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THE PARTITION FUNCTION MODULO PRIME POWERS

MATTHEW BOYLAN AND JOHN J. WEBB

Abstract. Let ! ≥ 5 be prime, let m ≥ 1 be an integer, and let p(n) denote
the partition function. Folsom, Kent, and Ono recently proved that there exists
a positive integer b!(m) of size roughly m2 such that the module formed from

the Z/!mZ-span of generating functions for p
(

!bn+1
24

)
with odd b ≥ b!(m)

has finite rank. The same result holds with “odd” b replaced by “even” b.
Furthermore, they proved an upper bound on the ranks of these modules.

This upper bound is independent of m; it is
⌊
!+12
24

⌋
.

In this paper, we prove, with a mild condition on !, that b!(m) ≤ 2m − 1.
Our bound is sharp in all computed cases with ! ≥ 29. To deduce it, we prove
structure theorems for the relevant Z/!mZ-modules of modular forms. This
work sheds further light on a question of Mazur posed to Folsom, Kent, and
Ono.

1. Introduction and statement of results

Let n be a positive integer. A partition of n is a non-increasing sequence of
positive integers whose sum is n. The ordinary partition function, p(n), counts the
number of partitions of n. By convention, we set p(0) := 1; for α !∈ N∪ {0}, we set
p(α) := 0.

Some of the most fundamental and elegant arithmetic properties of p(n) are
the Ramanujan congruences and their prime power extensions proved by Atkin [5],
Ramanujan [19], and Watson [25]. Let " ≥ 5 be prime, and let b ≥ 0 be an integer.
With 1 ≤ δ!(b) ≤ "b −1 and 24δ!(b) ≡ 1 (mod "b), the extensions are, for all n ≥ 0,

(1.1)
p(5bn + δ5(b)) ≡ 0 (mod 5b),
p(7bn + δ7(b)) ≡ 0 (mod 7!b/2"+1),
p(11bn + δ11(b)) ≡ 0 (mod 11b).

These congruences have inspired a terrific amount of interest in the study of p(n),
its generating function, and allied functions. Landmark works include, for example,
the papers of Andrews and Garvan [4] and of Atkin and Swinnerton-Dyer [8] on the
rank and crank partition statistics. They also include papers of Ahlgren and Ono
[1], [2], [16] which prove, for fixed M coprime to 6, that there are infinitely many
non-nested arithmetic progressions An + B such that p(An + B) ≡ 0 (mod M).
For further examples, see [3], [17], and [18], and the references therein.

1.1. Main theorems. We now focus on recent work of Folsom, Kent, and Ono
[12] related to (1.1). Both this work and the works proving (1.1) result from using
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2170 MATTHEW BOYLAN AND JOHN J. WEBB

the theory of modular forms to study generating functions of type

(1.2) P!(b; z) :=
∞∑

n=0

p

(
"bn + 1

24

)
qn/24.

The principal result in [12] is the following.

Theorem 1.1 ([12], Theorem 1.2). Let " ≥ 5 be prime, and let m ≥ 1. Then there
is an integer

b!(m) ≤ 2

(⌊
"− 1

12

⌋
+ 2

)
m − 3

such that the Z/"mZ-module

SpanZ/!mZ{P!(b; z) : b ≥ b!(m), b odd}
has finite rank

(1.3) r!(m) ≤
⌊
"− 1

12

⌋
−
⌊
"2 − 1

24"

⌋
=

⌊
" + 12

24

⌋
:= R!.

Similarly, the “even” Z/"mZ-module SpanZ/!mZ{P!(b; z) : b ≥ b!(m), b even} has
finite rank bounded by R!.

Remark. (1) From (1.3), primes " ∈ {5, 7, 11} have R! = 0, which explains
(1.1). For primes 13 ≤ " ≤ 31, (1.3) gives R! = 1. It follows for all integers
b1, b2 with b1 ≡ b2 (mod 2) and b2 > b1 ≥ b!(m), that there exists an
integer A!(b1, b2, m) with

p

(
"b2n + 1

24

)
≡ A!(b1, b2, m) · p

(
"b1n + 1

24

)
(mod "m) for all n.

This is Theorem 1.1 of [12].
(2) The authors of [12] use Theorem 1.1 to settle a conjecture of Atkin from

[6]. For primes 5 ≤ " ≤ 31, m ≥ 1, and b ≥ b!(m), they prove (see Theorem
1.3 of [12]) that P!(b; 24z) is an eigenform modulo "m for all of the Hecke
operators in half-integral weight "m−1("− 1) − 1/2 on the group Γ0(576).

(3) For all m ≥ 1, we have r!(m) ≤ r!(m + 1) and b!(m) ≤ b!(m + 1).

The bound on b!(m) in Theorem 1.1 is not sharp since, for example, (1.1) implies
that one may take b5(m) = b11(m) = m, while one may take b7(m) = 2m − 2.
Our main result is a sharpened bound on b!(m). In general, b!(m) depends on
an explicitly calculable constant d! related to the nullity of an operator D(") (see
(1.7) below) on cusp forms of weight " − 1 on SL2(Z) with "-integral coefficients
reduced modulo ". In Section 5, we define d!. Calculations reveal, for all primes
5 ≤ " ≤ 1300 (the primes we considered), that d! = 0.

Theorem 1.2. Let " ≥ 5 be prime, and suppose that d! = 0. Then for all m ≥ 1,
we have

b!(m) ≤ 2m − 1.

Remark. (1) The bound on b!(m) is sharp for all computed cases with " ≥ 29.
(2) In Section 5, we modify the bound on b!(m) in the theorem for primes "

with d! > 0.
We exhibit an example of the type of congruence predicted by Theorems 1.1 and

1.2. See Section 6.1 for further examples and Section 6.2 for comments on how
these examples were computed.
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THE PARTITION FUNCTION MODULO PRIME POWERS 2171

Example. Let " = 53. Our calculations show that r53(m) = R53 = 2 for all m ≥ 1,
that b53(1) = 1, and that b53(2) = 3. The following congruences hold for all n ≥ 0:

p(53n + 42) ≡ 22p(533n + 117861) + 25p(535n + 331071432)

(mod 53),

p(533n + 117861) ≡ 2672p(535n + 331071432) + 2304p(537n + 929979652371)

(mod 532).

Next, we give a consequence of Theorems 1.1 and 1.2.

Corollary 1.3. Let " ≥ 5 be prime, let m ≥ 1, and let b!(m) be as in Theorem
1.2. Then there exists an integer c! ≥ 1 such that for all b ≥ b!(m) and all n ≥ 0,
we have

p

(
"bn + 1

24

)
≡ p

(
"b+2c!!

m−1

n + 1

24

)
(mod "m).

We illustrate the corollary with an example.

Example. Let " = 41. We find that c! = 10, and thus for all n ≥ 0, we have

p(41n + 12) ≡ p(4121n + 215 · · · 4912) (mod 41).

We refer to Section 6 for more examples of the corollary.

With r!(m) as in (1.3), the proof in Section 4 shows that c! is the order of a
matrix in GLr!(1)(Z/"Z). We note that the corollary is similar to the following
result of Y. Yang (Theorem 6.7 of [26]). Let m != " be primes with m ≥ 13 and
" ≥ 5, and let i ≥ 1. Then for all n, r ≥ 0, we have

p

(
mi"rn + 1

24

)
≡ p

(
mi"M+rn + 1

24

)
(mod mi).

Yang’s proof uses the existence of a non-trivial Hecke-invariant subspace of half-
integral weight cusp forms, and it reveals that M is the order of a matrix in
PGL(m

12)
(
Z/miZ

)
.

1.2. Reformulation of main results. The work of Folsom, Kent, and Ono in-
troduces a new framework for studying the generating functions P!(b; z) modulo
powers of ". The central objects in this framework are certain submodules Ω!(m)
of the Z/"mZ-module of cusp forms of weight "m−1("−1) on SL2(Z) with "-integral
coefficients reduced modulo "m. We define Ω!(m) in Theorem 1.4 and (1.14) be-
low. Furthermore, the authors in [12] define an operator D(") (see (1.7)) which
acts on these submodules and plays an important role in their study. The submod-
ules Ω!(m) are objects of interest independent of their connection to partitions.
Our work in this paper uncovers some of their fine structure properties, thereby
addressing a question of Mazur from the appendix to [12], which we restate here.

Question (Mazur). Do the spaces Ω!(m) “compile well” to produce a clean free
Z!-module? Do the Hecke operators work well on these spaces?

We therefore reframe Theorems 1.1 and 1.2 in the abstract context of the sub-
modules Ω!(m). Let N ≥ 1 and k be integers. We denote the space of weakly
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2172 MATTHEW BOYLAN AND JOHN J. WEBB

holomorphic modular forms of weight k on Γ0(N) by M !
k(Γ0(N)). A form f(z) ∈

M !
k(Γ0(N)) has poles, if any, supported at cusps, and it has a Fourier expansion

f(z) =
∞∑

n=n0

a(n)qn (q := e2πiz)

with n0 * −∞. We denote by Mk(Γ0(N)) and Sk(Γ0(N)) the subspaces of holo-
morphic modular forms and cusp forms, respectively. When N = 1, we omit
reference to the group. For details on modular forms, see Section 2.

Remark. An alternative and more general context for our work arises from viewing
modular forms geometrically in the sense of Katz [14]. In this setting, weakly holo-
morphic modular forms correspond to rational sections of line bundles on modular
curves with prescribed divisors corresponding to poles at cusps. One may identify
such forms as rules on elliptic curves with level structure. Further, one can use the
Tate curve to identify a modular form with its q-expansion. In this way, the tech-
nical q-expansion manipulations we require in Sections 3, 4, and 5 may be viewed
as “mod-ing” out classical moduli problems.

