(y) holds
by our even or odd starting position assumption. We get

|f(0, t)− E(0, t)| ≤
∑
y∈Z

∣∣∣∣ ∑
i≥0

(−1)i inf(y, t− si(y))
∣∣∣∣

≤
∑
y∈Z

max
u

|inf(y, u)|

= 2
∞∑

y=1

|inf(y, tmax (y))|. (5)

Here

|inf(y, tmax (y))| = y

tmax (y)
2−tmax (y)

(
tmax (y)

(tmax (y) + y)/2

)
= O(y/(tmax (y))3/2) = O(y−2).

and, therefore, (5) implies that |f(0, t)− E(0, t)| is bounded by

c1 := 2
∞∑

y=1

|inf(y, t′max (y))| ≈ 2.29,
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proving Theorem 3.

Amazingly, the constant c1 defined above is best possible. Indeed, let y > 0
be arbitrary and even and let t0 = tmax (y). We apply the Arrow-forcing
Theorem to find an even starting position that makes arr(x, t) = −1 if x > 0
and t ≤ t0−tmax (x) or x < 0 and t > t0−tmax (x) and makes arr(x, t) = −1
otherwise. It is easy to verify that in this case at a position |x| ≤ y, x 6= 0
we have an odd number of chips exactly once at time t0 − tmax (x) and the
formula (4) gives

f(0, t0)− E(0, t0) = 2
y∑

x=1

|inf(x, tmax (x))|.

5 Intervals in Space

In this section, we regard the discrepancy in intervals in Z. For an arbitrary
finite subset X of Z set

f(X, t) :=
∑
x∈X

f(x, t),

E(X, t) :=
∑
x∈X

E(x, t).

We show that the discrepancy in an interval of length L is O(log L), and
this is sharp. We need the following facts about H.

Lemma 6. For all x ∈ Z, H(x, ·) : {t ∈ N0 |x ∼ t} → R; t 7→ H(x, t) is
unimodal. H(x, t) is maximal for t = x2. We have H(x, x2) = Θ(|x|−1).

Proof. Since H(x, t − 2) − H(x, t) = t−x2

t2−t
H(x, t), we conclude that H(x, t)

is unimodal and for |x| ≥ 2 it has exactly two maxima, namely t = x2 − 2
and t = x2, while for |x| ≤ 1 the latter is the only maximum. A standard
estimate gives the claimed order of magnitude.

Theorem 7. For any even initial configuration, any time t and any interval
X of length L,

|f(X, t)− E(X, t)| = O(log L).
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For every L > 0 there is an even initial configuration, a time t and an
interval X of length L such that

|f(X, t)− E(X, t)| = Ω(log L).

Proof. Using that the discrepancy of a single position is bounded we can
assume X ends at an even position, and then by symmetry we may assume
it ends at 0, i.e., X = [−L + 1..0]. Fix any even initial configuration. By
(4), we have

f(X, t)− E(X, t) =
∑
y∈Z

arr(y, 0)
∑
x∈X

∑
i≥0

(−1)iinf(y − x, t− si(y)).

Note that the summation here can be restricted to values x ∼ t, the other
values contribute zero.

Let us call

con(y) := arr(y, 0)
∑
x∈X

∑
i≥0

(−1)iinf(y − x, t− si(y))

the contribution of the vertex y to the discrepancy in the interval X. The
contribution of a vertex depends on its distance from the interval X. If y is
Ω(L) away from X, its influences on the various vertices of X are roughly
equal, and all such influences are quite small. In this case we bound its
influence by L times the one we computed in Theorem 3:

Let y > L. By Lemmas 4 and 5,

|con(y)| =
∣∣∣∣ ∑

x∈X

∑
i≥0

(−1)iinf(y − x, t− si(y))
∣∣∣∣

≤
∑
x∈X

∣∣∣∣ ∑
i≥0

(−1)iinf(y − x, t− si(y))
∣∣∣∣

≤
∑
x∈X

max
t

|inf(y − x, t)|

≤ O

( ∑
x∈X

(y − x)−2

)
= O(Ly−2).
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Hence the total contribution of these vertices is at most∑
y>L

|con(y)| = O

( ∑
y>L

Ly−2

)
= O(1)

and by symmetry the same bound applies to the contribution of vertices
y ≤ −2L.

