U_{p}-OPERATORS AND CONGRUENCES FOR SHIMURA IMAGES

MATTHEW BOYLAN

Abstract

Recent works $[2,5,13,14]$ studied how Hecke operators map between subspaces of modular forms of the type $\mathcal{A}_{r, s}=\left\{\eta(\delta z)^{r} F(\delta z): F(z) \in M_{s}\right\}$ for suitable δ. For primes $p \geq 5$, we give results on how U_{p} maps between subspaces of these spaces with p-integral coefficients modulo powers of p. As a corollary, we prove congruences between Shimura images of a natural family of half-integral weight eigenforms modulo p. Specifically, we classify all congruences of the type

$$
\operatorname{Shim}_{r}\left(\eta(24 z)^{r} E_{s}(24 z)\right) \equiv \operatorname{Shim}_{r^{\prime}}\left(\eta(24 z)^{r^{\prime}} E_{s^{\prime}}(24 z)\right) \quad(\bmod p)
$$

for $1 \leq r, r^{\prime} \leq 23$ with $\operatorname{gcd}\left(r r^{\prime}, 6\right)=1,5 \leq p \leq 23$, and $s, s^{\prime} \in\{0,4,6,8,10,14\}$. Congruences of this type were used in $[7,8]$ to extend Ramanujan's congruences for $p(n)$ modulo powers of 5,7 , and 11 .

1. Statement of Results.

We let \mathfrak{h} denote the complex upper half-plane, we let $z \in \mathfrak{h}$, and we let $q:=e^{2 \pi i z}$. As a building-block for spaces of modular forms, the Dedekind eta-function,

$$
\begin{equation*}
\eta(z):=q^{1 / 24} \prod_{n=1}^{\infty}\left(1-q^{n}\right) \tag{1.1}
\end{equation*}
$$

plays a central role in this paper. See Section 2 for necessary background on modular forms. We let $1 \leq r \leq 24$ be an integer, and we define $\delta_{r}:=\frac{24}{\operatorname{gcd}(24, r)}$. For square-free $t \in \mathbb{Z}$, we let D_{t} denote the discriminant of $\mathbb{Q}(\sqrt{t})$, and we define the Dirichlet character $\chi_{t}(\cdot):=\left(\frac{D_{t}}{V}\right)$. When $N \geq 1$ is an integer, we let 1_{N} denote the trivial character modulo N. For all even integers s, we let M_{s} denote the space of modular forms on $\mathrm{SL}_{2}(\mathbb{Z})$ with weight s, and we set

$$
\begin{equation*}
\mathcal{A}_{r, s}:=\left\{\eta\left(\delta_{r} z\right)^{r} F\left(\delta_{r} z\right): F(z) \in M_{s}\right\} \tag{1.2}
\end{equation*}
$$

Prior works $[2,5,13,14]$ used $\mathcal{S}_{r, s}$ in place of $\mathcal{A}_{r, s}$. We use $\mathcal{A}_{r, s}$ to avoid confusion with the standard notation for subspaces of cusp forms. We note that $\mathcal{A}_{r, s}=\{0\}$ when $s<0$ or $s=2$ since $M_{s}=\{0\}$ for such s. Standard facts imply that the sets $\mathcal{A}_{r, s}$ are subspaces in spaces of cusp forms $S_{r / 2+s}\left(\Gamma_{0}\left(\delta_{r}^{2}\right), \psi_{r}\right)$ of weight $r / 2+s$, level δ_{r}^{2}, and nebentypus

$$
\psi_{r}:= \begin{cases}\chi_{-1}^{r / 2} & r \text { even } \\ \chi_{3} & \operatorname{gcd}(r, 6)=1 \\ 1_{\delta_{r}} & r \in\{3,9,15,21\}\end{cases}
$$

We observe, for odd r, that forms in $\mathcal{A}_{r, s}$ transform with half-integral weight and theta multiplier system.

[^0]The works $[2,5,13,14]$ studied the effect of Hecke operators on the subspaces $\mathcal{A}_{r, s}$. When $p \geq 5$ is prime and $m \geq 0$ is an integer, we let $T_{p^{m}}$ denote the Hecke operator with index p^{m} on the space $S_{r / 2+s}\left(\Gamma_{0}\left(\delta_{r}^{2}\right), \psi_{r}\right)$. For all positive integers t, we define

$$
\begin{equation*}
\ell(t):=t-24\left\lfloor\frac{t-1}{24}\right\rfloor, \tag{1.3}
\end{equation*}
$$

the least positive residue of t modulo 24 . We note that when t is odd, we have $\ell(t)=$ $t-24\left\lfloor\frac{t}{24}\right\rfloor$. The following theorem states to which spaces $T_{p^{m}}$ maps $\mathcal{A}_{r, s}$.
Theorem 1.1. Let $1 \leq r \leq 24$, let m and s be non-negative integers with s even, and let $p \geq 5$ be prime. Then we have

$$
T_{p^{m}}: \mathcal{A}_{r, s} \longrightarrow \begin{cases}\mathcal{A}_{r, s} & \text { if } m \text { is even }, \\ \mathcal{A}_{\ell(p r), s+\frac{r-\ell(p r)}{2}} & \text { if } m \text { s odd and } r \text { is even }, \\ \{0\} & \text { if } m \text { is odd and } r \text { is odd. }\end{cases}
$$

Garvan [5] and Yang [13] proved the theorem for odd r and $m=2$, from which the result follows for odd r and all even m. When r and m are odd, $T_{p^{m}}$ is zero on the half-integral weight spaces $S_{r / 2+s}\left(\Gamma_{0}\left(\delta_{r}^{2}\right), \psi_{r}\right)$. The author and Brown proved the theorem for even r and all m in [2].
1.1. U_{p} on the subspaces $\mathcal{A}_{r, s}^{(p)}$ modulo powers of p. Let $p \geq 5$ be prime, let $1 \leq r \leq 24$, let $s \geq 0$ be even, and let $j \geq 1$. We let $\mathbb{Z}_{(p)}$ denote the localization of \mathbb{Z} at p, and we consider

$$
\mathcal{A}_{r, s}^{(p)}:=\left\{\eta\left(\delta_{r} z\right)^{r} F\left(\delta_{r} z\right): F(z) \in M_{s} \cap \mathbb{Z}_{(p)} \llbracket q \rrbracket\right\} .
$$

We define the U_{p}-operator on $\mathbb{C} \llbracket q \rrbracket$ by

$$
\sum a(n) q^{n} \mid U_{p}=\sum a(p n) q^{n}
$$

One of our goals is to study the effect of the U_{p}-operator on the subspaces $\mathcal{A}_{r, s}^{(p)}$ with coefficients reduced modulo p^{j}. When we say that $f \in \mathcal{A}_{r, s}^{(p)}\left(\bmod p^{j}\right)$, we mean that there exists $g \in \mathcal{A}_{r, s}^{(p)}$ such that $f \equiv g\left(\bmod p^{j}\right)$ in $\mathbb{Z}_{(p)} \llbracket q \rrbracket$.
Theorem 1.2. Let $1 \leq r \leq 24$ be an integer, let s and j be non-negative integers with s even and $j \geq 1$, and let $p \geq 5$ be prime.
(1) Suppose that r is odd. Then we have

$$
U_{p}: \mathcal{A}_{r, s}^{(p)} \longrightarrow \mathcal{A}_{\ell(p r), s+\frac{r-\ell(p r)}{2}+\frac{\phi\left(p^{j}\right)}{2}}^{(p)} \quad\left(\bmod p^{j}\right)
$$

(2) Suppose that r is even. Then we have

$$
U_{p}: \mathcal{A}_{r, s}^{(p)} \longrightarrow\left\{\begin{array}{lcl}
\mathcal{A}_{\ell(p r), s+\frac{r-\ell(p r)}{(p)}}^{(p)} & \left(\bmod p^{j}\right), & j \leq s+\frac{r}{2}-1 \\
\mathcal{A}_{\ell(p r), s+\frac{r-\ell(p r)}{2}+\phi\left(p^{j}\right)}^{(p)} & \left(\bmod p^{j}\right), & j>s+\frac{r}{2}-1 .
\end{array}\right.
$$

We note that forms in the image of U_{p} on $\mathcal{A}_{r, s}^{(p)}$ modulo powers of p have weights which tend p-adically to $r / 2+s$ as $j \rightarrow \infty$.
Remark. Instead of framing Theorem 1.2 and its proof in Section 3.1 in terms of the spaces $\mathcal{A}_{r, s}^{(p)}$, which exist at level δ_{r}^{2} with $\delta_{r}=\frac{24}{\operatorname{gcd}(24, r)}$, one may frame the theorem and its proof in
terms of spaces $\left\{\eta(z)^{r} f(z): f(z) \in M_{s}\right\}$, which transform on $\mathrm{SL}_{2}(\mathbb{Z})$ with multiplier system ν_{η}^{r}, where ν_{η} is the eta-multiplier defined in Section 2.8 of [6] or Lemma 4 of [14]. While this approach is more direct and uniform, it may introduce some other technical issues.
We use the notion of filtration on modular forms modulo p to obtain a more precise result when $j=1$.