Some of the modular forms we require arise as quotients of

(1.4) η(z) := q1/24
∞∏

n=1

(1 − qn),

the Dedekind eta-function. An important example is

(1.5) Φ!(z) :=
η("2z)

η(z)
= q

!2−1
24 + · · · ∈ M !

0(Γ0("
2)) ∩ Z[[q]].

We also define certain operators on spaces of modular forms. For primes " ≥ 5,
we define Atkin’s U(")-operator and Folsom-Kent-Ono’s D(")-operator on f(z) ∈
M !

k(Γ0(N)) by

f(z) | U(") :=
∞∑

!n=n0

a("n)qn,(1.6)

f(z) | D(") := (Φ!(z)f(z)) | U(").(1.7)

It is useful to package the operators U(") and D(") together as X(") and Y ("):

f(z) | X(") := f(z) | U(") | D("),(1.8)

f(z) | Y (") := f(z) | D(") | U(").(1.9)

We continue to follow [12] by defining, for all integers b ≥ 0, a sequence of
functions {L!(b; z)}. We set L!(0; z) := 1, and for all b ≥ 1, we set

(1.10) L!(b; z) :=

{
L!(b − 1; z) | D(") if b is odd,

L!(b − 1; z) | U(") if b is even.

Euler’s infinite product generating function for the partition function,

∞∑

m=0

p(m)qm =
∞∏

n=1

1

(1 − qn)
,
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is a natural starting point for connecting partitions and modular forms. Using it
together with (1.2) and (1.4)–(1.10), one can show as in Lemma 2.1 of [12] that

L!(b; z) =

{
η("z)P!(b; z) if b is odd,

η(z)P!(b; z) if b is even.

We now fix integers b ≥ 0 and m ≥ 1. We study the Z/"mZ-modules

(1.11) SpanZ/!mZ{L!(β; z) mod "m : β ≥ b, β ≡ b (mod 2)}

=:

{
Λodd
! (b, m) if b is odd,

Λeven
! (b, m) if b is even.

It follows from (1.8), (1.9), and (1.10) that

Λodd
! (b, m) = SpanZ/!mZ{L!(b; z) | X(")s : s ≥ 0},

Λeven
! (b, m) = SpanZ/!mZ{L!(b; z) | Y (")t : t ≥ 0}.

Moreover, we have the following commutative diagram of the Z/"mZ-module ho-
momorphisms:

(1.12)

Λodd
! (b, m) Λeven

! (b + 1, m)
U(!)

Λodd
! (b + 2, m)

D(!)

Λeven
! (b + 3, m).

U(!)

X(!) Y (!)

In the foregoing context, we recast Theorems 1.1 and 1.2 in a unified form.

Theorem 1.4. Let " ≥ 5 be prime, let m ≥ 1, and suppose that d! = 0. Then there
is an integer

b!(m) ≤ 2m − 1

such that the nested sequence of Z/"mZ-modules

Λodd
! (1, m) ⊇ Λodd

! (3, m) ⊇ · · · ⊇ Λodd
! (2b + 1, m) ⊇ · · ·

is constant for all b with 2b + 1 ≥ b!(m). Moreover, if one denotes the stabilized
Z/"mZ-module by Ωodd

! (m), then we have

(1.13) r!(m) := rankZ/!mZ(Ωodd
! (m)) ≤

⌊
"− 1

12

⌋
−
⌊
"2 − 1

24"

⌋
=

⌊
" + 12

24

⌋
:= R!.

Similarly, the sequence of “even” Z/"mZ-modules {Λeven
! (b, m) : b ≥ b!(m)} is

stable. If we denote the stable module by Ωeven
! (m), then an upper bound on its

rank is R!.

Remark 1. In view of commutative diagram (1.12), we see that b!(m) is the smallest
positive integer b for which X(") : Λodd

! (b, m) → Λodd
! (b + 2, m) is an isomorphism.

Moreover, the theorem implies that the following maps are isomorphisms:

U(") : Ωodd
! (m) → Ωeven

! (m), D(") : Ωeven
! (m) → Ωodd

! (m),

X(") : Ωodd
! (m) → Ωodd

! (m), Y (") : Ωeven
! (m) → Ωeven

! (m).

Licensed to Univ of South Carolina. Prepared on Mon Sep 23 17:09:14 EDT 2013 for download from IP 129.252.2.100.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



2174 MATTHEW BOYLAN AND JOHN J. WEBB

Remark 2. Theorem 7.1 of the appendix to [12] describes work of Calegari [10] on
how the stability and finiteness results in Theorem 1.4 can be generalized using
aspects of the theory of half-integral weight over convergent p-adic modular forms
developed by Ramsey [20], [21]. However, bounds on the stability threshold, b!(m),
and on the rank, r!(m), require explicit analysis specific to the inputs (1.5)–(1.10).
In what follows, we provide such an analysis.

Remark 3. Recent work of Belmont, Lee, Musat, and Trebat-Leder [9] adapts The-
orems 1.1, 1.2, and 1.4, to Andrews’ smallest parts partition function, spt(n), and
to the rth power partition function, pr(n).

The paper is organized as follows. In Section 2, we state facts we need on
modular forms. In Section 3, we prove Lemma 3.1 and Lemma 3.6. These lemmas
underpin the facts we prove in Sections 4 and 5 on the algebraic structure of the
Z/"mZ-modules Λodd

! (b, m), Λeven
! (b, m), and

(1.14) Ω!(m) := Ωodd
! (m) + Ωeven

! (m).

Stability and finiteness of rank in Theorem 1.4 follow directly from Lemma 3.1
via Corollary 3.5. In Section 4, we use this corollary to exhibit explicit injections
from Ωodd

! (m) and Ωeven
! (m) into S!−1, thereby proving the upper bound (1.13)

and reproving Theorem 1.1. We also prove Corollary 1.3 in Section 4. Theorem
1.2 follows from Lemma 3.6 and the structure developed in Section 4, as we show
in Section 5. In Section 6, we give more examples of Theorem 1.2 and Corollary
1.3. We also thoroughly explain how we computed examples for all primes 13 ≤
" ≤ 1297.

2. Preliminary facts on modular forms

The proofs of our results require certain facts from the theory of modular forms.
For details see, for example, [11] or [13].

2.1. Modular forms. We first discuss operators on spaces of modular forms. One

may consult [7] and [23] in addition to the references above. Let γ =

(
a b
c d

)
∈

GL+
2 (Q), and let N ≥ 1 and k be integers. We define the slash operator on

f(z) ∈ M !
k(Γ0(N)) by

(2.1) (f |k γ)(z) := (det γ)k/2(cz + d)−kf(γz).

Let " ≥ 5 be prime. We define the operator V (") on f(z) ∈ M !
k(Γ0(N)) by

f(z) | V (") :=
∞∑

n=!n0

a(n)q!n.

With U(") as in (1.6), one finds that

(2.2) f(z) | U(") = "k/2−1
!−1∑

j=0

f |k
(

1 j
0 "

)

and that

(2.3) f(z) | V (") = "−k/2f |k
(
" 0
0 1

)
= f("z).
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Next, for primes " ! N , we define the Hecke operator T (", k) on f(z) ∈ M !
k(Γ0(N))

by

(2.4) f(z) | T (", k) = f(z) | U(") + "k−1f(z) | V (").

If f(z) ∈ M !
k(Γ0(")), then we define the trace of f by

(2.5) Tr(f) := f + "1−
k
2 (f |k W (")) | U("),

where W (") :=

(
0 −1
" 0

)
. We record basic properties of the operators under con-

sideration; see, for example, [7] and [23]. We refer to (1.8) and (1.9) for definitions
of the operators X(") and Y (").

Lemma 2.1. Let " ≥ 5 be prime, and let k ∈ Z.

(1) Let j ≥ 0, and suppose that f(z) ∈ M !
k(Γ0("j)). Then we have

f(z) | U("), f(z) | D(") ∈
{

M !
k(Γ0(")), j ∈ {0, 1},

M !
k(Γ0("j−1)), j ≥ 2;

f(z) | X("), f(z) | Y (") ∈
{

M !
k(Γ0(")), j ∈ {0, 1, 2},

M !
k(Γ0("j−2)), j ≥ 3;

f(z) | V (") ∈ M !
k(Γ0("

j+1)).

(2) Let N ≥ 1, let f(z) ∈ M !
k(Γ0(N)), and suppose that " ! N . Then we have

f(z) | T (", k) ∈ M !
k(Γ0(N)).

(3) Suppose that f(z) ∈ M !
k(Γ0(")). Then we have f |k W (") ∈ M !

k(Γ0(")) and
Tr(f) ∈ M !

k.
(4) Suppose that f(z) ∈ M !

k. Then we have f |k W (") = "k/2f | V (") ∈
M !

k(Γ0(")).

Next, we state the modular transformation law for the eta-function (1.4). For

γ =

(
a b
c d

)
∈ SL2(Z), there exists a 24-th root of unity εa,b,c,d for which

(2.6) η

(
az + b

cz + d

)
= εa,b,c,d(cz + d)1/2η(z).

We always take the branch of the square root having non-negative real part. Let
ζ24 = e2πi/24. Special cases of the transformation law include

(2.7) η(z + 1) = ζ24η(z), η

(
−1

z

)
=

√
z

i
· η(z).