We now turn to vertices −2L < y ≤ L. Here mainly those vertices of X
that are close to y contribute to con(y). Hence, the approach above is too
coarse. We use instead that (2) yields a collapsing sum. To simplify our
formulas we introduce

H ′(x, t) = H(x− 1, t) + H(x, t).

Note that H ′(x, t) = H(x, t) for x ∼ t and H ′(x, t) = H(x− 1, t) otherwise.
Also note that H ′(x, t) is not unimodal in t, but fixing x and restricting t
to only even or only odd values it becomes unimodal. As si(y) ∼ y we can
still apply Lemma 4 below.

Using (2) and Lemmas 4 and 6 we have

|con(y)| =
∣∣∣∣ ∑

i≥0

(−1)i
∑
x∈X

inf(y − x, t− si(y))
∣∣∣∣

=
∣∣∣∣1
2

∑
i≥0

(−1)i
∑
x∈X

[
H(y − x + 1, t− si(y)− 1)

− H(y − x− 1, t− si(y)− 1)
]∣∣∣∣

=
∣∣∣∣1
2

∑
i≥0

(−1)i
[
H ′(y + L, t− si(y)− 1)

− H ′(y, t− si(y)− 1)
]∣∣∣∣

≤
∣∣∣∣1
2

∑
i≥0

(−1)iH ′(y + L, t− si(y)− 1)
∣∣∣∣

+
∣∣∣∣1
2

∑
i≥0

(−1)iH ′(y, t− si(y)− 1)
∣∣∣∣

≤ 1
2 max

s∈N
H ′(y + L, s) + 1

2 max
s∈N

H ′(y, s)

= O(1/(y + L− 1/2)) + O(1/(y − 1/2)).
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Thus the vertices in [−2L + 1..L] contribute at most

∑
y∈[−2L+1..L]

|con(y)| = O(
2L∑
i=1

1/(i− 1/2)) = O(log L).

Combining all cases, we have

|f(X, t)− E(X, t)| ≤
∑
y∈Z

|con(y)| = O(log L).

For the lower bound, we just have to place the chips in a way the logarithmic
contribution actually occurs. Without loss of generality, let L be odd.

Consider the following initial configuration (its existence is ensured by the
parity forcing theorem): All arrows point towards the interval X (arrows
of vertices in X may point anywhere). Let t = L2. Choose an initial
configuration of the chips such that f(y, s) is odd if and only if y ∈ [L] is
even and t− s = y2.

Now by construction, con(y) = 0 for all y ∈ Z \ [L]. For y ∈ [L], we have

con(y) = −
∑
x∈X

inf(y − x, y2)

= 1
2H(y, y2)− 1

2H(y + L + 1, y2)

≥ 1
2H(y, y2)− 1

2H(y + L + 1, (y + L + 1)2)

= Ω(y−1).

Hence for this initial configuration,

f(X, t)− E(X, t) =
∑
y∈Z

con(y) =
∑

y∈[L],y∼2

O(y−1) = Ω(log L).
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6 Intervals in Time

In this section, we regard the discrepancy in time-intervals. For x ∈ Z and
finite S ⊆ N0, set

f(x, S) :=
∑
t∈S

f(x, t),

E(x, S) :=
∑
t∈S

E(x, t).

We show that the discrepancy of a single vertex in a time-interval of length
T is O(

√
T ), and this is sharp.

Theorem 8. The maximal discrepancy |f(x, S) − E(x, S)| of a single ver-
tex x in a time interval S of length T is Θ(T 1/2).

In the proof, we need the following fact that “rolling sums” of unimodal
functions are unimodal again.

Lemma 9 (Unimodality of rolling sums). Let f : Z → R be unimodal. Let
k ∈ N. Define F : Z → R by F (z) =

∑k−1
i=0 f(z + i). Then F is unimodal.

Proof. Let f and m ∈ Z be such that f is non-decreasing in Z≤m and non-
increasing in Z≥m. We show that for some m − k < M ≤ m we have that
G(x) := F (x + 1) − F (x) is nonnegative for x < M and nonpositive for
x ≥ M . This implies that F is unimodal.

Since G(x) = f(x + k) − f(x) for all x ∈ Z, G(x) is non-negative for x ≤
m − k and it is nonpositive for x ≥ m. For m − k ≤ x < m we have
G(x + 1)−G(x) = (f(x + k + 1)− f(x + k))− (f(x + 1)− f(x)) ≤ 0, that
is, G is non-increasing in [m− k..m]. Hence M exists as claimed.