Theorem 1.3. Let $1 \leq r \leq 24$ be an integer, let $s \geq 0$ be an even integer, and let $p \geq 5$ be prime.
(1) Suppose that r is odd, and let a be the unique non-negative integer with $a p+2 \leq s+\frac{r+p}{2} \leq(a+1) p+1$. Then we have

$$
U_{p}: \mathcal{A}_{r, s}^{(p)} \longrightarrow \mathcal{A}_{\ell(p r), s+\frac{r-\ell(p r)}{2}+\frac{p-1}{2}-(p-1) a}^{(p)} \quad(\bmod p)
$$

(2) Suppose that r is even and that $(r, s) \neq(2,0)$. Let b be the unique non-negative integer with $b p+2 \leq s+\frac{r}{2} \leq(b+1) p+1$. Then we have

$$
U_{p}: \mathcal{A}_{r, s}^{(p)} \longrightarrow \mathcal{A}_{\ell(p r), s+\frac{r-\ell(p r)}{2}-(p-1) b}^{(p)} \quad(\bmod p)
$$

Remark 1. We may express the integers a and b as

$$
a=\left\lfloor\frac{s+\frac{r+p}{2}-2}{p}\right\rfloor, \quad b=\left\lfloor\frac{s+\frac{r}{2}-2}{p}\right\rfloor .
$$

Remark 2. We have $s+\frac{r}{2}-2 \leq 0$ with $1 \leq r \leq 24$ even and $s \geq 0$ even if and only if $(r, s)=(2,0)$. In this case, we have $\mathcal{A}_{2,0}=\mathbb{C} \eta(12 z)^{2}$ with $\eta(12 z)^{2}=\sum a(n) q^{n} \in$ $S_{1}\left(\Gamma_{0}(144), \chi_{-1}\right)$. We let $p \geq 5$ be prime. Using the fact that $\eta(12 z)^{2}$ is a normalized newform with properties of the T_{p} (see (2.3)), U_{p}, and V_{p}-operators (see (2.2)), one can show that

$$
\eta(12 z)^{2} \left\lvert\, U_{p} \equiv\left\{\begin{array}{lll}
\eta(12 z)^{2}\left(a(p)-\Delta(12 z)^{\frac{p-1}{12}}\right)(\bmod p), & p \equiv 1 & (\bmod 12) \\
-\chi_{-1}(p) \eta(12 z)^{\ell(2 p)} \Delta(12 z)^{\frac{2 p-\ell(2 p)}{24}} & (\bmod p), & p \not \equiv 1
\end{array}(\bmod 12), ~\right.\right.
$$

lies in $\mathcal{A}_{\ell(2 p), \frac{2-\ell(2 p)}{2}+\phi(p)}=\mathcal{A}_{\ell(2 p), p-\frac{\ell(2 p)}{2}}$, in agreement with part (2) of Theorem 1.2 for $(r, s, j)=(2,0,1)$.
1.2. Congruences between Shimura images on $\mathcal{A}_{r, s}^{(p)}$ modulo p. Let $p \geq 5$ be prime. A second goal of this paper is to provide a uniform explanation for congruences between images of the Shimura Correspondence on forms in the spaces $\mathcal{A}_{r, s}^{(p)}$ modulo p. See Section 2.3 for a definition and properties of the Shimura Correspondence. Examples of congruences of this type played a central role in the work of [7, 8] on extending Ramanujan's congruences modulo powers of 5,7 , and 11 for $p(n)$, the ordinary partition function. In [8], the authors prove

$$
\begin{equation*}
\operatorname{Shim}_{19}\left(\eta(24 z)^{19}\right) \equiv\left(\theta^{2} E_{2}(z)\right) \otimes \chi_{3} \equiv \operatorname{Shim}_{23}\left(\eta(24 z)^{23}\right) \quad(\bmod 5) \tag{1.4}
\end{equation*}
$$

where $\theta=q \frac{d}{d q}$, to conclude the existence of infinitely many sub-progressions $5^{j} n+\beta_{5}(j)$ for which Ramanujan's congruence modulo 5^{j} can be refined to a congruence modulo 5^{j+1}. In [7], Jameson proved

$$
\begin{equation*}
\operatorname{Shim}_{17}\left(\eta(24 z)^{19}\right) \equiv \operatorname{Shim}_{23}\left(\eta(24 z)^{23}\right) \quad(\bmod 7) \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Shim}_{13}\left(\eta(24 z)^{13} E_{8}(24 z)\right) \equiv \operatorname{Shim}_{23}\left(\eta(24 z)^{23} E_{8}(24 z)\right) \quad(\bmod 11) ; \tag{1.6}
\end{equation*}
$$

refinements to congruences for $p(n)$ modulo powers of 7 and 11 were obtained by verifying that the forms in these congruences are congruent to twists of derivatives of weight two cusp newforms with integer coefficients. These refinements, then, are phrased in terms of data associated to the corresponding elliptic curves. In this paper, we prove the following theorem on congruences for Shimura images. We recall, for all $t \geq 1$, that $\ell(t)$ is the least positive residue of t modulo 24 .

Theorem 1.4. For all values of $p, s, r, \sigma(p, s, r)$, and $\ell(p r)$ in the table below, we have

$$
\operatorname{Shim}_{r}\left(\eta(24 z)^{r} E_{s}(24 z)\right) \equiv \operatorname{Shim}_{\ell(p r)}\left(\eta(24 z)^{\ell(p r)} E_{\sigma(p, s, r)}(24 z)\right)(\bmod p)
$$

p	s	r	$\sigma(p, s, r)$	$\ell(p r)$
5	0,6	$1,7,13,19$	s	$r+4$
7	$0,4,8$	$1,5,13,17$	s	$r+6$
	$0,4,6,8$	1,13	s	$r+10$
11	$0,4,6$	5,17	s	$r+2$
13	$0,4,6,8,10,14$	$1,5,7,11$	s	$r+12$
	$0,4,6,8,10,14$	1,7	s	$r+16$
17	$0,4,6,10$	5,11	$s+4$	$r+8$
	$0,4,6,8,10,14$	1,5	s	$r+18$
19	$0,4,8$	7,11	$s+6$	$r+6$
	$0,4,6,8,10,14$	1	s	23
23	$0,4,6,10$	5	$s+4$	19
	$0,4,8$	7	$s+6$	17
	0,4			

Remark 1. The congruences in the theorem are the complete list of congruences modulo p between images of the Shimura Correspondence on spaces $\mathcal{A}_{r, s}^{(p)}$, where $5 \leq p \leq 23$ is prime, $1 \leq r \leq 23$ has $\operatorname{gcd}(r, 6)=1$, and $s \in\{0,4,6,8,10,14\}$. We note that such spaces are one-dimensional. The theorem accounts for 111 congruences.
We also observe that by Theorem 1.4 of [14], the Shimura images of the forms in the theorem are newforms in $S_{r+2 s-1}\left(\Gamma_{0}(6),-\chi_{2}(r),-\chi_{3}(r)\right) \otimes \chi_{3}$, the space of cusp forms of weight $r+2 s-1$ on $\Gamma_{0}(6)$ with eigenvalues $-\chi_{2}(r)$ and $-\chi_{3}(r)$ for the Atkin-Lehner involutions
W_{2} and W_{3}, respectively. For information on the Atkin-Lehner operators, see [1]; for information on twists of modular forms, see Chapter 7 of [6]. From this perspective, the theorem gives the complete list of congruences modulo p between newforms in the spaces $S_{r+2 s-1}\left(\Gamma_{0}(6),-\chi_{2}(r),-\chi_{3}(r)\right) \otimes \chi_{3}$, where $5 \leq p \leq 23$ is prime, $1 \leq r \leq 23$ has $\operatorname{gcd}(r, 6)=1$, and $s \in\{0,4,6,8,10,14\}$.
Remark 2. We observe that the cases of $(p, s, r) \in\{(5,0,19),(7,0,23),(11,8,13)\}$ in the theorem give (1.4), (1.5), and (1.6) used to prove refinements of Ramanujan's congruences for $p(n)$ modulo powers or 5,7 , and 11 .

Acknowledgment. The author thanks the referee for their careful reading of this paper and for their insightful comments. These comments improved the content and clarity of the paper.