Further modular forms that play a central role in our work are given as follows:
For k ≥ 4 and even, we have

Ek(z) := 1 − 2k

Bk

∞∑

n=1

∑

d|n

dk−1qn ∈ Mk,

where Bk is the kth Bernoulli number. The Ramanujan Delta-function is given by

∆(z) := η(z)24 ∈ S12.
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2176 MATTHEW BOYLAN AND JOHN J. WEBB

We also define, for primes " ≥ 5,

(2.8) A!(z) :=
η(z)!

η("z)
= 1 + · · · ∈ M !−1

2
(Γ1(")) ∩ Z[[q]].

We note that A!(z)2 ∈ M!−1(Γ0(")) ∩ Z[[q]].

2.2. Modular forms modulo prime powers. Let " ≥ 5 be prime, and let Z(!)

denote the localization of Z at ". We first consider modular forms with coefficients
in Z(!) reduced modulo "; for details, see [22] and [24]. Let k ≥ 4 be even, and let
f(z) ∈ Mk ∩Z(!)[[q]]. The filtration of f(z) ∈ Mk ∩Z(!)[[q]] with f(z) !≡ 0 (mod ")
is defined by

w!(f) := inf{k′ : there exists g ∈ Mk′ ∩ Z[[q]] with f ≡ g (mod ")}.

If f(z) ≡ 0 (mod "), then we set w!(f) := −∞. For f1(z) ∈ Mk1 and f2(z) ∈ Mk2

with k1 ≡ k2 (mod "− 1) and "-integral coefficients, we have

(2.9) w!(f1 + f2) ≤ max{w!(f1), w!(f2)};

equality holds if w!(f1) != w!(f2). A lemma of Serre (Lemme 2 of [23]) describes
how U(") affects filtration.

Lemma 2.2. Let " ≥ 5 be prime, and let f(z) ∈ Mk ∩ Z(!)[[q]].

(1) We have

w!(f | U(")) ≤ " +
w!(f) − 1

"
.

(2) Suppose that w!(f) = "− 1. Then we have w!(f | U(")) = "− 1.

We also observe that

(2.10) Φ!(z) ≡ ∆(z)
!2−1
24 (mod ").

We now turn to facts on modular forms with coefficients in Z(!) reduced modulo
"j with j ≥ 1; for details, see [23]. In view of (2.4) and Lemma 2.1 (2), we have
the following.

Proposition 2.3. Let k ≥ 1, and let f(z) ∈ M !
k ∩ Z(!)((q)).

(1) We have f(z) | T (", k) ≡ f(z) | U(") (mod "k−1).
(2) The operator U(") stabilizes M !

k ∩ Z(!)((q)) modulo "k−1.

We next give a useful fact on congruences for power series modulo powers of " which
follows by induction using Fermat’s Little Theorem.

Lemma 2.4. Suppose that f(z) ∈ Z(!)[[q]] has f(z) ≡ 1 (mod "). Then for all

j ≥ 1, we have f(z)!
j−1 ≡ 1 (mod "j).

When " ≥ 5 is prime, properties of Bernoulli numbers imply that E!−1(z) ∈ Z(!)[[q]]
and that E!−1(z) ≡ 1 (mod "); Fermat’s Little Theorem implies that A!(z)2 ≡ 1
(mod "). Therefore, we may apply Lemma 2.4 to these forms.

Proposition 2.5. For all j ≥ 1, we have

E!−1(z)!
j−1

≡ 1 (mod "j), A!(z)2!
j−1

≡ 1 (mod "j).
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To prove our results, we carefully keep track of the largest power of " dividing all
coefficients of series in Z(!)((q)). For this purpose, we define v! on Q by

v!
(m

n

)
:= ord!(m) − ord!(n),

and we set v!(0) := ∞. Our definition extends to f(z) =
∑

a(n)qn ∈ Z(!)((q)) by

(2.11) v!(f) := inf{n : v!(a(n))}.

With f(z), g(z) ∈ Z(!)((q)), we have

(2.12) v!(f + g) ≥ min {v!(f), v!(g)} ;

equality holds if v!(f) != v!(g).

3. Two lemmas

The proofs of our results rest on two lemmas, which we prove in this section.
The first lemma asserts, subject to certain hypotheses, that the operator D(") (as
in (1.7)) stabilizes the space M!k−1(!−1) ∩ Z[[q]] with coefficients reduced modulo

"k.

Lemma 3.1. Let " ≥ 5 be prime, let n ≥ 1, and let Ψ(z) ∈ Z(!)[[q]]. Suppose,
for all 1 ≤ k ≤ n, that there exists gk(z) ∈ M!k−1(!−1) ∩ Z[[q]] with Ψ(z) ≡ gk(z)

(mod "k). Then for all 1 ≤ k ≤ n, there exists hk(z) ∈ S!k−1(!−1) ∩ Z[[q]] with
Ψ(z) | D(") ≡ hk(z) (mod "k).

Proof. Suppose that k = 1 and " ≥ 7. Using (1.7) and (2.10), we compute

Ψ(z) | D(") ≡ g1(z) | D(") ≡ (g1(z)Φ!(z)) | U(") ≡
(
g1(z)∆(z)

!2−1
24

)
| U(")

(mod ").

Since " ≥ 7, g1(z) ∈ M!−1, and ∆(z)
!2−1
24 ∈ S !2−1

2

, an application of Lemma 2.2

gives

w!

((
g1(z)∆(z)

!2−1
24

)
| U(")

)
≤ " +

"− 1 + !2−1
2 − 1

"
(3.1)

= ("− 1)

(
1 +

" + 5

2"

)
< 2("− 1).

It follows that there exists h1(z) ∈ S!−1 with Ψ(z) | D(") ≡ h1(z) (mod "). If k = 1
and " = 5, Proposition 2.5 implies that the form g1(z) ∈ M4 ∩ Z[[q]] ⊆ CE4(z) is
congruent modulo 5 to a constant c ∈ Z. From (1.7) and (2.10), we compute
g1(z) | D(5) ≡ c∆(z) | U(5) ≡ 0 (mod 5).

Now, we suppose that k ≥ 2. We have the following congruence of modular
forms in M!k−1(!−1) ∩ Z(!)[[q]] modulo "k:

Ψ(z) | D(") ≡ gk(z) | D(") ≡
(

gk−1(z)

A!(z)2!k−2 · E!−1(z)!
k−1

)
| D(")

+

(
gk−1(z)E!−1(z)!

k−2(!−1) − gk−1(z)

A!(z)2!k−2 · E!−1(z)!
k−1

)
| D(")(3.2)

+
(
gk(z) − gk−1(z)E!−1(z)!

k−2(!−1)
)

| D(") (mod "k).

We closely examine each summand.
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In view of Proposition 2.5, the first summand simplifies as
(

gk−1(z)

A!(z)2!k−2 · E!−1(z)!
k−1

)
| D(") ≡ gk−1(z)

A!(z)2!k−2 | D(") (mod "k).

From (2.8) and Lemma 2.1, we observe that

(3.3)
gk−1(z)

A!(z)2!k−2 | D(") ∈ M !
0(Γ0(")) ∩ Z[[q]].

We prove the following proposition.

Proposition 3.2. The form (3.3) is congruent modulo "k to a form in S!k−1(!−1)∩
Z[[q]].

Proof. The proof follows Serre’s argument for Théorème 10 in [23]. To begin, we
define

(3.4) h(z) := E!−1(z) − "!−1E!−1(z) | V (") ∈ M!−1(Γ0(")) ∩ Z(!)[[q]].

By Proposition 2.5, we see that h(z) ≡ 1 (mod "), and hence, from Lemma 2.4 that

h(z)!
k−1 ≡ 1 (mod "k). Therefore, we have

gk−1(z)

A!(z)2!k−2 | D(") ≡
(

gk−1(z)

A!(z)2!k−2 | D(")

)
h(z)!

k−1

(mod "k);

(3.3) and (3.4) imply that the form on the right side is in M !
!k−1(!−1)(Γ0("))∩Z(!)[[q]].

Using Lemma 2.1 (3), we note that

Tr

((
gk−1(z)

A!(z)2!k−2 | D(")

)
h(z)!

k−1

)

is on SL2(Z) with weight "k−1("− 1). Hence, it suffices to show that

gk−1(z)

A!(z)2!k−2 | D(") ≡ Tr

((
gk−1(z)

A!(z)2!k−2 | D(")

)
h(z)!

k−1

)
(mod "k).

With v! as in (2.11), Lemme 9 of [23] implies that

v!

(
Tr

((
gk−1(z)

A!(z)2!k−2 | D(")

)
h(z)!

k−1

)
− gk−1(z)

A!(z)2!k−2 | D(")

)

≥ min

(
k + v!

(
gk−1(z)

A!(z)2!k−2 | D(")

)
, "k−1 + 1 + v!

(
gk−1(z)

A!(z)2!k−2 | D(") |0 W (")

))
.

Since
gk−1(z)

A!(z)2!k−2 | D(") has integer coefficients, we have v!

(
gk−1(z)

A!(z)2!k−2 | D(")

)
≥

0; as such, we show that

(3.5) "k−1 + 1 + v!

(
gk−1(z)

A!(z)2!k−2 | D(") |0 W (")

)
≥ k.

We turn to the computation of
gk−1(z)

A!(z)2!k−2 | D(") |0 W ("). Let 1 ≤ j ≤ " − 1.