Of course, analogous statements hold for functions defined only on even or
odd integers.

The following result says that a single odd split has an influence of exactly
one on another vertex over infinite time.

Lemma 10. For all x ∈ Z \ {0},
∑

t∈N |inf(x, t)| = 1.
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Proof. W.l.o.g., let x ∈ N. Then |inf(x, t)| = 1
2H(x − 1, t − 1) − 1

2H(x +
1, t− 1). Consider a random walk of a single chip started at zero. Let Xy,t

be the indicator random variable for the event that the chip is on vertex y
at time t. Let Yy,t be the indicator random variable for the event that the
chip is on vertex y at time t and that it has not visited vertex x so far. Let
T denote the first time the chip arrives at x.

For any t > s > 0 we have by symmetry that Pr(Xx−1,t−1 = 1|T = s) =
Pr(Xx+1,t−1 = 1|T = s). Clearly, for t ≤ T , Xx+1,t−1 = 0, and for t > T ,
Yx−1,t−1 = 0. Thus∑

t∈N
|inf(x, t)| = 1

2

∑
t∈N

(E(Xx−1,t−1)− E(Xx+1,t−1))

= 1
2

∑
s∈N

Pr(T = s)
∑
t∈N

E((Xx−1,t−1 −Xx+1,t−1) |T = s)

= 1
2

∑
s∈N

Pr(T = s)
∑
t∈[s]

E(Xx−1,t−1 |T = s)

= 1
2

∑
s∈N

Pr(T = s)E
( ∑

t∈[s]

Xx−1,t−1 |T = s

)

= 1
2

∑
s∈N

Pr(T = s)E
( ∑

t∈N
Yx−1,t−1 |T = s

)
= 1

2E

( ∑
t∈N

Yx−1,t−1

)
.

Note that E(
∑

t∈N Yx−1,t−1) is just the expected number of visits to x − 1
before visiting x. This number of visits is exactly k if and only if the chip
moves left after each of its first k − 1 visits and right after the kth visit.
This happens with probability 2−k. Hence E(

∑
t∈N Yx−1,t−1) =

∑
i∈N i2−i =

2.

Proof of Theorem 8. Fix any even initial configuration. Let t0 ∈ N0 and
S = [t0 .. t0 + T − 1]. Without loss, let x = 0. By (4), we have

f(0, S)− E(0, S) =
∑
t∈S

(f(0, t)− E(0, t))

=
∑
y∈Z

arr(y, 0)
∑
i≥0

(−1)i
∑
t∈S

inf(y, t− si(y)).
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By unimodality of rolling sums (Lemma 9),

|f(0, S)− E(0, S)| ≤
∑
y∈Z

max
s∈N

∣∣∣∣ ∑
t∈S

inf(y, t− s)
∣∣∣∣.

We estimate the term maxs∈N |
∑

t∈S inf(y, t − s)| for all y. For 1 ≤ |y| ≤
T 1/2, we use Lemma 10 and simply estimate

max
s∈N

∣∣∣∣ ∑
t∈S

inf(y, t− s)
∣∣∣∣ ≤ ∑

t∈N
|inf(y, t)| = 1. (6)

For |y| > T 1/2,

max
s∈N

∣∣∣∣ ∑
t∈S

inf(y, t− s)
∣∣∣∣ ≤ T max

t∈N
|inf(y, t)| = TO(y−2)

by Lemma 5. Hence

|f(0, S)− E(0, S)| ≤
∑

1≤|y|≤T 1/2

1 + T
∑

|y|>T 1/2

O(y−2) = O(T 1/2).

For the lower bound, we invoke the parity forcing theorem again. By this,
there is an even initial configuration such that all arrows point towards
zero, and such that there is an odd number of chips on vertex x ∈ Z at time
t ∈ N0 if and only if x ∈ X := [

√
T .. 2

√
T ] and t = 4T − x2. For this initial

configuration and S = [4T + 1 .. 5T ], we compute

|f(0, S)− E(0, S)|
=

∑
t∈S

∑
y∈X

|inf(y, t− 4T + y2)|

≥ (1/2)T 3/2 min
{
|inf(y, t)|

∣∣ y ∈ X, t ∈ S, y ∼ t
}

= Ω(T 1/2).
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7 Space-Time-Intervals

We now regard the discrepancy in space-time-intervals. Extending the pre-
vious notation, for finite X ⊆ Z and finite S ⊆ N0 set

f(X, S) :=
∑
x∈X

∑
t∈S

f(x, t),

E(X, S) :=
∑
x∈X

∑
t∈S

E(x, t).