2. Background on modular forms.

For background on modular forms, one may consult [4] or [6].
2.1. Integer weights. We let N and k be integers with $N \geq 1$, and we let χ be a Dirichlet character modulo N. We denote the space of holomorphic modular forms on $\Gamma_{0}(N)$ with nebentypus χ and weight k by $M_{k}\left(\Gamma_{0}(N), \chi\right) \subseteq M_{k}\left(\Gamma_{1}(N)\right)$; its subspace of cusp forms is $S_{k}\left(\Gamma_{0}(N), \chi\right)$. When $N=1$, we write $S_{k} \subseteq M_{k}$. For $s \geq 4$ and even, we require

$$
\begin{equation*}
\Delta(z):=\eta(z)^{24} \in S_{12}, \quad E_{s}(z):=1-\frac{2 s}{B_{s}} \sum_{n=1}^{\infty} \sum_{d \mid n} d^{k-1} q^{n} \in M_{s}, \tag{2.1}
\end{equation*}
$$

where B_{s} is the sth Bernoulli number.
Next, we define operators on $\mathbb{C} \llbracket q \rrbracket$. For all positive integers m, we define operators U_{m} and V_{m} by

$$
\begin{equation*}
\sum a(n) q^{n}\left|U_{m}:=\sum a(m n) q^{n}, \quad \sum a(n) q^{n}\right| V_{m}:=\sum a(n) q^{m n} \tag{2.2}
\end{equation*}
$$

With m, N, k, and χ as above, we define the Hecke operator $T_{m}=T_{m, k, \chi}$ on $\mathbb{C} \llbracket q \rrbracket$ by

$$
\begin{equation*}
\sum a(n) q^{n} \mid T_{m}:=\sum \sum_{d \mid \operatorname{gcd}(m, n)} d^{k-1} \chi(d) a\left(\frac{m n}{d^{2}}\right) q^{n} \tag{2.3}
\end{equation*}
$$

When p is prime, we find from (2.2) and (2.3) that

$$
\begin{align*}
\sum a(n) q^{n} \mid T_{p} & =\sum a(n) q^{n}\left|U_{p}+p^{k-1} \chi(p) \sum a(n) q^{n}\right| V_{p} \tag{2.4}\\
& =\sum\left(a(p n)+\chi(p) p^{k-1} a\left(\frac{n}{p}\right)\right) q^{n}
\end{align*}
$$

with $a\left(\frac{n}{p}\right)=0$ for $p \nmid n$. These operators map spaces of modular forms as follows:

$$
\begin{aligned}
& U_{m}: M_{k}\left(\Gamma_{0}(N), \chi\right) \longrightarrow \begin{cases}M_{k}\left(\Gamma_{0}(N m), \chi\right) & m \nmid N, \\
M_{k}\left(\Gamma_{0}(N), \chi\right) & m \mid N ;\end{cases} \\
& V_{m}: M_{k}\left(\Gamma_{0}(N), \chi\right) \longrightarrow M_{k}\left(\Gamma_{0}(N m), \chi\right) ; \\
& T_{m}: M_{k}\left(\Gamma_{0}(N), \chi\right) \longrightarrow M_{k}\left(\Gamma_{0}(N), \chi\right) .
\end{aligned}
$$

2.2. Half-integer weights. Next, following Shimura, we discuss modular forms of halfintegral weight. For details, see for [10] and [11]. We let N and λ be integers with $N \geq 1$ and $4 \mid N$. The space of holomorphic modular forms on $\Gamma_{0}(N)$ with nebetypus χ and weight $\lambda+1 / 2$ is $M_{\lambda+1 / 2}\left(\Gamma_{0}(N), \chi\right) \subseteq M_{\lambda+1 / 2}\left(\Gamma_{1}(N)\right)$. These forms transform with the given parameters with respect to the theta-multiplier system. For all integers $m \geq 1$, let m^{\prime} denote the square-free part of m. The operators U_{m} and V_{m}, as in (2.2), map spaces of half-integral weight modular forms as follows:

$$
\begin{aligned}
& U_{m}: M_{\lambda+1 / 2}\left(\Gamma_{0}(N), \chi\right) \longrightarrow \begin{cases}M_{\lambda+1 / 2}\left(\Gamma_{0}(N m), \chi \chi_{m^{\prime}}\right) & m \nmid N, \\
M_{\lambda+1 / 2}\left(\Gamma_{0}(N), \chi \chi_{m^{\prime}}\right) & m \mid N ;\end{cases} \\
& V_{m}: M_{\lambda+1 / 2}\left(\Gamma_{0}(N), \chi\right) \longrightarrow M_{\lambda+1 / 2}\left(\Gamma_{0}(N m), \chi_{m^{\prime}}\right) .
\end{aligned}
$$

For all integers $m \geq 1$, there are Hecke operators $T_{m}=T_{m, \lambda+1 / 2, \chi}$ which preserve the halfintegral weight spaces $M_{\lambda+1 / 2}\left(\Gamma_{0}(N), \chi\right)$ and their subspaces of cusp forms. The U - and V-operators also preserve cusp conditions in both integral and half-integral weights. We note, for all $m \geq 1$, that T_{m} is zero when m is not a perfect square. When p is prime, we write $T_{p^{2}}$ for $T_{p^{2}, \lambda+1 / 2, \chi}$ and χ^{*} for $\chi \chi_{-1}^{\lambda}$. We have

$$
\begin{equation*}
\sum a(n) q^{n} \left\lvert\, T_{p^{2}}=\sum\left(a\left(p^{2} n\right)+\left(\frac{n}{p}\right) \chi^{*}(p) p^{\lambda-1} a(n)+\chi(p)^{2} p^{2 \lambda-1} a\left(\frac{n}{p^{2}}\right)\right) q^{n}\right. \tag{2.5}
\end{equation*}
$$

with $a\left(\frac{n}{p^{2}}\right)=0$ when $p^{2} \nmid n$.
2.3. Shimura Correspondence. We now recall basic facts on the Shimura Correspondence. We let $N, \lambda \geq 2$, and χ be as in Section 2.2, we let $f(z)=\sum a(n) q^{n} \in S_{\lambda+1 / 2}\left(\Gamma_{0}(N), \chi\right)$, and we let $t \geq 1$ be square-free. For all $n \geq 1$, we define $A_{t}(n)$ by the formal identity

$$
\sum_{n=1}^{\infty} \frac{A_{t}(n)}{n^{s}}=L\left(s-\lambda+1, \chi \chi_{t} \chi_{-1}^{\lambda}\right) \cdot \sum_{n=1}^{\infty} \frac{a\left(t n^{2}\right)}{n^{s}}
$$

where the first factor on the right is a Dirichlet L-series. It follows, for all $n \geq 1$, that

$$
\begin{equation*}
A_{t}(n)=\sum_{d \mid n} \chi \chi_{-1}^{\lambda} \chi_{t}\left(\frac{n}{d}\right)\left(\frac{n}{d}\right)^{\lambda-1} a\left(t d^{2}\right) \tag{2.6}
\end{equation*}
$$

We then define

$$
\operatorname{Shim}_{t}(f):=\sum_{n=1}^{\infty} A_{t}(n) q^{n}
$$

We have the following theorem.
Theorem 2.1. Assuming the notation above, we have $\operatorname{Shim}_{t}(f) \in S_{2 \lambda}\left(\Gamma_{0}(N / 2), \chi^{2}\right)$. Furthermore, Shim $_{t}$ commutes with the actions of the appropriate Hecke operators: For all primes p, we have

$$
\operatorname{Shim}_{t}\left(f \mid T_{p^{2}, \lambda+1 / 2, \chi}\right)=\operatorname{Shim}_{t}(f) \mid T_{p, 2 \lambda, \chi^{2}}
$$

We recall that $f(z) \in S_{\lambda+1 / 2}\left(\Gamma_{0}(N), \chi\right)$ is an eigenform for the Hecke operator $T_{p^{2}, \lambda+1 / 2, \chi}$, where p is prime, if and only if there exists $\gamma_{p} \in \mathbb{C}$ such that $f(z) \mid T_{p^{2}, \lambda+1 / 2, \chi}=\gamma_{p} f(z)$. We now record basic, well-known facts on modular forms which are eigenforms for $T_{p^{2}, \lambda+1 / 2, \chi}$ for all primes p. These facts have short proofs. Therefore, we sketch them here.