We first observe that there exists −(" − 1) ≤ j′ ≤ −1 with jj′ ≡ 1 (mod "). Let

bj := jj′−1
! . Then we have jj′ − bj" = 1, so

(
j bj

" j′

)
∈ Γ0("). Furthermore, we
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have

(3.6)

(
1 j
0 "

)(
0 −1
" 0

)
=

(
j" −1
"2 0

)
=

(
j bj

" j′

)(
" −j′

0 "

)
.

For 1 ≤ j ≤ "− 1, we use (2.1) and (3.6) to obtain

gk−1 |!k−2(!−1)

((
1 j
0 "

)(
0 −1
" 0

))

= gk−1 |!k−2(!−1)

((
j bj

" j′

)(
" −j′

0 "

))

= gk−1(z) |!k−2(!−1)

(
" −j′

0 "

)

= ("2)!
k−2(!−1)/2"−!k−2(!−1)gk−1

(
z − j′

"

)

= gk−1

(
z − j′

"

)
.

Using (1.5), (2.1), (2.6), (2.7), (2.8), and (3.6), we find that

A2!k−2

! |!k−2(!−1)

((
1 j
0 "

)(
0 −1
" 0

))
= A!

(
z − j′

"

)2!k−2

=




η
(
z − j′

!

)!

η("z − j′)





2!k−2

=



ζj′

24 ·
η
(
z − j′

!

)!

η("z)





2!k−2

(3.7)

and that

Φ! |0
((

1 j
0 "

)(
0 −1
" 0

))

= Φ!

(
j"z − 1

"2z

)
=

η
(
"2

(
j!z−1
!2z

))

η
(

j!z−1
!2z

) =
η
(
− 1

z + j"
)

η

((
1 j
0 "

)(
0 −1
" 0

)
z

)

=
ζj!
24 · η

(
− 1

z

)

η

((
j bj

" j′

)(
" −j′

0 "

)
z

)

=
ζj!
24

(
z
i

)1/2
η(z)

εj,bj ,!,j′

(
"

(
" −j′

0 "

)
z + j′

)1/2

η

((
" −j′

0 "

)
z

)

=
ζj!
24

(
z
i

)1/2
η(z)

εj,bj ,!,j′("z)1/2η
(
z − j′

!

) =
ζ!j24(−i)1/2

εj,bj ,!,j′
· η(z)

"1/2η
(
z − j′

!

) .(3.8)

Licensed to Univ of South Carolina. Prepared on Mon Sep 23 17:09:14 EDT 2013 for download from IP 129.252.2.100.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



2180 MATTHEW BOYLAN AND JOHN J. WEBB

Next, we observe that

(3.9)

(
0 −1
" 0

)(
" 0
0 1

)
=

(
0 −1
"2 0

)
=

(
1 0
0 "

)(
0 −1
" 0

)
.

Using (2.1), (2.3), Lemma 2.1 (4), and (3.9), we obtain

gk−1 |!k−2(!−1)

((
1 0
0 "

)(
0 −1
" 0

))
(3.10)

= gk−1 |!k−2(!−1)

((
0 −1
" 0

)(
" 0
0 1

))

= gk−1 |!k−2(!−1) W (") |!k−2(!−1)

(
" 0
0 1

)

= "!
k−2(!−1)/2gk−1 |!k−2(!−1) W (") | V (")

= "!
k−2(!−1)gk−1(z) | V ("2) = "!

k−2(!−1)gk−1("
2z);

using (2.1), (2.7), (2.8), and (3.9), we obtain

A2!k−2

! |!k−2(!−1)

((
1 0
0 "

)(
0 −1
" 0

))
(3.11)

= A2!k−2

! |!k−2(!−1)

(
0 −1
"2 0

)

= "−!k−2(!−1)z−!k−2(!−1)A!

(
− 1

"2z

)2!k−2

= "−!k−2(!−1)z−!k−2(!−1)

(
η
(−1
!2z

)!

η
(−1

!z

)
)2!k−2

= "−!k−2(!−1)z−!k−2(!−1)

(
"!( z

i )
!/2η("2z)!

"1/2( z
i )

1/2η("z)

)2!k−2

= "!
k−1

i−!k−2(!−1)

(
η("2z)!

η("z)

)2!k−2

.

We deduce from (1.5), (2.1), (2.7), and (3.9) that

Φ!(z) |0
((

1 0
0 "

)(
0 −1
" 0

))
= Φ!(z) |0

(
0 −1
"2 0

)
= Φ!

(
− 1

"2z

)
=

η
(
− 1

z

)

η
(
− 1

!2z

)

=

(
z
i

)1/2
η(z)

(
!2z
i

)1/2
η("2z)

=
1

"Φ!(z)
.(3.12)
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Inserting (3.6)–(3.12) into (2.2), we obtain

(
gk−1(z)

A!(z)2!k−2 · Φ!(z)

)
| U(") |0 W (")

=
1

"

!−1∑

j=0

(
gk−1

A2!k−2

!

· Φ!

)
|0

((
1 j
0 "

)(
0 −1
" 0

))

=
1

"

(
gk−1

A2!k−2

!

· Φ!

)
|0

((
1 0
0 "

)(
0 −1
" 0

))

+
1

"

!−1∑

j=1

(
gk−1

A2!k−2

!

· Φ!

)
|0

((
1 j
0 "

)(
0 −1
" 0

))

=
1

"

(
gk−1 |!k−2(!−1)

(
0 −1
"2 0

))

·
(

A2!k−2

! |!k−2(!−1)

(
0 −1
"2 0

))−1

·
(
Φ! |0

(
0 −1
"2 0

))

+
1

"

!−1∑

j=1



gk−1

(
z − j′

"

)
·



ζj′

24

η("z)

η
(
z − j′

!

)!





2!k−2

·
(
ζ!j24(−i)1/2

εj,bj ,!,j′

)
· η(z)

"1/2η
(
z − j′

!

)





=
1

"

(
"!

k−2(!−1)gk−1("
2z) · "−!k−1

i!
k−2(!−1)

(
η("z)

η("2z)!

)2!k−2

· 1

"Φ!(z)

)

+
1

"

!−1∑

j=1



gk−1

(
z − j′

"

)
·



ζj′

24

η("z)

η
(
z − j′

!

)!





2!k−2

·
(
ζ!j24(−i)1/2

εj,bj ,!,j′

)
· η(z)

"1/2η
(
z − j′

!

)





=
i!

k−2(!−1)

"!k−2+2
· gk−1("2z)η("z)

η("2z)!Φ!(z)

+
(−i)1/2η("z)2!

k−2
η(z)

"3/2
·
!−1∑

j=1




ζ2j′!k−2+!j
24

εj,bj ,!,j′




gk−1

(
z − j′

!

)

η
(
z − j′

!

)2!k−1+1







 .

Thus, we conclude that

(3.13) v!

(
gk−1(z)

A!(z)2!k−2 | D(") |0 W (")

)
≥ −"k−2 − 2,
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from which it follows, for " ≥ 5 and k ≥ 2, that

"k−1 + 1 + v!

(
gk−1(z)

A!(z)2!k−2 | D(") |0 W (")

)

≥ "k−1 − "k−2 − 1 = "k−2("− 1) − 1 ≥ k.

Hence, we complete the verification of (3.5):

gk−1(z)

A!(z)2!k−2 | D(") ≡ Tr

((
gk−1(z)

A!(z)2!k−2 | D(")

)
· h(z)!

k−1

)
(mod "k).

By examining the q-expansion (we omit the details), we see that

rk,!(z) := Tr

((
gk−1(z)

A!(z)2!k−2 | D(")

)
· h(z)!

k−1

)
∈ S!k−1(!−1)

satisfies the conclusion of the proposition. !

We simplify the second summand in (3.2) as follows:
(

gk−1(z)E!−1(z)!
k−2(!−1) − gk−1(z)

A!(z)2!k−2 · E!−1(z)!
k−1

)
| D(")

=

(
E!−1(z)!

k−2(!−1) ·
(

gk−1(z) − gk−1(z)

A!(z)2!k−2 · E!−1(z)!
k−2

))
| D(").

Using Proposition 2.5, we observe that

(3.14) Bk,!(z) := gk−1(z) − gk−1(z)

A!(z)2!k−2 · E!−1(z)!
k−2

≡ 0 (mod "k−1)

and that E!−1(z)!
k−2(!−1) ≡ 1 (mod "). We conclude that

E!−1(z)!
k−2(!−1) · Bk,!(z)

"k−1
≡ Bk,!(z)

"k−1
(mod ").

Multiplying by "k−1 gives

E!−1(z)!
k−2(!−1) · Bk,!(z) ≡ Bk,!(z) (mod "k).

Therefore, the second summand in (3.2) modulo "k is

(3.15) Bk,!(z) | D(") ∈ M !
!k−2(!−1)(Γ0(")) ∩ Z(!)[[q]].

Proposition 3.3. The form (3.15) is congruent modulo "k to a form in S!k−1(!−1)∩
Z[[q]].

Remark. The proof shows that the weight can be taken to be "k−2("− 1) + !2−1
2 .

Proof. In view of (1.7), (2.10), (3.14), and Proposition 2.5, we have

Bk,!(z)

"k−1
| D(") =

(
Bk,!(z)

"k−1
· Φ!(z)

)
| U(") ≡

(
Bk,!(z)

"k−1
· ∆(z)

!2−1
24

)
| U(")

≡
(

Bk,!(z)

"k−1
· ∆(z)

!2−1
24

)
| U(") · E!−1(z)!

k−2(!−1)− !+1
2 (mod ").