Theorem 11. Let X ⊆ Z and S ⊆ N0 be finite intervals of lengths L and T ,
respectively. Then the maximal discrepancy |f(X, S)−E(X, S)| (taken over
all odd or even initial configurations) is Θ(T log(LT−1/2)), if L ≥ 2T 1/2,
and Θ(LT 1/2) otherwise.

Proof. For the upper bound we use Theorems 7 and 8. To prove |f(X, S)−
E(X, S)| = O(LT 1/2) we can simply apply Theorem 8:

|f(X, S)− E(X, S)| ≤
∑
x∈X

|f(x, S)− E(x, S)|

≤ LO(T 1/2).

For the other upper bound |f(X, S)−E(X, S)| = O(T log(LT−1/2)) we have
to separate contributions of the vertices and apply the bounds in the proof
of Theorem 7 for most of them and the bounds from the proof of Theorem 8
for the rest.

Fix an even initial configuration. Without loss of generality, let X = [−L +
1..0]. Let t0 ∈ N0 and S = [t0 .. t0 + T − 1]. As in previous proofs, by (4) we
have f(X, S)− E(X, S) =

∑
y∈Z con(y) with

con(y) := arr(y, 0)
∑
i≥0

(−1)i
∑
x∈X

∑
t∈S

inf(y − x, t− si(y)).

Here con(y) is the sum for t ∈ S of the contribution cont(y) of y to the dis-
crepancy of the interval X at a single time step t. The bound we established
in the proof of Theorem 7 is |cont(y)| = O(Ly−2) for y > L and y ≤ −2L
and |cont(y)| = O(1/(y − 1/2) + 1/(y + L− 1/2)) for −2L < y ≤ L. Thus
we have

|con(y)| = O(LTy−2)
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for y > L and y ≤ −2L and

|con(y)| = O(T/(y − 1/2) + T/(y + L + 1/2))

for −2L < y ≤ L.

The above bounds are the largest for y close to 0 or −L. For |y| ≤ T 1/2

and for |y + L| ≤ T 1/2 we bound |con(y)| in a different way. Let X ′ be the
interval [−L+2dT 1/2e..−2dT 1/2e] or empty if −L+2dT 1/2e > −2dT 1/2e. We
express the contribution con(y) of y as the sum of contributions to different
parts of X. Let con′(y) be the total contribution of the vertex y to the
discrepancy in X ′ over the time interval S. Since y is separated from X ′ by
at least T 1/2 the above bound gives con′(y) = O(T−1/2). Let con′x(y) be
the total contribution of y to the discrepancy of the single vertex x ∈ X \X ′

over the time interval S. To bound con′x(y) we apply the technique of the
proof of Theorem 8: by Lemma 10 we have |con′x(y)| < 1. Thus we have

|con(y)| ≤ |con′x(y)|+
∑

x∈X\X′

|con′x(y)| = O(T 1/2) + O(T 1/2) = O(T 1/2).

Let H1 be the set of vertices y with y ≤ −2L or y > L. The total contribu-
tion of these vertices is at most∑

y∈H1

|con(y)| =
∑

y∈H1

O(LTy−2) = O(T ).

Let H2 be the set of vertices y with |y| ≤ T 1/2 or |y + L| ≤ T 1/2. The total
contribution of these vertices is at most∑

y∈H2

|con(y)| =
∑

y∈H2

O(T 1/2) = O(T ).

Let H3 be the the set of vertices y outside H1 and H2. Their total contibution
is bounded by∑

y∈H3

|con(y)| =
∑

y∈H3

O(T/y + T/(y + L))

= O

T

2L∑
i=dT 1/2e

1/i

 = O(T log(L/T 1/2)).
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Finally we have

|f(X, S)− E(X, S)| = |
∑
y∈Z

con(y)|

≤ O(T ) + O(T ) + O(T log(L/T 1/2))

= O(T log(L/T 1/2)).