Proposition 2.2. Let $t, \lambda, N \geq 1$ with t square-free, $\lambda \geq 2$, and $4 \mid N$. Suppose, for all primes p, that $f(z)=\sum a(n) q^{n} \in S_{\lambda+1 / 2}\left(\Gamma_{0}(N), \chi\right)$ is an eigenform for $T_{p^{2}, \lambda+1 / 2, \chi}$ with eigenvalue γ_{p}. Suppose also that $\operatorname{Shim}_{t}(f)=\sum A_{t}(n) q^{n} \in S_{2 \lambda}\left(\Gamma_{0}(N / 2), \chi^{2}\right)$.
(1) We have $\operatorname{Shim}_{t}(f)=0$ if and only if $a(t)=0$.
(2) Suppose that $a(t) \neq 0$. Then

$$
\frac{1}{a(t)} \operatorname{Shim}_{t}(f)=\sum \frac{A_{t}(n)}{a(t)} q^{n}=q+\cdots \in S_{2 \lambda}\left(\Gamma_{0}(N / 2), \chi^{2}\right)
$$

is an eigenform for $T_{m, 2 \lambda, \chi^{2}}$ for all $m \geq 1$ with eigenvalue $\gamma_{m}=\frac{A_{t}(m)}{a(t)}$.
(3) For all square-free $t_{1}, t_{2} \geq 1$, we have

$$
a\left(t_{1}\right) \operatorname{Shim}_{t_{2}}(f)=a\left(t_{2}\right) \operatorname{Shim}_{t_{1}}(f)
$$

Proof. For part (1), we observe from (2.6) that $a(t) \neq 0$ implies that $\operatorname{Shim}_{t}(f)=a(t) q+$ $\cdots \neq 0$. For the reverse implication, we suppose that $a(t)=0$. By (2.6), it suffices to show, for all $s \geq 1$, that $a\left(t s^{2}\right)=0$, which one may do by induction on primes dividing s using (2.5).

For the second part, (2.4) and Theorem 2.1 imply, for all $n \geq 1$ and for all primes p, that

$$
A_{t}(p n)+p^{2 \lambda-1} \chi(p)^{2} A_{t}\left(\frac{n}{p}\right)=\gamma_{p} A_{t}(n)
$$

We set $n=1$ and use (2.6) to obtain $A_{t}(p)=\gamma_{p} A_{t}(1)=\gamma_{p} a(t)$, from which the statement follows for p. The structure theory for Hecke operators in integer weight now implies that $\frac{1}{a(t)} \operatorname{Shim}_{t}(f)$ is an eigenform for $T_{m, 2 \lambda, \chi^{2}}$ for all $m \geq 1$ with eigenvalue $\gamma_{m}=\frac{A_{t}(m)}{a(t)}$.

For the third part, we first suppose that $a\left(t_{1}\right) a\left(t_{2}\right)=0$. Then at least one of $a\left(t_{1}\right)$ and $a\left(t_{2}\right)$ is zero, say $a\left(t_{1}\right)=0$. Part (1) now implies that $\operatorname{Shim}_{t_{1}}(f)=0$ which gives $a\left(t_{1}\right) \operatorname{Shim}_{t_{2}}(f)=a\left(t_{2}\right) \operatorname{Shim}_{t_{1}}(f)=0$. Next, we suppose that $a\left(t_{1}\right) a\left(t_{2}\right) \neq 0$. From part (2), it follows that

$$
\frac{1}{a\left(t_{1}\right)} \operatorname{Shim}_{t_{1}}(f)=\sum \frac{A_{t_{1}}(n)}{a\left(t_{1}\right)} q^{n}=q+\cdots, \frac{1}{a\left(t_{2}\right)} \operatorname{Shim}_{t_{2}}(f)=\sum \frac{A_{t_{2}}(n)}{a\left(t_{2}\right)} q^{n}=q+\cdots
$$

are eigenforms for $T_{m, 2 \lambda, \chi^{2}}$ for all $m \geq 1$ with the same eigenvalues: $\frac{A_{t_{1}}(m)}{a\left(t_{1}\right)}=\gamma_{m}=\frac{A_{t_{2}}(m)}{a\left(t_{2}\right)}$. The result follows.
2.4. Modular forms modulo p. We let $p \geq 5$ be prime. In the following proposition, we give well-known facts on the operators from Section 2.1 on formal power series with coefficients in $\mathbb{Z}_{(p)}$ reduced modulo p.

Proposition 2.3. Let $p \geq 5$ be prime, let N and k be positive integers with $k \geq 2$, let χ be a Dirichlet character modulo N, and let $f(q), g(q) \in \mathbb{Z}_{(p)} \llbracket q \rrbracket$. We have the following congruences.
(1) $f(q)\left|U_{p} \equiv f(q)\right| T_{p, k, \chi}(\bmod p)$.
(2) $f(q) \mid V_{p} \equiv f(q)^{p}(\bmod p)$.
(3) $f(q)^{p} \mid U_{p} \equiv f(q)(\bmod p)$.
(4) $\left(f(q)^{p} \cdot g(q)\right) \mid U_{p} \equiv f(q) \cdot\left(g(q) \mid U_{p}\right)(\bmod p)$.
(5) Let $E_{k}(z)$ be as in (2.1). When $k \geq 4$ and $p-1 \mid k$, we have $E_{k}(z) \in \mathbb{Z}_{(p)} \llbracket q \rrbracket$ and $E_{k}(z) \equiv 1(\bmod p)$.

Next, we let $\Gamma=\Gamma_{1}(N)$ or $\Gamma_{0}(N)$, we let α be an integer or half-integer, we let $p \geq 5$ be prime, and we set $M_{\alpha}^{(p)}(\Gamma):=M_{\alpha}(\Gamma) \cap \mathbb{Z}_{(p)} \llbracket q \rrbracket$. We also suppose that j and k are nonnegative integers, that $1 \leq r \leq 24$, and that $s \geq 0$ is even. We first note, from part five of the proposition, that modulo p we have

$$
\begin{equation*}
M_{j}^{(p)}(\Gamma) \subseteq M_{j+k(p-1)}^{(p)}(\Gamma), \quad \mathcal{A}_{r, s}^{(p)} \subseteq \mathcal{A}_{r, s+k(p-1)}^{(p)} \tag{2.7}
\end{equation*}
$$

For integers $k \geq 2$, part one of the proposition implies that $U_{p}: M_{k}^{(p)}(\Gamma) \longrightarrow M_{k}^{(p)}(\Gamma)$ $(\bmod p)$. When $N=1$ and $k>p+1$, Serre ([9], Thm. 2.3) proved that there exists an integer $\beta \geq 1$ for which $U_{p}: M_{k}^{(p)}(\Gamma) \longrightarrow M_{k-(p-1) \beta}^{(p)}(\Gamma)(\bmod p)$. Dewar [3] recently proved a precise generalization to levels $N \geq 4$, which we require:

Theorem 2.4 (Thm. 1 of [3]). Suppose that $p \geq 5$ is prime, that $N \neq 2,3$ with $p \nmid N$, that $A \geq 1$, and that $2 \leq B \leq p+1$. Then we have

$$
U_{p}: M_{A p+B}^{(p)}(\Gamma) \longrightarrow M_{A+B}^{(p)}(\Gamma) \quad(\bmod p)
$$

Furthermore, the map is surjective.
Remark. We may rephrase the statement of the theorem as follows: Let $k \geq 0$ be an integer. Then we have

$$
U_{p}: M_{k}^{(p)}(\Gamma) \longrightarrow M_{k-(p-1)\left\lfloor\frac{k-2}{p}\right\rfloor}^{(p)}(\Gamma) \quad(\bmod p),
$$

and the map is surjective when $k \geq p+2$.
Lastly, we comment on the Shimura Correspondence on modular forms with p-integral coefficients reduced modulo p. As above, for integers or half-integers α and for primes $p \geq 5$, we set $M_{\alpha}^{(p)}\left(\Gamma_{0}(N), \chi\right):=M_{\alpha}^{(p)}\left(\Gamma_{0}(N), \chi\right) \cap \mathbb{Z}_{(p)} \llbracket q \rrbracket$. When χ is real and $t \geq 1$ is square-free, (2.6) implies that Shim_{t} preserves p-integrality of Fourier coefficients, and hence, congruence modulo powers of p. We have $f \in S_{\lambda+1 / 2}^{(p)}\left(\Gamma_{0}(N), \chi\right)$ implies that $\operatorname{Shim}_{t}(f) \in S_{2 \lambda}^{(p)}\left(\Gamma_{0}(N / 2)\right)$. When j and t are positive integers with t square-free and $f, g \in S_{\lambda+1 / 2}^{(p)}\left(\Gamma_{0}(N), \chi\right)$ have $f(z) \equiv g(z)\left(\bmod p^{j}\right)$, it follows that $\operatorname{Shim}_{t}(f) \equiv \operatorname{Shim}_{t}(g)\left(\bmod p^{j}\right)$.