Multiplying by "k−1 yields

Bk,!(z) | D(") ≡
(
Bk,!(z) · ∆(z)

!2−1
24

)
| U(") · E!−1(z)!

k−2(!−1)− !+1
2 (mod "k).
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This form lies in M !
!k−1(!−1)(Γ0(")). It remains to show that

(
Bk,!(z) · ∆(z)

!2−1
24

)
| U(")

=

((
gk−1(z) − gk−1(z)

A!(z)2!k−2 · E!−1(z)!
k−2

)
· ∆(z)

!2−1
24

)
| U(")

is congruent modulo "k to a cusp form on SL2(Z). Since gk−1(z)∆(z)
!2−1
24 ∈

S
!k−2(!−1)+ !2−1

2

and "k−2(" − 1) + !2−1
2 − 1 ≥ k, we see from Proposition 2.3 that

gk−1(z)∆(z)
!2−1
24 | U(") is congruent modulo "k to a form in the same space. There-

fore, it suffices to show that
(

gk−1(z)

A!(z)2!k−2 · E!−1(z)!
k−2

∆(z)
!2−1
24

)
| U(")

is congruent modulo "k to a form in S
!k−2(!−1)+ !2−1

2

. For convenience, we define

Ck,!(z) :=
gk−1(z)

A!(z)2!k−2 · E!−1(z)!
k−2

∆(z)
!2−1
24 ∈ M !

!k−2(!−1)+ !2−1
2

(Γ0(")).

Using the trace (2.5), we study

"
!k−2(!−1)+ !2−1

2
2 −1Tr

(
Ck,! |

!k−2(!−1)+ !2−1
2

W (")
)

= Ck,!(z) | U(") + "
!k−2(!−1)+ !2−1

2
2 −1Ck,! |

!k−2(!−1)+ !2−1
2

W (").

By Lemma 2.1 (3), this form is on SL2(Z). Therefore, we show that

(3.16) "
!k−2(!−1)+ !2−1

2
2 −1Ck,! |

!k−2(!−1)+ !2−1
2

W (") ≡ 0 (mod "k).

Employing (2.3) and Lemma 2.1 (4), we obtain
(
gk−1E

!k−2

!−1 ∆
!2−1
24

)
|
2!k−2(!−1)+ !2−1

2

W (")

= "
2!k−2(!−1)+ !2−1

2
2

(
gk−1(z)E!−1(z)!

k−2

∆(z)
!2−1
24

)
| V (")

= "!
k−2(!−1)+ !2−1

4 gk−1("z)E!−1("z)!
k−2

∆("z)
!2−1
24 .(3.17)

Next, we use (2.1), (2.7), and (2.8) to compute A2!k−2

! |!k−2(!−1) W ("):

A2!k−2

! |!k−2(!−1) W (") = "−
!k−2(!−1)

2 z−!k−2(!−1)

(
η
(−1

!z

)!

η
(
− 1

z

)
)2!k−2

= "−
!k−2(!−1)

2 z−!k−2(!−1)




(
!z
i

) !
2

(
z
i

) 1
2

· η("z)!

η(z)




2!k−2

= "
!k−1+!k−2

2 i!
k−2(!−1)

(
η("z)!

η(z)

)2!k−2

.(3.18)
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We substitute (3.17) and (3.18) to show that

"
!k−2(!−1)+ !2−1

2
2 −1Ck,! |

!k−2(!−1)+ !2−1
2

W (")

=
"

!k−2(!−1)
2 + !2−1

4 −1+!k−2(!−1)+ !2−1
4 gk−1("z)E!−1("z)!

k−2

∆(z)
!2−1
24

"
!k−1+!k−2

2 i!k−2(!−1)
(

η(!z)!

η(z)

)2!k−1

= "!
k−2(!−2)+ !2−1

2 −1i!
k−2(!−1) · gk−1("z)E!−1("z)!

k−2

∆("z)
!2−1
24

(
η(!z)!

η(z)

)2!k−1 .

We recall that gk−1(z), E!−1(z), ∆(z), and η(!z)!

η(z) ∈ Z(!)[[q]]. It follows, for all k ≥ 2
and all primes " ≥ 5, that

v!

(
"

!k−2(!−1)+ !2−1
2

2 −1Ck,! |
!k−2(!−1)+ !2−1

2

W (")

)

≥ "k−2("− 2) +
"2 − 1

2
− 1 ≥ 3"k−2 ≥ k,

which verifies (3.16), and with it, the proposition. !
We now turn to the third summand in (3.2). Using Proposition 2.5 and the

hypothesis that gk(z) ≡ gk−1(z) (mod "k−1), we find that

(3.19) Fk,!(z) := gk(z) − gk−1(z)E!−1(z)!
k−2(!−1) ≡ 0 (mod "k−1).

We prove the following proposition.

Proposition 3.4. The form Fk,!(z) | D(") is congruent modulo "k to a form in
S!k−1(!−1) ∩ Z[[q]].

Remark. The proof shows that the weight can be taken to be ("k−2 + 1)("− 1).

Proof. From (1.7), (2.10), and (3.19), we deduce that

Fk,!(z)

"k−1
| D(") ≡

(
Fk,!(z)

"k−1
· ∆(z)

!2−1
24

)
| U(") (mod "),

and we observe that Fk,!(z)
!k−1 ·∆(z)

!2−1
24 ∈ S

!k−1(!−1)+ !2−1
2

∩ Z(!)[[q]]. Since " ≥ 5, an

application of Lemma 2.2 (1) yields

w!

((
Fk,!(z)

"k−1
· ∆(z)

!2−1
24

)
| U(")

)

≤ " +
"k−1("− 1) + !2−1

2 − 1

"

= ("− 1)

(
"k−2 + 1 +

" + 3

2"

)
< ("− 1)("k−2 + 2).(3.20)

From (3.20) and Proposition 2.5, we see that there exists fk,!(z) ∈ S(!k−2+1)(!−1)

with
(3.21)(

Fk,!(z)

"k−1
· ∆(z)

!2−1
24

)
| U(") ≡ fk,!(z) ≡ fk,!(z)E!−1(z)!

k−2(!−1)−1 (mod ").
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Multiplying by "k−1 produces
(
Fk,!(z) · ∆(z)

!2−1
24

)
| U(") ≡ "k−1fk,!(z)E!−1(z)!

k−2(!−1)−1 (mod "k),

and we note that fk,!(z)E!−1(z)!
k−2(!−1)−1 ∈ S!k−1(!−1) ∩ Z[[q]]. !

Lemma 3.1 now follows from Propositions 3.2, 3.3, and 3.4. !

Corollary 3.5. Let " ≥ 5 be prime, let k ≥ 1, and let b ≥ 0. Then there exists
fk(b; z) ∈ M!k−1(!−1) ∩ Z(!)[[q]] with L!(b; z) ≡ fk(b; z) (mod "k).

Proof. We proceed by induction on b. Let b = 0; for all k ≥ 1, Proposition 2.5 gives

L!(0; z) = 1 ≡ E!−1(z)!
k−1

(mod "k).

For the induction step, let b ≥ 0 be a fixed even integer, and suppose, for all k ≥ 1,
that there exists fk(b; z) ∈ M!k−1(!−1) ∩ Z(!)[[q]] with L!(b; z) ≡ fk(b; z) (mod "k).
In particular, the form L!(b; z) satisfies the hypotheses of Lemma 3.1. For all k ≥ 1,
the lemma now implies that there exists hk(b; z) ∈ M!k−1(!−1) with

L!(b + 1; z) = L!(b; z) | D(") ≡ hk(b; z) (mod "k).

In this way, we satisfy the conclusion of the corollary for index b + 1 with
fk(b + 1; z) := hk(b; z). Next, we observe, for all k ≥ 1 and primes " ≥ 5,
that "k−1("− 1) − 1 ≥ k. It follows from Proposition 2.3 that

L!(b+2; z) = L!(b+1; z) | U(") ≡ fk(b+1; z) | U(") ≡ fk(b+1; z) | T (", "k−1("−1))

(mod "k).

Part (2) of Lemma 2.1 implies that fk(b + 2; z) := fk(b + 1; z) | T (", "k−1(" − 1))
satisfies the conclusion of the corollary for index b + 2. !

Remark. Let " ≥ 5 be prime, let m ≥ 1, and let M(", m) denote the Z/"mZ-module
of modular forms in M!m−1(!−1) ∩ Z(!)[[q]] with coefficients reduced modulo "m.
Corollary 3.5 implies the following nesting of Z/"mZ-modules:

M(", m) ⊇ Λeven
! (0, m) ⊇ Λeven

! (2, m) ⊇ · · · ⊇ Λeven
! (2b, m) ⊇ · · · ,

M(", m) ⊇ Λodd
! (1, m) ⊇ Λodd

! (3, m) ⊇ · · · ⊇ Λodd
! (2b + 1, m) ⊇ · · · .

Since M(", m) has finite size, these sequences must stabilize as the finite-rank mod-
ules Ωeven

! (m) (respectively, Ωodd
! (m)), as asserted in Theorem 1.4. In Section 4,

we exhibit injections into S!−1 to show that the ranks are bounded independently
of m.

Our second main lemma of this section asserts, subject to certain hypotheses,
that the operator Y (") (as in (1.9)) contracts the weight of a form in M!j−1(!−1) ∩
Z[[q]] with coefficients reduced modulo "j .