We now prove the corresponding lower bounds. Assume first that L ≥ 2T 1/2.
Set Y = [T 1/2.. L]. Choose an even initial configuration such that f(x, t)
is odd if and only if x ∈ Y and t = L2 − x2. Direct all arrows towards
zero. Let S = [L2.. L2 + T − 1]. Then for y ∈ Y , with appropriately chosen
δt, εt ∈ {0, 1} we have

con(y) =
∑
x∈X

L2+T−1∑
t=L2

∣∣inf(y − x, t− (L2 − y2))
∣∣

≥ 1
2

y2+T−1∑
t=y2

(H(y − 1 + εt, t− 1)−H(y + L− 1− δt, t− 1))

≥ Ω
( y2+T−1∑

t=y2

H(y − 1 + εt, t− 1)
)

= Ω(Ty−1).

For y /∈ Y , con(y) = 0. Hence the discrepancy in this setting is

∑
y∈Y

con(y) =
L∑

y=T 1/2

Ω(Ty−1) = Ω(T log(LT−1/2)).

Assume now that L ≤ 2T 1/2. The setting of Theorem 8 works for this lower
bound, too. Choose an initial configuration such that f(x, t) is odd if and
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only if x ∈ X := [T 1/2.. 2T 1/2] and t = 4T − y2. Then

con(y) =
∑
x∈X

5T−1∑
t=4T

|inf(y − x, t− (4T − y2))|

≥ LT min
{
|inf(y, t)|

∣∣∣∣ y ∈ Z ∩ [T 1/2.. 3T 1/2], t ∈ Z ∩ [T..5T ], y ∼ t

}
= Ω(L)

for all y ∈ Y . Again, con(y) = 0 for y /∈ Y . Hence
∑

y∈Z con(y) =
Ω(LT 1/2).

8 Intervals in Space, Revisited

We stated in Theorem 7 that the discrepancy in an interval of length L is
O(log L). Here we show that intervals of length L with about log L dis-
crepancy are very rare, the root-mean-squared (i.e., quadratic) average of
the discrepancies of a long contiguous set of intervals of length L is only
O(
√

log L), and this bound is tight.

For a set X of vertices we denote by disc(X, t) the discrepancy of the set
X at time t, i.e., we set disc(X, t) = f(X, t)− E(X, t).

Theorem 12. Let X be an interval of length L. For M sufficiently large,

1
M

M∑
k=1

disc2(X + k, t) = O(log L).

Furthermore, for a given L and M there exists an even initial configuration,
and a time t and an interval X of length L such that

1
M

M∑
k=1

disc2(X + k, t) = Ω(log L).

Proof. For the first statement we need to prove an O(
√

log L) bound on the
quadratic average of the discrepancies disc(X + k, t) with k = 1, . . . ,M .
First note that by changing the individual discrepancies by a bounded
amount, we change the quadratic average by at most the same amount.
We use this observation to freely neglect O(1) terms in the discrepancy
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of the intervals. In particular we can change the intervals themselves by
adding or deleting a bounded number of vertices. We use this to make a few
simplifying assumptions. As in Section 7 we assume that (i) the starting
configuration is odd, (ii) the interval X is X = [−L′..L′] with L′ ∼ t, and
(iii) M is even and we only consider even values of k, i.e., we consider the
average of disc2(X + k, t) for 2 ≤ k ≤ M , k even (this can be justified by
considering X + k + 1 instead of X + k for odd k).

First we show that discrepancies caused by odd piles at time t − L2 or
before can be neglected. We start with (4) for the individual discrepancies
disc(x, t).

disc(x, t) =
∑
y∈Z

arr(y, 0)
∑
i≥0

(−1)iinf(y − x, t− si(y))

= disc1(x, t) + disc2(x, t);

disc1(x, t) =
∑
y∈Z

arr(y, 0)
∑

si(y)>t−L2

(−1)iinf(y − x, t− si(y));

|disc2(x, t)| =

∣∣∣∣∣∣
∑
y∈Z

arr(y, 0)
∑

si(y)≤t−L2

(−1)iinf(y − x, t− si(y))

∣∣∣∣∣∣
≤

∑
y∈Z

max
u≥L2

|inf(y − x, u)|.

We have seen that |inf(z, u)| is unimodal for fixed z and its maximum is at
u = dz2/3e, so we have

|disc2(x, t)| ≤ 2
L∑

z=1

|inf(z, L2)|+ 2
∑
z>L

|inf(z, dz2/3e)|

≤ 2
L∑

z=1

z

L2
H(z, L2) + 2

∑
z>L

O(z−2)

≤ 2
L∑

z=1

H(z, L2)/L + O(1/L) = O(1/L).