3. Proof of Theorems 1.2, 1.3, and 1.4.

We let $1 \leq r \leq 24, s \geq 0$ be even, and $p \geq 5$ be prime. We define

$$
\mathcal{B}_{r, s}:=\mathcal{A}_{r, s} \mid V_{\operatorname{gcd}(r, 24)}=\left\{\eta(24 z)^{r} F(24 z): F(z) \in M_{s}\right\}
$$

and $\mathcal{B}_{r, s}^{(p)}:=\mathcal{A}_{r, s}^{(p)} \mid V_{\operatorname{gcd}(r, 24)}$. Since $p \geq 5$, the operators T_{p} and U_{p} commute with $V_{\operatorname{gcd}(r, 24)}$. Therefore, Theorem 1.1 holds for $\mathcal{B}_{r, s}$ in place of $\mathcal{A}_{r, s}$, and it suffices to show that Theorems 1.2 and 1.3 hold for $\mathcal{B}_{r, s}^{(p)}$ in place of $\mathcal{A}_{r, s}^{(p)}$. For $j \geq 1$, Theorem 1.2 holds when $f(z) \in M_{s}^{(p)}$ has $\left(\eta(24 z)^{r} f(24 z)\right) \mid U_{p} \equiv 0\left(\bmod p^{j}\right)$. Hence, we suppose that $\left(\eta(24 z)^{r} f(24 z)\right) \mid U_{p} \not \equiv 0$ $\left(\bmod p^{j}\right)$.
3.1. Proof of Theorem $\mathbf{1 . 2}$. We first prove part one of Theorem 1.2, in which case $1 \leq r \leq 24$ is odd. Parts (2) and (4) of Proposition 2.3 imply that

$$
\begin{align*}
\left(\eta(24 z)^{p^{j}+r} f(24 z)\right) \mid U_{p} & \equiv\left(\eta(24 p z)^{p^{j-1}} \eta(24 z)^{r} f(24 z)\right) \mid U_{p} \tag{3.1}\\
& \equiv \eta(24 z)^{p^{j-1}}\left(\eta(24 z)^{r} f(24 z)\right) \mid U_{p} \not \equiv 0 \quad\left(\bmod p^{j}\right)
\end{align*}
$$

We denote the order of vanishing of the reduction modulo p^{j} of $g(q) \in \mathbb{Z}_{(p)} \llbracket q \rrbracket$ by ord ${ }_{\infty}^{\left(p^{j}\right)}(g)$. We now bound the order of vanishing of the q-expansion of (3.1) modulo p^{j}. We recall, for all integers $t \geq 1$, that $\ell(t)$ is the least positive residue of t modulo 24 .

Lemma 3.1. Let $j, p, r, s \in \mathbb{Z}$ with $j \geq 1, p \geq 5$ prime, $1 \leq r \leq 24$ odd, and $s \geq 0$ even, and let $f \in M_{s}^{(p)}$. We have

$$
\operatorname{ord}_{\infty}^{\left(p^{j}\right)}\left(\left(\eta(24 z)^{p^{j}+r} f(24 z)\right) \mid U_{p}\right) \geq p^{j-1}+\ell(p r)
$$

Proof. Since the form is not zero modulo p^{j}, its order of vanishing is finite. From (1.1) and (3.1), we compute this order as

$$
\begin{aligned}
\operatorname{ord}_{\infty}^{\left(p^{j}\right)}\left(\eta(24 z)^{p^{j-1}}\left(\eta(24 z)^{r} f(24 z)\right) \mid U_{p}\right) & =\operatorname{ord}_{\infty}^{\left(p^{j}\right)}\left(\eta(24 z)^{p^{j-1}}\right)+\operatorname{ord}_{\infty}^{\left(p^{j}\right)}\left(\left(\eta(24 z)^{r} f(24 z)\right) \mid U_{p}\right) \\
& =p^{j-1}+\operatorname{ord}_{\infty}^{\left(p^{j}\right)}\left(\left(\eta(24 z)^{r} f(24 z)\right) \mid U_{p}\right) .
\end{aligned}
$$

If we suppose that $\eta(24 z)^{r} f(24 z)=\sum_{n \equiv r(\bmod 24)} a_{r, f}(n) q^{n}$, then we have
$\eta(24 z)^{r} f(24 z) \left\lvert\, U_{p}=\sum_{n \equiv r}^{n \neq \substack{\bmod 24) \\ p \mid n}} a_{r, f}(n) q^{\frac{n}{p}}=\sum_{p n \equiv r(\bmod 24)} a_{r, f}(p n) q^{n}=\sum_{n \equiv p r(\bmod 24)} a_{r, f}(p n) q^{n}\right.$,
where the last equality holds since $p \geq 5$ is prime implies that $p^{2} \equiv 1(\bmod 24)$. The conclusion follows.

Remark. Suppose that $\operatorname{ord}_{\infty}^{\left(p^{j}\right)}(f)=n_{0} \geq 0$. Then we have $\eta(24 z)^{r} f(24 z)=\sum_{\substack{n \geq 24 n_{0}+r \\ n \equiv r(\bmod 24)}} a_{r, f}(n) q^{n}$.
In this setting, we improve the lower bound in the lemma to $p^{j-1}+\ell(p r)+n_{1}$, where n_{1} is the least integer with $n_{1} \geq \frac{24 n_{0}+r}{p}$ such that $n_{1} \equiv \ell(p r)(\bmod 24)$. Alternatively, this lower bound is $p^{j-1}+\ell(p r)+24 k$, where k is the least integer with $k \geq \frac{24 n_{0}+r-p \ell(p r)}{24 p}$. The next lemma identifies the space of type (1.2) in which the form in (3.1) lies modulo p^{j}.

Lemma 3.2. Let j, p, r, s, and f be as in Lemma 3.1. Modulo p^{j}, we have

$$
\left(\eta(24 z)^{p^{j}+r} f(24 z)\right) \left\lvert\, U_{p} \in \begin{cases}\mathcal{B}_{\ell(p r)+p-24}^{(p)}\left\lfloor\frac{\ell(p r)+p-1}{24}\right\rfloor, s+\frac{r-\ell(p r)}{2}+\frac{p^{j}-p}{2}+12\left\lfloor\frac{\ell(p r r)+p-1}{24}\right\rfloor, & j \text { even }, \\ \mathcal{B}_{\ell(p r)+1, s+\frac{r-\ell(p r)}{(p)}+\frac{p^{j}-1}{2}}, & j \text { odd } .\end{cases}\right.
$$

The proof of Lemma 3.2 requires the following proposition.

Proposition 3.3. Let j, p and r be as in Lemma 3.1. We have

$$
\ell\left(r+p^{j}\right)= \begin{cases}r+1, & j \text { even } \\ \ell(r+p)=r+p-24\left\lfloor\frac{r+p-1}{24}\right\rfloor, & j \text { odd } .\end{cases}
$$

Proof. Since $p \geq 5$ is prime, we have $p^{j} \equiv\left\{\begin{array}{ll}1(\bmod 24), & j \text { even, } \\ p(\bmod 24), & j \text { odd. }\end{array} \quad\right.$ Recalling from (1.3) that $\ell(t)$ is the least positive residue of t modulo 24 , the statement follows.

We turn to the proof of Lemma 3.2.
Proof of Lemma 3.2. Noting (2.1) and that $p^{j}+r-\ell\left(p^{j}+r\right) \equiv 0(\bmod 24)$, we have

$$
\begin{aligned}
\eta(24 z)^{p^{j}+r} f(24 z) & =\eta(24 z)^{\ell\left(p^{j}+r\right)} \eta(24 z)^{p^{j}+r-\ell\left(p^{j}+r\right)} f(24 z) \\
& =\eta(24 z)^{\ell\left(p^{j}+r\right)} \Delta(24 z)^{\frac{p^{j}+r-\ell\left(p^{j}+r\right)}{24}} f(24 z) \in \mathcal{B}_{\ell\left(p^{j}+r\right), s+\frac{p^{j}+r-\ell\left(p^{j}+r\right)}{2}}^{2}
\end{aligned}
$$

Using Proposition 3.3, we obtain

$$
\eta(24 z)^{p^{j}+r} f(24 z)=\left\{\begin{array}{lll}
\eta(24 z)^{r+1} \Delta(24 z)^{\frac{p^{j}-1}{24}} f(24 z) & \in \mathcal{B}_{r+1, s+\frac{p^{j}-1}{2}}^{(p)}, & j \text { even }, \\
\eta(24 z)^{\ell(r+p)} \Delta(24 z)^{\frac{p^{j}+r-\ell(r+p)}{24}} f(24 z) \in \mathcal{B}_{\ell(r+p), s+\frac{p^{j}+r-\ell(r+p)}{(p)},}^{2}, & j \text { odd. }
\end{array}\right.
$$