Lemma 3.6. Let " ≥ 5 be prime, let n ≥ 1, and let Υ(z) ∈ Z(!)[[q]]. Suppose,
for all 1 ≤ j ≤ n that there exists gj(z) ∈ M!j−1(!−1) ∩ Z[[q]] with Υ(z) ≡ gj(z)
(mod "j). Suppose further that Υ(z) | D(") ≡ 0 (mod "). Then for all 2 ≤ j ≤ n,
there exists hj(z) ∈ S!j−2(!−1) ∩ Z[[q]] with Υ(z) | Y (") ≡ hj(z) (mod "j).
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Proof. Suppose that j = 2 and " = 5. Theorem 3.1 implies that g2(z) | D(5) is
congruent modulo 25 to a form in S20 ∩ Z(5)[[q]] ⊆ C∆(z)E4(z)2. By hypothesis,
we have g2(z) | D(5) ≡ g1(z) | D(5) ≡ 0 (mod 5). From these facts, we find that
there exists c ∈ Z with

g2(z) | D(5) ≡ 5c∆(z)E4(z)2 (mod 25).

Dividing by 5 yields

g2(z) | D(5)

5
≡ c∆(z)E4(z)2 ≡ c∆(z) (mod 5).

We apply U(5) and observe that ∆(z) | U(5) ≡ 0 (mod 5) to obtain
(

g2(z) | D(5)

5

)
| U(5) ≡ c∆(z) | U(5) ≡ 0 (mod 5).

To conclude, we multiply by 5, giving

g2(z) | Y (5) = g2(z) | D(5) | U(5) ≡ 0 (mod 25).

Now, we suppose that j ≥ 2 and " ≥ 5 excepting (j, ") = (2, 5). We decompose
Υ(z) | Y (") using modular forms in M!j−1(!−1) ∩Z(!)[[q]], as in the proof of Lemma
3.1:

Υ(z) | Y (") ≡
(

gj−1(z)

A!(z)2!j−2 · E!−1(z)!
j−1

)
| Y (")

+

(
gj−1(z)E!−1(z)!

j−2(!−1) − gj−1(z)

A!(z)2!j−2 · E!−1(z)!
j−1

)
| Y (")(3.22)

+
(
gj(z) − gj−1(z)E!−1(z)!

j−2(!−1)
)

| Y (") (mod "j).

We study each summand in turn.
In view of Proposition 2.5 and (1.9), the first summand is
(

gj−1(z)

A!(z)2!j−2 · E!−1(z)!
j−1

)
| Y (") ≡ gj−1(z)

A!(z)2!j−2 | Y (")

≡ gj−1(z)

A!(z)2!j−2 | D(") | U(") (mod "j).

Since j ≥ 2, Proposition 2.5 and the hypotheses of the lemma imply that

Υ(z) | D(") ≡ gj−1(z)

A!(z)2!j−2 | D(") ≡ 0 (mod ").

Using Proposition 2.5 again, we have
(3.23)

1

"

(
gj−1(z)

A!(z)2!j−2 | D(")

)
≡ 1

"

(
gj−1(z)

A!(z)2!j−2 | D(")

)
E!−1(z)!

j−2

(mod "j−1).

We define

Gj,!(z) :=

(
gj−1(z)

A!(z)2!j−2 | D(")

)
E!−1(z)!

j−2

∈ M !
!j−2(!−1)(Γ0(")) ∩ Z(!)[[q]].

Multiplying by " and applying U(") in (3.23) gives

(3.24)
gj−1(z)

A!(z)2!j−2 | Y (") ≡ Gj,!(z) | U(") (mod "j).
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Proposition 3.7. The form (3.24) is congruent modulo "j to a form in S!j−2(!−1)∩
Z[[q]].

Proof. Using (2.5), we consider

"
!j−2(!−1)

2 −1Tr
(
Gj,! |!j−2(!−1) W (")

)

= Gj,!(z) | U(") + "
!j−2(!−1)

2 −1Gj,! |!j−2(!−1) W (").

From Lemma 2.1 (3), we see that this form is on SL2(Z). Therefore, we show that

(3.25) "
!j−2(!−1)

2 −1Gj,! |!j−2(!−1) W (") ≡ 0 (mod "j).

Since E!−1(z) is on SL2(Z), Lemma 2.1 (4) yields

E!j−2

!−1 |!j−2(!−1) W (") = "
!j−2(!−1)

2 E!−1(z)!
j−2

| V (").

Using (3.13), we conclude for all j ≥ 2 and all primes " ≥ 5 excepting (j, ") = (2, 5)
that

v!

(
"

!j−2(!−1)
2 −1Gj,! |!j−2(!−1) W (")

)

=
"j−2("− 1)

2
− 1 + v!

(
gj−1(z)

A!(z)2!j−2 | D(") |0 W (")

)
+ v!

(
E!j−2

!−1 |!j−2(!−1) W (")
)

≥ "j−2("− 1)

2
− 1 − "j−2 − 2 +

"j−2("− 1)

2
= "j−2("− 2) − 3 ≥ j.

Therefore, (3.25) holds, and the first summand in (3.22) is congruent to a form on
SL2(Z) of weight "j−2("−1). An examination of its q-series reveals that it is a cusp
form (we omit the details). !

The second summand simplifies as
(

gj−1(z)E!−1(z)!
j−2(!−1) − gj−1(z)

A!(z)2!j−2 · E!−1(z)!
j−1

)
| Y (")

≡
(

gj−1(z) − gj−1(z)

A!(z)2!j−2 · E!−1(z)!
j−2

)
| Y (") (mod "j).

As in (3.14), we have

(3.26) Bj,!(z) := gj−1(z) − gj−1(z)

A!(z)2!j−2 · E!−1(z)!
j−2

≡ 0 (mod "j−1).

Proposition 3.8. The form Bj,!(z) | Y (") is congruent modulo "j to a form in
S!j−2(!−1) ∩ Z[[q]].

Remark. The weight can be taken to be ("j−3 + 1)("− 1) if j ≥ 3.

Proof. From Proposition 3.3, we find that there exists fj,!(z) ∈ S
!j−2(!−1)+ !2−1

2

∩
Z[[q]] with

(
Bj,!(z) · ∆(z)

!2−1
24

)
| U(") ≡ fj,!(z) (mod "j).

Using (1.9), (2.10), and (3.26) we deduce that

Bj,!(z)

"j−1
| Y (") ≡

(
Bj,!(z)

"j−1
· ∆(z)

!2−1
24

)
| U(") | U(") ≡ fj,!(z)

"j−1
| U(") (mod ").
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For j ≥ 3, Lemma 2.2 yields

w!

(
fj,!(z)

"j−1
| U(")

)
≤ " +

"j−2("− 1) + !2−1
2 − 1

"

= ("− 1)

(
"j−3 + 1 +

" + 3

2"

)
< ("− 1)("j−3 + 2).

In view of the calculation (3.1) for j = 2, we find for " ≥ 5 and j ≥ 2, that there
exists

tj,!(z) ∈
{

S!−1, j = 2,

S(!j−3+1)(!−1), j ≥ 3,

for which

Bj,!(z)

"j−1
| Y (") ≡ fj,!(z)

"j−1
| U(") ≡

{
tj,!(z), j = 2,

tj,!(z)E!−1(z)!
j−3(!−1)−1, j ≥ 3

(mod ").

The forms on the right side lie in S!j−2(!−1). Multiplying by "j−1, we have

Bj,!(z) | Y (") ≡
{
"j−1tj,!(z), j = 2,

"j−1tj,!(z)E!−1(z)!
j−3(!−1)−1, j ≥ 3

(mod "j).

Therefore, the second summand in (3.22) is congruent modulo "j to a form in
S!j−2(!−1). !

For the third summand, we use work from the proof of Proposition 3.4. As in
(3.19), we have

(3.27) Fj,!(z) := gj(z) − gj−1(z)E!−1(z)!
j−2(!−1) ≡ 0 (mod "j−1).

Proposition 3.9. The form Fj,!(z) | Y (") is congruent modulo "j to a form in
S!j−2(!−1) ∩ Z[[q]].

Remark. The weight can be taken to be ("j−3 + 1)("− 1) if j ≥ 3.

Proof. From (1.7), (2.10), (3.21), and (3.27), we see that

Fj,!(z)

"j−1
| D(") ≡

(
Fj,!(z)

"j−1
· ∆(z)

!2−1
24

)
| U(") (mod ")

is congruent modulo " to a form in S(!j−2+1)(!−1). With " ≥ 5 and j = 2, Lemma
2.2 gives

w!

((
F2,!(z)

"
· ∆(z)

!2−1
24

)
| U(") | U(")

)

≤ " +
2("− 1) − 1

"
= ("− 1)

(
1 +

3

"

)
< 2("− 1).

For j ≥ 3, Lemma 2.2 implies that

w!

((
Fj,!(z)

"j−1
· ∆(z)

!2−1
24

)
| U(") | U(")

)

≤ " +

(
"j−2 + 1

)
("− 1) − 1

"

= ("− 1)

(
"j−3 + 1 +

2

"

)
< ("− 1)

(
"j−3 + 2

)
.
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Hence, for " ≥ 5 and j ≥ 2, there exists

sj,!(z) ∈
{

S!−1, j = 2,

S(!j−3+1)(!−1), j ≥ 3,

for which
Fj,!(z)

"j−1
| Y (") ≡

(
Fj,!(z)

"j−1
· ∆(z)

!2−1
24

)
| U(") | U(")

≡
{

sj,!(z), j = 2,

sj,!(z)E!−1(z)!
j−3(!−1)−1, j ≥ 3

(mod ").

The forms on the right side lie in S!j−2(!−1). Multiplying by "j−1, we obtain

Fj,!(z) | Y (") ≡
{
"j−1sj,!(z), j = 2,

"j−1sj,!(z)E!−1(z)!
j−3(!−1)−1, j ≥ 3

(mod "j).