Therefore the total contribution of disc2 to the discrepancy of an interval
X + k is small. For

disc1(X + k, t) :=
∑

x∈X+k

disc1(x, t)
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we have

|disc1(X + k, t)− disc(X + k, t)| =

∣∣∣∣∣ ∑
x∈X+k

disc2(x, t)

∣∣∣∣∣ = O(1).

We continue as in Section 7 collapsing a sum using inf(z, u) = 1
2H(z+1, u−

1)− 1
2H(z−1, u−1). We also use that disc(x, t) = disc1(x, t) = 0 for x ∼ t

as the starting configuration is odd.

disc1(X + k, t)

=
∑

x∈X+k,x∼t+1

∑
y∈Z

arr(y, 0)
∑

si(y)>t−L2

(−1)iinf(y − x, t− si(y))

=
∑
y∈Z

arr(y, 0)
∑

si(y)>t−L2

(−1)i
∑

x

(
1
2
H(y − x + 1, t− si(y)− 1)

−1
2
H(y − x− 1, t− si(y)− 1)

)
=

1
2

∑
y∈Z

arr(y, 0)
∑

si(y)>t−L2

(−1)i
(
H(y − k + L′, t− si(y)− 1)

−H(y − k − L′, t− si(y)− 1)
)
.

We separate the two terms in this last expression. With

D(m) := 2
∑
y∈Z

arr(y, 0)
∑

si(y)>t−L2

(−1)iH(y −m, t− si(y)− 1)

we have
disc1(X + k, t) =

1
4
D(k − L′)− 1

4
D(k + L′).

Our original goal was to prove an O(
√

log L) bound on the quadratic average
of disc(X + k, t). As disc1(X + k, t) differs from disc(X + k, t) by O(1)
it is clearly enough to prove the same bound for the quadratic average of
disc1(X + k, t). By the last displayed formula it is enough to prove the
O(
√

log L) bound on the two parts D(k−L′) and D(k+L′) separately, both
for 0 < k ≤ M even. It is therefore enough to bound the quadratic average
of D(m) for an arbitrary interval I of length M . Here we consider only
values m ∼ t, for other values of m we have D(m) = 0.

Let t0 = max(0, t−L2 + 1) be the first time-step considered. For y ∈ Z and
u ∼ y + 1 we have an odd pile at y if and only if arr(y, u) 6= arr(y, u + 2)
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and in this case arr(y, u) = (−1)iarr(y, 0) for the index i with si(y) = u.
We estimate the contribution D(m, y) of a fixed value y to the sum defining
D(m). For m ∼ t we have

D(m, y) := 2arr(y, 0)
∑

si(y)>t−L2

(−1)iH(y −m, t− si(y)− 1)

=
∑

t0≤u<t,u∼y+1

(arr(y, u)− arr(y, u + 2))H(y −m, t− u− 1)

=
∑

t0+2≤u<t,u∼y+1

arr(y, u)(H(y −m, t− u− 1)−H(y −m, t− u + 1))

+arr(y, t1)H(y −m, t− t1 − 1)− arr(y, t2)H(y −m, t− t2 + 1),

where t1 = t1(y) is either t0 or t0 + 1, whichever makes t1 ∼ y + 1 and
similarly t2 = t2(y) is either t or t + 1, so that t2 ∼ y + 1. We have

D(m) =
∑
y∈Z

D(m, y)

and with

D′(m) :=
∑
y∈Z

∑
t0+2≤u<t−2

u∼y+1

arr(y, u)(H(y−m, t−u−1)−H(y−m, t−u+1))

we have

|D(m)−D′(m)| =
∣∣∣∣ ∑

y∈Z
(arr(y, t1(y))H(y −m, t− t1(y)− 1)

− arr(y, t2(y))H(y −m, t− t2(y) + 1))
∣∣∣∣

≤
∑

u∈{0,1,t−t0−2,t−t0−1}

∑
y∈Z

H(y −m, u) ≤ 4.

As before, we ignore the small difference and will prove the O(
√

log L) bound
on the quadratic average of D′(m) instead of D(m). Computing the square
and summing over m we get the following. The summations are taken for
m ∈ I, m ∼ t, for y,y2 ∈ Z, and for u1, u2 ∈ [t0 + 2, t− 3], u1 ∼ u2 ∼ y + 1,
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respectively.∑
m

D′2(m) =
∑
y1,y2

∑
u1,u2

arr(y1, u1)arr(y2, u2)

·
∑
m

(H(y1 −m, t− u1 − 1)−H(y1 −m, t− u1 + 1))

·(H(y2 −m, t− u2 − 1)−H(y2 −m, t− u2 + 1)).