Since r is odd and $p \geq 5$, these subspaces consist of forms of weight $s+\frac{p^{j}+r}{2} \in \mathbb{Z}$, and the power of the eta-function which occurs as a factor of forms in these subspaces is even. Furthermore, $r \geq 1, s \geq 0$, and $p \geq 5$ imply that $s+\frac{p^{j}+r}{2}-1 \geq \frac{5^{j}-1}{2} \geq j$ for all $j \geq 1$. It follows from (2.4) that U_{p} and T_{p} agree modulo p^{j} on these subspaces. Hence, to determine where U_{p} modulo p^{j} maps $\mathcal{B}_{r, s}^{(p)}$, we apply Theorem 1.1 with U_{p} in place of T_{p} and $\mathcal{B}_{r, s}$ in place of $\mathcal{A}_{r, s}$. Recalling from (1.3) that $\ell(t)$ is the least positive residue of t modulo 24 , we observe that

$$
\begin{equation*}
\ell(p(r+1))=\ell(p r)+p-24\left\lfloor\frac{\ell(p r)+p-1}{24}\right\rfloor \tag{3.2}
\end{equation*}
$$

and, since p and r are odd with $p \geq 5$, that

$$
\begin{equation*}
\ell(p \ell(r+p))=\ell(p r)+1 \tag{3.3}
\end{equation*}
$$

Hence, when j is even, Theorem 1.1 and (3.2) give U_{p} modulo p^{j} mapping $\mathcal{B}_{r+1, s+\frac{p^{j}-1}{2}}^{(p)}$ to

$$
\mathcal{B}_{\ell(p(r+1)), s+\frac{p^{j}-1}{2}+\frac{r+1-\ell(p(r+1))}{2}}^{(p)}=\mathcal{B}_{\ell(p r)+p-24\left\lfloor\frac{\ell(p r)+p-1}{24}\right\rfloor, s+\frac{r-\ell(p r)}{2}+\frac{p^{j}-p}{2}+12\left\lfloor\frac{\ell(p r)+p-1}{24}\right\rfloor} .
$$

When j is odd, Theorem 1.1 and (3.3) give U_{p} modulo p^{j} mapping $\mathcal{B}_{\ell(p+r), s+\frac{p p^{j}+r-\ell(r+p)}{2}}^{(p)}$ to

$$
\mathcal{B}_{\ell(p(\ell(r+p))), s+\frac{p^{j}+r-\ell(r+p)}{2}}^{(p)}+\frac{\ell(r+p)-\ell(p(\ell(r+p)))}{2}=\mathcal{B}_{\ell(p r)+1, s+\frac{r-\ell(p r)}{2}+\frac{p^{j}-1}{2}}^{2} .
$$

This proves Lemma 3.2.

We now use Lemmas 3.1 and 3.2 to prove part one of Theorem 1.2. We recall that $1 \leq r \leq 24$ is odd in part one of the theorem. A consequence of Lemma 3.2 is that there exists $g(z) \in \mathbb{Z}_{(p)} \llbracket q \rrbracket$, depending on j, p, r, and f, with

$$
g(z) \in \begin{cases}M_{s+\frac{r-\ell(p r)}{(p)}+\frac{p^{j}-p}{2}}^{\left(p+12\left\lfloor\frac{\ell(p r)+p-1}{24}\right\rfloor,\right.} & j \text { even } \tag{3.4}\\ M_{s+\frac{r \ell(p r)}{2}+\frac{p^{j}-1}{2}}^{(p)}, & j \text { odd }\end{cases}
$$

and

$$
\left(\eta(24 z)^{p^{j}+r} f(24 z)\right) \left\lvert\, U_{p} \equiv \begin{cases}\eta(24 z)^{\ell(p r)+p-24\left\lfloor\frac{\ell(p r)+p-1}{24}\right\rfloor} g(24 z) & \left(\bmod p^{j}\right), \tag{3.5}\\ \eta(24 z)^{\ell(p r)+1} g(24 z) & \left(\bmod p^{j}\right),\end{cases}\right.
$$

Lemma 3.1 implies that

$$
\begin{aligned}
\operatorname{ord}_{\infty}^{\left(p^{j}\right)}\left(\left(\eta(24 z)^{p^{j}+r} f(24 z)\right) \mid U_{p}\right) & = \begin{cases}\ell(p r)+24 \operatorname{ord}_{\infty}^{\left(p^{j}\right)}(g(z))+p-24\left\lfloor\frac{\ell(p r)+p-1}{24}\right\rfloor, & j \text { even }, \\
\ell(p r)+24 \operatorname{ord}_{\infty}^{\left(p^{j}\right)}(g(z))+1, & j \text { odd }\end{cases} \\
& \geq p^{j-1}+\ell(p r) .
\end{aligned}
$$

We conclude that $g(z)$ has q-expansion modulo p^{j} with order of vanishing

$$
\operatorname{ord}_{\infty}^{\left(p^{j}\right)}(g(z)) \geq \begin{cases}\frac{p^{j-1}-p}{24}+\left\lfloor\frac{\ell(p r)+p-1}{24}\right\rfloor, & j \text { even }, \tag{3.6}\\ \frac{p^{j-1}-1}{24}, & j \text { odd }\end{cases}
$$

We note that the expressions on the right side of the inequalities are integers since $p \geq 5$ is prime. We next define

$$
h(z):= \begin{cases}g(z) \Delta(z)^{-\left(\frac{p^{j-1}-p}{24}+\left\lfloor\frac{\ell(p r)+p-1}{24}\right\rfloor\right)}, & j \text { even }, \\ g(z) \Delta(z)^{-\left(\frac{p^{j-1}-1}{24}\right),} & j \text { odd } .\end{cases}
$$

We use (3.4) and (3.6) to deduce, for both even and odd j, that $h(z) \in M_{s+\frac{r+\ell(p r)}{2}+\frac{\phi\left(p^{j}\right)}{2}}^{(p)}$ is a holomorphic modular form, where ϕ is Euler's phi-function. We may therefore rewrite (3.5) as
$\left(\eta(24 z)^{p^{j}+r} f(24 z)\right) \left\lvert\, U_{p} \equiv \begin{cases}\eta(24 z)^{\ell(p r)+p-24\left\lfloor\frac{\ell(p r)+p-1}{24}\right\rfloor} \Delta(24 z)^{\frac{p^{j-1}-p}{24}+\left\lfloor\frac{\ell(p r)+p-1}{24}\right\rfloor} h(24 z), & j \text { even, } \\ \eta(24 z)^{\ell(p r)+1} \Delta(24 z)^{\frac{p^{j-1}-1}{24}} h(24 z), & j \text { odd } .\end{cases}\right.$
Hence, for both even and odd j, we find that

$$
\begin{equation*}
\left(\eta(24 z)^{p^{j}+r} f(24 z)\right) \mid U_{p} \equiv \eta(24 z)^{\ell(p r)+p^{j-1}} h(24 z) \quad\left(\bmod p^{j}\right) \tag{3.7}
\end{equation*}
$$

From (3.1) and (3.7), we now have
$\eta(24 z)^{p^{j-1}}\left(\eta(24 z)^{r} f(24 z)\right)\left|U_{p} \equiv\left(\eta(24 z)^{p^{j}+r} f(24 z)\right)\right| U_{p} \equiv \eta(24 z)^{\ell(p r)+p^{j-1}} h(24 z) \quad\left(\bmod p^{j}\right)$.
Part one of Theorem 1.2 follows for all $j \geq 1$.
When r is even and $s+\frac{r}{2}-1 \geq j$, we find that U_{p} and T_{p} agree modulo p^{j} on $\mathcal{A}_{r, s}^{(p)}$; we then apply Theorem 1.1 with U_{p} in place of T_{p} and $\mathcal{B}_{r, s}^{(p)}$ in place of $\mathcal{A}_{r, s}^{(p)}$ to prove part two of the theorem for such j. To conclude the proof of Theorem 1.2, we explain how to adapt the
argument for part one to prove part two when $j>s+\frac{r}{2}-1$. We suppose that $f(z) \in M_{s}^{(p)}$ has $\left(\eta(24 z)^{r} f(24 z)\right) \mid U_{p} \not \equiv 0\left(\bmod p^{j}\right)$. In analogy with (3.1), we first note that

$$
\left(\eta(24 z)^{2 p^{j}+r} f(24 z)\right)\left|U_{p} \equiv \eta(24 z)^{2 p^{j-1}}\left(\eta(24 z)^{r} f(24 z)\right)\right| U_{p} \quad\left(\bmod p^{j}\right)
$$