We deduce that the third summand in (3.22) is congruent modulo "j to a form in
S!j−2(!−1). !
Lemma 3.6 follows from Proposition 3.7, Proposition 3.8, and Proposition 3.9. !

4. The modules Λ!(b, m) and Ω!(m)

4.1. Module structure of Ωodd
! (m) and Ωeven

! (m). In this section, we examine
the relationship between Ωodd

! (m), Ωeven
! (m), and S!−1. Let b ≥ 1 be odd. We

recall the commutative diagram (1.12) of Z/"mZ-module homomorphisms below.

Λodd
! (b, m) Λeven

! (b + 1, m)
U(!)

Λodd
! (b + 2, m)

D(!)

Λeven
! (b + 3, m)

U(!)

X(!) Y (!)

The remark following Corollary 3.5 implies, for all odd b ≥ b!(m), that Λodd
! (b, m)

= Ωodd
! (m) and Λeven

! (b + 1, m) = Ωeven
! (m). Hence, for all such b, the homomor-

phisms U(") and D(") are isomorphisms between Ωodd
! (m) and Ωeven

! (m). It follows
that X(") and Y (") are automorphisms on Ωodd

! (m) and Ωeven
! (m), respectively.

We now study the structure that these maps impose on the modules Ωodd
! (m)

and Ωeven
! (m). We recall two elementary results from commutative algebra.

Lemma 4.1. Let A be a finite local ring, let M be an A-module of finite rank r,
and let T : M → M be an A-isomorphism. Then there exists an integer n > 0 such
that Tn is the identity map on M .

Proof. By Nakayama’s Lemma (see [15], for example), an A-isomorphism T : M →
M is representable by a matrix in GLr(A). Since GLr(A) is a finite group, the
isomorphism T must have finite order. !
Lemma 4.2. Let A be a local ring, let M be a finitely generated A-module, and let
T : M → M be an A-isomorphism. Then for all m ∈ M and n ≥ 0, we have

m ∈ A[Tn(m), Tn+1(m), Tn+2(m), . . .].
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Proof. If A is finite, Lemma 4.1 implies the result. Now, suppose that A is infinite,
and let m ∈ M and n ≥ 1. Since Tn−1(m) satisfies the characteristic polynomial
for T , it is expressible in terms of Tn(m), Tn+1(m), . . . . Similarly, if n ≥ 2, then
Tn−2(m) is expressible in terms of Tn−1(m), Tn(m), . . . , and hence, in terms of
Tn(m), . . . . The result follows from iterating this process. !

Next, we give explicit injective Z/"mZ-module homorphisms on Ωodd
! (m) and

Ωeven
! (m) into S!−1.

Theorem 4.3. Let " ≥ 5 be prime, and let m ≥ 1. Then there exist injective
Z/"mZ-module homomorphisms

Πo : Ωodd
! (m) ↪→ S!−1 ∩ Z(!)[[q]],

Πe : Ωeven
! (m) ↪→ S!−1 ∩ Z(!)[[q]],

which satisfy the following property. For all µ ∈ Ωodd
! (m) and ν ∈ Ωeven

! (m) with
v!(µ) = i < m and v!(ν) = j < m, we have

Πo(µ) ≡ µ (mod "i+1), Πe(ν) ≡ ν (mod "j+1).

Proof. We consider the following two submodules of S!m−1(!−1) ∩ Z(!)[[q]]:

S0 :=
{

f(z)E!−1(z)!
m−1−1 : f(z) ∈ S!−1 ∩ Z(!)[[q]]

}
,

S1 :=

{
g(z) : g(z) =

∞∑

m=m0

ag(m)qm ∈ S!m−1(!−1) ∩ Z(!)[[q]] with m0 >
⌊
!−1
12

⌋
}

.

We can construct a basis {f1 = q + · · · , . . . , fn = qn + · · · } for S!m−1(!−1) ∩
Z(!)[[q]] with fk(z) ∈ S0 for k ≤ ( !−1

12 ) and fk(z) ∈ S1 otherwise. It follows that
S!m−1(!−1) ∩ Z(!)[[q]] = S0 ⊕ S1. Hence, g(z) ∈ S!m−1(!−1) ∩ Z(!)[[q]] is uniquely
expressible as g(z) = g0(z) + g1(z) with gi(z) ∈ Si. Next, we reduce coefficients of
the forms in these spaces modulo "m, and we define S∗ ⊂ S!m−1(!−1) ∩ Z(!)[[q]] to
be the largest Z/"mZ-submodule such that X(") is an isomorphism on S∗ modulo
"m.

Lemma 4.4. Suppose that f(z) ∈ S∗ has v!(f) = i < m, and that f(z) = f0(z) +
f1(z) with fw(z) ∈ Sw. Then we have v!(f1) > i.

Remark. Using (2.12), we see that since v!(f) = i ≥ min{v!(f0), v!(f1)} and
v!(f1) > i, we must have v!(f0) = i.

Proof. We first assert that

(4.1) v!(f0) ≥ i.

By the definitions of S0 and S1, we may write

f0(z) =
∞∑

n=n0

a0(n)qn, 0 ≤ n0 ≤
⌊
"− 1

12

⌋
; f1(z) =

∞∑

n=n1

a1(n)qn, n1 >

⌊
"− 1

12

⌋
.

We also write f(z) =
∑

af (n)qn, and we note that v!(f) = i = min{v!(af (n))}. It
follows for all n0 ≤ n ≤ n1 − 1, that v!(af (n)) = v!(a0(n)) ≥ i. Hence, we must
have v!(f0) ≥ i.

We now suppose that v!(f1) ≤ i and argue by contradiction. We require two
claims.
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Claim 4.5. If v!(f1) ≤ i, then we have v!(f0) ≥ v!(f1) = i.

Proof of Claim 4.5. If we suppose that v!(f0) < v!(f1), then it follows by (2.12)
that

i = v!(f) = min{v!(f0), v!(f1)} = v!(f0) < v!(f1) ≤ i,

a contradiction. Therefore, we have v!(f0) ≥ v!(f1). Next, if we suppose that
v!(f0) > v!(f1), we find from (2.12) that

i = v!(f) = min{v!(f0), v!(f1)} = v!(f1).

If we suppose that v!(f0) = v!(f1), then the hypothesis together with (4.1) gives

i ≤ v!(f0) = v!(f1) ≤ i.

!
Claim 4.6. Let " ≥ 5 be prime, and suppose that f(z) !≡ 0 (mod ") is in Mk ∩
Z(!)[[q]] with k ≡ 0 (mod "− 1).

(1) Suppose that w!(f) = "− 1. Then we have w!(f | X(")) ≤ w!(f).
(2) Suppose that w!(f) > "− 1. Then we have w!(f | X(")) < w!(f).

Proof of Claim 4.6. We first suppose that w!(f) = " − 1. When " ∈ {5, 7, 11}, we
note that M!−1 ∩Z(!)[[q]] ⊆ CE!−1. Hence, from Proposition 2.5, we see that there
are no forms f(z) with w!(f) = " − 1. Moreover, a form f(z) ∈ M!−1 ∩ Z(!)[[q]] is
congruent modulo " to a constant. Therefore, we have w!(f) = 0.

For " ≥ 13, we apply Lemma 2.2, (1.7), (1.8), and (2.10) to obtain

w!(f | X(")) = w! (f | U(") | D(")) = w!

((
f | U(") · ∆

!2−1
24

)
| U(")

)

≤ " +
w!

(
f | U(") · ∆ !2−1

24

)
− 1

"
≤ " +

"− 1 + !2−1
2 − 1

"

= ("− 1)

(
3" + 5

2"

)
< 2("− 1).

Part (1) of the claim now follows for " ≥ 13.
When w!(f) > " − 1, we first observe that the result holds if f(z) | U(") ≡ 0

(mod "). Therefore, we suppose that f(z) | U(") !≡ 0 (mod "). As above, we apply
Lemma 2.2, (1.7), (1.8), and (2.10) to deduce the conclusion of the lemma. To
begin, we find that

"− 1 < w!

(
f | U(") · ∆

!2−1
24

)
≤ " +

w!(f) − 1

"
+

"2 − 1

2
.

Hence, we compute

w! (f | X(")) = w! (f | U(") | D(")) = w!

((
f | U(") · ∆

!2−1
24

)
| U(")

)

≤ " +

(
" + w!(f)−1

! + !2−1
2

)
− 1

"
=

1

"2

(
("2 − 1)

(
3" + 2

2

)
+ w!(f)

)
.

We conclude that 3!+2
2 < w!(f) implies w!(f | X(")) < w!(f). For " ≥ 7, the

conditions k ≡ 0 (mod ") and w!(f) > " − 1 give w!(f) ≥ 2(" − 1) > 3!+2
2 . Part

(2) of the claim follows for " ≥ 7.
For " = 5, it suffices to show that 3!+2

2 = 17/2 < w5(f). The hypotheses w5(f) >
4 and k ≥ 0 (mod 4) imply that w5(f) ∈ {8, 12, . . . }. Since M8 ∩ Z(5)[[q]] ⊆ CE2

4 ,
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we see from Proposition 2.5 that there are no forms f(z) with w5(f) = 8. Hence,
we have 17/2 < 12 ≤ w5(f) which gives w5(f(z) | X(5)) ≤ w5(f). !

Returning to the proof of Lemma 4.4, we consider the following sequence of
modular forms in S!m−1(!−1) ∩ Z(!)[[q]]:

h0(z) := f(z), h1(z) := h0(z) | X("), h2(z) := h1(z) | X("), . . . .