Let us estimate the contribution to this sum coming from a fixed y1, u1,
and u2. Disregarding the signs and extending the summation for all m
(even outside I) the contribution of each of the four terms we get from the
multiplication is exactly 1. As u1 and u2 can take at most L2/2 values each,
the total contribution coming from a single value of y1 is at most L4.

Let us obtain the intervals I ′ and I ′′ from I by extending or shortening it
at both ends by L2 respectively, i.e., if I = [a, b], then I ′ = [a− L2, b + L2],
I ′′ = [a + L2, b − L2]. If y1 is outside I ′ we have H(y1 − m, t − u1 − 1) =
H(y1−m, t−u1+1) = 0 for all m ∈ I, therefore such y1 has zero contribution
to

∑
m D′2(m). The contribution for fixed y1, y2, u1, and u2 can usually be

written in closed form using the identity∑
m

H(y1 −m, v1)H(y2 −m, v2) = H(y1 − y2, v1 + v2).

This identity is valid if we sum over all possible values of m, but for y1 ∈ I ′′

the contribution of the values m /∈ I is zero. Therefore the contribution to∑
m D′2(m) of the fixed terms y1 ∈ I ′′, y2, u1, and u2 is

arr(y1, u1)arr(y2, u2)
∑
m

(H(y1 −m, t− u1 − 1)−H(y1 −m, t− u1 + 1))

· (H(y2 −m, t− u2 − 1)−H(y2 −m, t− u2 + 1))
= arr(y1, u1)arr(y2, u2)(H(y, v − 2)− 2H(y, v) + H(y, v + 2)),

where y = y1 − y2 and v = 2t− u1 − u2.

To estimate these contributions we first calculate

H(y, v − 2)− 2H(y, v) + H(y, v + 2) = O(y4/v4 + 1/v2)H(y, v + 2).

The same y = y1 − y2 value arises exactly once for every y1 ∈ I ′′, a total of
M − 2L2 possibilities. The largest possible value of v is less than 2L2 and
any single value v can be the result of at most v pairs u1, u2. There are
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4L2 possible values of y1 outside I ′′ but inside I ′ contributing at most 4L6.
Summing for all these contributions we estimate

∑
m

D′2(m) ≤ 4L6 + O

2L2∑
v=1

Mv
∑
y∈Z

(y4/v4 + 1/v2)H(y, v + 2)


= 4L6 + O

M
2L2∑
v=1

∑
y∈Z

(y4/v3 + 1/v)H(y, v + 2)


= 4L6 + O

M
2L2∑
v=1

1/v

 = O(L6 + M log L).

Here we used the estimate on the fourth moment of the random walk:∑
y∈Z

y4H(y, v + 2) = O((v + 2)2) = O(v2).

To finish the proof we set the threshold M > L6 for sufficiently large M .
We did not make an effort to optimize for this threshold. This ensures that∑

m D′2(m) = O(M log L), so the quadratic average of D′(m) (and therefore
of disc(X + k, t)) is O(

√
log L) as claimed.

It remains to construct a starting configuration where the quadratic average
of discrepancies in the intervals of length L is large. For our construction
we do not even use the value L. For a given (even) parameter t, we define
a probability distribution on starting positions, such that for all L < t and
all intervals X of length L the expectation of disc2(X, t) = Ω(log L).

We let r(a, b) stand for independent random ±1 variables for all integers a
and b ≥ 1. We look for an even starting configuration (guaranteed by the
Arrow-Forcing Theorem), such that arr(x, u) = r(a, b) for all even x and
u satisfying 4b < u ≤ 4b+1 and a2b < x ≤ (a + 1)2b. For simplicity we set
arr(x, u) = 1 for all u and all odd x and we also set arr(x, u) = 1 for all
x and u ≤ 4.

A simple calculation similar to the one in Section 7 shows that for an interval
X = [c, d] we have

disc(X, t) =
∑
a,b

h(a, b)r(a, b),
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where the coefficients h(a, b) depend on X. Further analysis shows that all
coefficients are bounded and Θ(log L) of them are above a positive abso-
lute constant for each interval of length L. This implies that the expecta-
tion of disc2(X, t) is Ω(log L), and therefore the expectation of the average
1
M

∑M
k=1 disc2(X + k, t) is also Ω(log L). This proves the second statement

of the theorem.
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