Since r is even and $p \geq 5$ is odd, the exponent $2 p^{j}+r$ is even, which allows us to use Theorem 1.1, to study U_{p} modulo p^{j} on the relevant spaces, as in the proof of part one of the theorem. As the details of the argument are not significantly different, we omit them in the interest of brevity.
3.2. Proof of Theorem 1.3. Let $1 \leq r \leq 24$, let $s \geq 0$ be even, let $p \geq 5$ be prime, and let $\Gamma=\Gamma_{0}(576)$. We first prove Theorem 1.3 for even r. When $(r, s) \neq(2,0)$, the operators U_{p} and T_{p} agree modulo p on $\mathcal{B}_{r, s}^{(p)}$. Theorem 1.1 implies that U_{p} maps $\mathcal{B}_{r, s}^{(p)} \subseteq M_{s+\frac{r}{2}}^{(p)}(\Gamma)$ to $\mathcal{B}_{\ell(p r), s+\frac{r-\ell(p r)}{2}}^{(p)} \subseteq M_{s+\frac{r}{2}}^{(p)}(\Gamma)$ modulo p, while Theorem 2.4 implies that U_{p} maps $M_{s+\frac{r}{2}}^{(p)}(\Gamma) \rightarrow$ $M_{s+\frac{r}{2}-(p-1) b}^{(p)}(\Gamma)$ modulo p, where $b=\left\lfloor\frac{s+\frac{r}{2}-2}{p}\right\rfloor$. We use (2.7) to conclude that the image of U_{p} on $\mathcal{B}_{r, s}^{(p)}$ modulo p lies in

$$
\mathcal{B}_{\ell(p r), s+\frac{r-\ell(p r)}{2}}^{(p)} \cap M_{s+\frac{r}{2}-(p-1) b}^{(p)}(\Gamma)=\mathcal{B}_{\ell(p r), s+\frac{r-\ell(p r)}{2}-(p-1) b}^{(p)} .
$$

When r is odd, we modify the proof of part one of Theorem 1.2 in order to apply Theorem 2.4. With $f(z) \in M_{s}^{(p)}$, we recall the $j=1$ case of (3.1):

$$
\begin{equation*}
\left(\eta(24 z)^{p+r} f(24 z)\right)\left|U_{p} \equiv \eta(24 z)\left(\eta(24 z)^{r} f(24 z)\right)\right| U_{p} \quad(\bmod p) \tag{3.8}
\end{equation*}
$$

Since r and p are odd imply that $\frac{r+p}{2}$ is an integer, we observe that $\eta(24 z)^{p+r} f(24 z) \in$ $M_{s+\frac{p+r}{2}}^{(p)}(\Gamma)$ has integer weight. Therefore, Theorem 2.4 implies that (3.8) lies in $M_{s+\frac{p+r}{2}-(p-1) a}^{(p)}(\Gamma)$ modulo p, where $a=\left\lfloor\frac{s+\frac{p+r}{2}-2}{p}\right\rfloor$. On the other hand, by the $j=1$ case of Lemma 3.2, the form (3.8) lies in $\mathcal{B}_{\ell(p r)+1, s+\frac{r-\ell(p r)}{2}+\frac{p-1}{2}}^{(p)} \subseteq M_{s+\frac{p+r}{2}}^{(p)}(\Gamma)$ modulo p. It follows from (2.7) that (3.8) lies in

$$
\mathcal{B}_{\ell(p r)+1, s+\frac{r-\ell(p r)}{2}+\frac{p-1}{2}}^{(p)} \cap M_{s+\frac{p+r}{2}-(p-1) a}^{(p)}(\Gamma)=\mathcal{B}_{\ell(p r)+1, s+\frac{r-\ell(p r)}{2}+\frac{p-1}{2}-(p-1) a}^{(p)} .
$$

We conclude as in the proof of part one of Theorem 1.2. We now have $g(z) \in M_{s+\frac{r-\ell(p r)}{2}+\frac{p-1}{2}-(p-1) a}^{(p)}$ such that

$$
\left(\eta(24 z)^{p+r} f(24 z)\right) \mid U_{p} \equiv \eta(24 z)^{\ell(p r)+1} g(24 z) \quad(\bmod p) .
$$

We compare with (3.8) to obtain

$$
\eta(24 z)\left(\eta(24 z)^{r} f(24 z)\right) \mid U_{p} \equiv \eta(24 z)^{\ell(p r)+1} g(24 z) \quad(\bmod p),
$$

which gives the result.
3.3. Proof of Theorem 1.4. We let N and λ be positive integers with $\lambda \geq 2$ and $4 \mid N$, we let χ be a Dirichlet character modulo N, and we let $f(z)=\sum a(n) q^{n} \in S_{\lambda+1 / 2}\left(\Gamma_{0}(N), \chi\right)$. We require a lemma and a corollary on the interplay between the Shimura Correspondence and U-operator on the form f.

Lemma 3.4. Let i and $j \geq 1$ with i square-free and $j \mid i$, and let f be as in the preceding paragraph. Then we have

$$
\operatorname{Shim}_{i}(f)=\operatorname{Shim}_{i / j}\left(f \mid U_{j}\right)
$$

Proof. We note that j and i / j are square-free. For all $n \geq 1$, we define $b_{j}(n)$ by

$$
\sum b_{j}(n) q^{n}=f \left\lvert\, U_{j} \in S_{\lambda+\frac{1}{2}}\left(\Gamma_{0}(N j), \chi \chi_{j}\right) .\right.
$$

Therefore, from (2.2) we have $b_{j}(n)=a(j n)$. We also find that

$$
\chi_{j} \chi_{i / j}= \begin{cases}\chi_{i} 1_{2}, & i \equiv 1(\bmod 4) \text { and } j \equiv 3(\bmod 4) \\ \chi_{i}, & \text { otherwise }\end{cases}
$$

Since $4 \mid N$ and χ is a Dirichlet character with modulus N, it follows that $\chi \chi_{j} \chi_{-1}^{\lambda} \chi_{i / j}=\chi \chi_{-1}^{\lambda} \chi_{i}$. We now use (2.6) to compute

$$
\begin{aligned}
\operatorname{Shim}_{i / j}\left(f \mid U_{j}\right) & =\sum\left(\sum_{d \mid n} \chi \chi_{j} \chi_{-1}^{\lambda} \chi_{i / j}(d) d^{\lambda-1} b_{j}\left(\frac{i}{j} \cdot \frac{n^{2}}{d^{2}}\right)\right) q^{n} \\
& =\sum\left(\sum_{d \mid n} \chi \chi_{-1}^{\lambda} \chi_{i}(d) d^{\lambda-1} a\left(i \frac{n^{2}}{d^{2}}\right)\right) q^{n}=\operatorname{Shim}_{i}(f)
\end{aligned}
$$

The following corollary is an application of Proposition 2.2 and the lemma.
Corollary 3.5. Suppose, for all primes ℓ, that $f(z)$ is an eigenform for the Hecke operator $T_{\ell^{2}, \lambda+1 / 2, \chi}$. Let t_{1}, t_{2}, and $m \geq 1$ be square-free with $\operatorname{gcd}\left(m, t_{2}\right)=1$. Then we have

$$
a\left(m t_{2}\right) \operatorname{Shim}_{t_{1}}(f)=a\left(t_{1}\right) \operatorname{Shim}_{t_{2}}\left(f \mid U_{m}\right)
$$

Remark. Let $p \geq 5$ be prime, and let $j \geq 1$. When χ is real and $f(z) \in S_{\lambda+1 / 2}^{(p)}\left(\Gamma_{0}(N), \chi\right)$, the statement of the corollary holds modulo p^{j}.

Proof. We note that since m and t_{2} are square-free and coprime, we have $m t_{2}$ square-free. We find that

$$
a\left(m t_{2}\right) \operatorname{Shim}_{t_{1}}(f)=a\left(t_{1}\right) \operatorname{Shim}_{m t_{2}}(f)=a\left(t_{1}\right) \operatorname{Shim}_{t_{2}}\left(f \mid U_{m}\right)
$$

where the first equality follows from part (3) of Proposition 2.2, and the second follows from the lemma with $i=m t_{2}$ and $j=t_{2}$.

We now embark on the proof of Theorem 1.4. We let p, s, and r be as in the theorem, and we set

$$
f_{r, s}(z)=\eta(24 z)^{r} E_{s}(24 z)=\sum a_{r, s}(n) q^{n} \in \mathcal{A}_{r, s}^{(p)}
$$

Since $\mathcal{A}_{r, s}^{(p)}$ is one-dimensional for such p, s, and r, Theorem 1.1 implies that the forms $f_{r, s}(z)$ are eigenforms for $T_{\ell^{2}}$ for all primes $\ell \geq 5$. Furthermore, since these forms have support on indices relatively prime to 6 , formula (2.5) implies that they are eigenforms for T_{4} and T_{9} with eigenvalues both equal to zero. Therefore, we may apply Corollary 3.5 to them with $t_{1}=r, t_{2}=\ell(p r)$, and $m=p$ to obtain

$$
\begin{equation*}
a_{r, s}(p \ell(p r)) \operatorname{Shim}_{r}\left(\eta(24 z)^{r} E_{s}(24 z)\right)=\operatorname{Shim}_{\ell(p r)}\left(\left(\eta(24 z)^{r} E_{s}(24 z)\right) \mid U_{p}\right) . \tag{3.9}
\end{equation*}
$$

We suppose that $v_{p}\left(\left(\eta(24 z)^{r} E_{s}(24 z)\right) \mid U_{p}\right)=v \geq 0$. We have $a_{r, s}(p \ell(p r)) \equiv 0\left(\bmod p^{v}\right)$ from (3.9). Dividing by p^{v} in (3.9) yields

$$
\frac{a_{r, s}(p \ell(p r))}{p^{v}} \operatorname{Shim}_{r}\left(\eta(24 z)^{r} E_{s}(24 z)\right)=\operatorname{Shim}_{\ell(p r)}\left(\frac{\left(\eta(24 z)^{r} E_{s}(24 z)\right) \mid U_{p}}{p^{v}}\right) \in \mathbb{Z}_{(p)} \llbracket q \rrbracket .
$$

Therefore, to complete the proof of Theorem 1.4, it suffices to show, in the notation of the theorem, that

$$
\frac{\left(\eta(24 z)^{r} E_{s}(24 z)\right) \mid U_{p}}{p^{v}} \equiv \frac{a_{r, s}(p \ell(p r))}{p^{v}} \eta(24 z)^{\ell(p r)} E_{\sigma(p, s, r)}(24 z) \quad(\bmod p) .
$$

When $v=0$, part one of Theorem 1.3 gives $\left(\eta(24 z)^{r} E_{s}(24 z)\right) \mid U_{p} \in \mathcal{B}_{\ell(p r), \sigma(p, s, r)}^{(p)}(\bmod p)$. In all of the cases we consider, this space is one-dimensional spanned by $\eta(24 z)^{\ell(p r)} E_{\sigma(p, s, r)}(24 z)$. The result follows.

When $v>0$, part one of Theorem 1.2 implies that $\left(\eta(24 z)^{r} E_{s}(24 z)\right) \mid U_{p} \not \equiv 0\left(\bmod p^{v+1}\right)$ lies in $\mathcal{B}_{\ell(p r), s+\frac{r-\ell(p r)}{2}+\frac{\phi\left(p^{v+1}\right)}{2}}^{(p)}$ modulo p^{v+1}. Hence, there exists $c(z) \in M_{s+\frac{r-\ell(p r)}{2}+\frac{\phi\left(p^{v+1}\right)}{2}}^{(p)}$ with

$$
\left(\eta(24 z)^{r} E_{s}(24 z)\right) \mid U_{p} \equiv a_{r, s}(p \ell(p r)) \eta(24 z)^{\ell(p r)} c(24 z) \quad\left(\bmod p^{v+1}\right)
$$

which gives

$$
\begin{equation*}
\frac{\left(\eta(24 z)^{r} E_{s}(24 z)\right) \mid U_{p}}{p^{v} \eta(24 z)^{\ell(p r)}} \equiv \frac{a_{r, s}(p \ell(p r))}{p^{v}} c(24 z) \quad(\bmod p) \tag{3.10}
\end{equation*}
$$

in $M_{s+\frac{r-\ell(p r)}{2}+\frac{\phi\left(p^{v+1}\right)}{2}}^{(p)}\left(\Gamma_{0}(24)\right)$. Since the form on the right side of the congruence arises as the image of V_{24} on a form on $\mathrm{SL}_{2}(\mathbb{Z})$, we apply U_{24} to see that (3.10) is equivalent to

$$
\left.\left(\frac{\left(\eta(24 z)^{r} E_{s}(24 z)\right) \mid U_{p}}{p^{v} \eta(24 z)^{\ell(p r)}}\right) \right\rvert\, U_{24} \equiv \frac{a_{r, s}(p \ell(p r))}{p^{v}} c(z) \quad(\bmod p)
$$

in $M_{s+\frac{r-\ell(p r)}{2}+\frac{\phi\left(p^{v+1}\right)}{2}}^{(p)}$. A theorem of Sturm [12] states that two forms in $M_{k}^{(p)}\left(\Gamma_{0}(N)\right)$ agree modulo p if and only if their coefficients agree modulo p up to index $\frac{k N}{12} \Pi\left(1+\frac{1}{\ell}\right)$, where the product is over primes $\ell \mid N$. The spaces $M_{s+\frac{r-\ell(p r)}{2}+\frac{\phi\left(p^{v+1}\right)}{2}}^{(p)}$ have Sturm bound $2 s+r-$ $\ell(p r)+\phi\left(p^{v+1}\right)$. We conclude the theorem for (p, s, r) with $v>0$ on a case-by-case basis using the Sturm bound to show in each case that $c(z) \equiv E_{\sigma(p, s, r)}(z)(\bmod p)$.
Example. We illustrate the general case when $v>0$ with a typical example: $(p, s, r)=$ $(19,8,11)$. We observe that $\sigma(19,8,11)=14$. Part one of Theorem 1.3 gives $\left(\eta(24 z)^{11} E_{8}(24 z)\right) \mid$ $U_{19} \in \mathcal{B}_{17,-4}^{(19)}(\bmod 19)$, which implies that $\left(\eta(24 z)^{11} E_{8}(24 z)\right) \mid U_{19} \equiv 0(\bmod 19)$. The argument in the preceding paragraph gives $c(z) \in M_{176}^{(19)}$ with

$$
\left.\left(\frac{\left(\eta(24 z)^{11} E_{8}(24 z)\right) \mid U_{19}}{19 \eta(24 z)^{17}}\right) \right\rvert\, U_{24} \equiv 5 c(z) \quad(\bmod 19) .
$$

To prove that $c(z) \equiv E_{14}(z)(\bmod 19)$, we note that $E_{14}(z) \equiv E_{14}(z) E_{18}(z)^{9}(\bmod 19)$ in $M_{176}^{(19)}$, and we check that the first $\left\lfloor\frac{176}{12}\right\rfloor$ coefficients agree modulo 19 .

References

[1] A. O. L. Atkin and J. Lehner, Hecke operators on $\Gamma_{0}(m)$, Math. Ann. 185 (1970), 134-160.
[2] M. Boylan and K. Brown, Hecke operators on certain subspaces of integral weight modular forms, Int. J. Number Theory (2014), 11 pp., doi: 10.1142/S1793042114500614
[3] M. Dewar, The image and kernel of Atkin's U_{p} operator modulo p, Proc. Amer. Math. Soc. 140 (2012), no. 6, 1931-1938. MR2888180
[4] F. Diamond and J. Shurman, A first course in modular forms, Graduate Texts in Mathematics, 228, Springer, New York, 2005. MR2112196 (2006f:11045)
[5] F. G. Garvan, Congruences for Andrews' smallest parts partition function and new congruences for Dyson's rank, Int. J. Number Theory 6 (2010), no. 2, 281-309. MR2646759 (2011j:05032)
[6] H. Iwaniec, Topics in classical automorphic forms, Graduate Studies in Mathematics, 17, Amer. Math. Soc., Providence, RI, 1997. MR1474964 (98e:11051)
[7] M. Jameson, A refinement of Ramanujan's congruences modulo powers of 7 and 11, Int. J. Number Theory 8 (2012), no. 4, 865-879.
[8] J. Lovejoy and K. Ono, Extension of Ramanujan's congruences for the partition function modulo powers of 5, Journal fur die Reine und Angewandte Mathematik 542 (2002), 123-132.
[9] J.-P. Serre, Formes modulaires et fonctions zêta p-adiques, in Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972), 191-268. Lecture Notes in Math., 350, Springer, Berlin.
[10] G. Shimura, On modular forms of half integral weight, Ann. of Math. (2) $\mathbf{9 7}$ (1973), 440-481. MR0332663 (48 \#10989)
[11] G. Shimura, Modular forms: basics and beyond, Springer Monographs in Mathematics, Springer, New York, 2012. MR3025356
[12] J. Sturm, On the congruence of modular forms. In Number theory (New York, 1984-1985), vol. 1240 of Lecture Notes in Math., 275-280. Springer, Berlin, 1987.
[13] Y. Yang, Congruences of the partition function, Int. Math. Res. Not. IMRN 2011, no. 14, 3261-3288. MR2817679 (2012e:11177)
[14] Y. Yang, Modular forms of half-integral weights on $\mathrm{SL}_{2}(\mathbb{Z})$, Nagoya J. Math. 215 (2014), 1 - 66.
Department of Mathematics, University of South Carolina, Columbia, SC 29208
E-mail address: boylan@math.sc.edu

[^0]: Date: August 8, 2020.
 2010 Mathematics Subject Classification. 11F03, 11F11.