Since f(z) ∈ S∗, Lemma 4.1 implies that there exists n ≥ 1 such that h0(z) ≡ hn(z)
(mod "m). We recall that v!(f) = i < m to see that "−ih0(z) ≡ "−ihn(z) (mod ").
Hence, we have w!("−ih0) = w!("−ihn). Supposing, by way of contradiction, that
v!(f1) ≤ v!(f) = i, Claim 4.5 gives v!(f0) ≥ v!(f1) = i. Since f0(z) ∈ S0 and
f1(z) ∈ S1, we observe that

w!("
−if0) ≤ "− 1 < 2("− 1) ≤ w!("

−if1).

Using this fact together with (2.9), we deduce that

w!("
−ih0) = w!("

−i(f0 + f1)) = max{w!("
−if0), w!("

−if1)} = w!("
−if1) > "− 1.

Therefore, Claim 4.6 gives

w!("
−ih0) > w!("

−ih1) ≥ w!("
−ih2) ≥ · · · .

In particular, we have w!("−ih0) > w!("−ihn), a contradiction. !

Theorem 4.3 depends on the following corollary to Lemma 4.4.

Corollary 4.7. Let f(z), g(z) ∈ S∗, and suppose that f(z) = f0(z) + f1(z) and
g(z) = g0(z) + g1(z) with f0(z), g0(z) ∈ S0 and f1(z), g1(z) ∈ S1. Suppose further
that f0(z) ≡ g0(z) (mod "m). Then we have f(z) ≡ g(z) (mod "m).

Proof. Suppose on the contrary that v!(f − g) = j < m. Then we have

f − g = (f0 − g0) + (f1 − g1) ∈ S∗, f0 − g0 ∈ S0, f1 − g1 ∈ S1.

We apply Lemma 4.4 to deduce that v!(f1 − g1) > j; the hypothesis gives
v!(f0 − g0) ≥ m > j. Hence, we find from (2.12) that

v!(f − g) = j ≥ min{v!(f0 − g0), v!(f1 − g1)} > j,

a contradiction. !

We now construct the injection Πo : Ωodd
! (m) ↪→ S!−1∩Z(!)[[q]] as a composition

of Z/"mZ-module homomorphisms Φ1, Φ2, and Φ3.
Corollary 3.5 and the remark following it imply that X(") is an isomorphism

on Ωodd
! (m). Since S∗ is the largest Z/"mZ-submodule of S!m−1(!−1) ∩ Z(!)[[q]]

with this property, we see that Ωodd
! (m) ⊆ S∗; we define Φ1 to be the inclusion

Ωodd
! (m) ↪→ S∗. To define Φ2, we let f(z) = f0(z) + f1(z) ∈ S∗ with f0 ∈ S0 and

f1 ∈ S1, and we suppose that v!(f) = i < m. Lemma 4.4 implies that f(z) ≡ f0(z)
(mod "v!(f)+1). Therefore, the map Φ2 : f(z) 2→ f(z) (mod "v!(f)+1) has Φ2 : S∗ →
S0. Furthermore, Φ2 is injective by Corollary 4.7. We next define the map Φ3 on
S0. Suppose that f(z) ∈ S0. By definition of S0, there exists g(z) ∈ S!−1 ∩Z(!)[[q]]

with f(z) = g(z)E!−1(z)!
m−1−1. We define Φ3 : S0 → S!−1 ∩ Z(!)[[q]] to be the

isomorphism that maps f(z) to g(z). To summarize, we have

Πo : Ωodd
! (m)

Φ1→ S∗ Φ2→ S0
Φ3→ S!−1 ∩ Z(!)[[q]];
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the first two maps are injections, while the third is an isomorphism. Moreover, if
we suppose that f(z) ∈ Ωodd

! (m) has v!(f) < m, then we have

Πo(f(z)) ≡ f(z) (mod "v!(f)+1).

One can similarly construct Πe : Ωeven
! (m) ↪→ S!−1 ∩ Z(!)[[q]]. Since S∗ | U(") |

D(") = S∗ | X(") = S∗, we observe that S∗ | U(") ∼= S∗. An argument similar to
the above shows that S∗ | U(") is the largest submodule of S!m−1(!−1) ∩ Z(!)[[q]]
on which Y (") is an isomorphism. In this setting, one can prove facts analogous
to Lemma 4.4 and Corollary 4.7. One can also define injective homomorphisms Φ′

1

and Φ′
2, and an isomorphism Φ′

3 whose composition

Πe : Ωeven
! (m)

Φ′
1→ S∗ | U(")

Φ′
2→ S0

Φ′
3→ S!−1 ∩ Z(!)[[q]]

is the desired map. !

Remark. The injections Πo and Πe preserve order of vanishing. From the defini-
tion (1.7) of D("), we find that f(z) ∈ Ωodd

! (m) has order of vanish at infinity

>

⌊
"2 − 1

24"

⌋
. Hence, we recover the bound R! on the Z/"mZ-ranks of Ωodd

! (m) and

Ωeven
! (m) as in (1.13) of Theorem 1.4.

4.2. Proof of Corollary 1.3. We suppose that b ≥ 1 is odd. The proof holds with
suitable modifications for even b. Let S be the largest subspace of S!−1 ∩ Z(!)[[q]]
over Z/"Z on which X(") is an isomorphism. We proceed by induction on m. For
m = 1 and b ≥ b!(1), we have L!(b; z) ∈ Ωodd

! (1) ⊆ S. By Lemma 4.1, X(") has
finite order, c!, on S. The m = 1 case of Corollary 1.3 follows from

L!(b; z) ≡ L!(b; z) | X(")c! (mod ").

Moreover, we note, for all F (z) ∈ S, that

(4.2) F (z) | X(")c! ≡ F (z) (mod ").

Next, we fix m ≥ 2, we set

X (", m) := X(")c!!
m−2

,

and we suppose, for b′ ≥ b!(m − 1), that

L!(b
′; z) ≡ L!(b

′; z) | X (", m) ≡ L!(b
′ + 2c!"

m−2; z) (mod "m−1).

Let b ≥ b!(m) ≥ b!(m − 1). Since b ≥ b!(m − 1), the inductive hypothesis gives

L!(b; z) ≡ L!(b; z) | X (", m) (mod "m−1);

since b ≥ b!(m), we find that

L!(b; z), L!(b; z) | X (", m) ∈ Ωodd
! (m).

It follows that there exists f(z) ∈ Ωodd
! (m) with f(z) ≡ 0 (mod "m−1) for which

(4.3) L!(b; z) ≡ L!(b; z) | X (", m) + f(z) ≡ L!(b + 2c!"
m−2; z) + f(z) (mod "m).

We next recall that S∗ is the largest Z/"mZ-submodule of S!m−1(!−1) ∩ Z(!)[[q]]
on which X(") is an isomorphism modulo "m. We let µ be the rank of S∗, and we
let

(4.4) {g1(z), . . . , gµ(z)}
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be a basis for S∗. There exists a submodule N ∗ ⊆ S!m−1(!−1) ∩ Z(!)[[q]] such that

(4.5) S!m−1(!−1) = S∗ ⊕ N ∗.

We observe, for all f(z) ∈ N ∗, that there exists tf ≥ 1 with

(4.6) f(z) | X(")tf ≡ 0 (mod "m).

We now give lemmas necessary for the conclusion of Corollary 1.3.

Lemma 4.8. For 1 ≤ i ≤ µ, let gi(z) be as in (4.4). We have v!(gi) = 0.

Proof. We suppose on the contrary that, for example, v!(g1) ≥ 1. It follows that
there exists h(z) ∈ S!m−1(!−1) with

(4.7) g1(z) ≡ "v!(g1)h(z) (mod "m)

and v!(h) = 0. Using (4.5), we see that there exists hS∗(z) ∈ S∗ and hN∗(z) ∈ N ∗

with

(4.8) h(z) ≡ hS∗(z) + hN∗(z) (mod "m).

Now, since hN∗(z) ∈ N ∗, (4.6) implies that there exists t ≥ 1 such that

(4.9) hN∗(z) | X(")t ≡ 0 (mod "m).

We also note by Lemma 4.1 that there exists n ≥ 1 with

(4.10) X(")n = 1S∗ ,

the identity on S∗. We let k ≥ 1 have nk ≥ t, and we use (4.9) and (4.10) to
conclude that
(4.11)
hN∗(z) | X(")nk≡0, hS∗(z) | X(")nk≡hS∗(z), g1(z) | X(")nk≡g1(z) (mod "m).

From (4.8) and (4.11) we obtain

(4.12) h(z) | X(")nk ≡ hS∗(z) (mod "m).

Applying X(")nk in (4.7) and using (4.11), we deduce that

(4.13) "v!(g1)h(z) | X(")nk ≡ g1(z) | X(")nk ≡ g1(z) (mod ")m.

We multiply by "v!(g1) in (4.12); substituting the result in (4.13) gives

g1(z) ≡ "v!(g1)hS∗(z) (mod "m).

Since hS∗(z) ∈ S∗, we find α1, . . . ,αµ ∈ Z/"mZ with

hS∗(z) ≡ α1g1(z) + · · · + αµgµ(z) (mod "m).

Multiplying by "v!(g1) and using (4.7) yields

0 ≡ ("v!(g1)α1 − 1)g1(z) + "v!(g1)(α2g1(z) + · · · + αµgµ(z)) (mod "m).

Assuming that v!(g1) ≥ 1, we have "v!(g1)α1 − 1 != 0 (mod "m), which contradicts
the linear independence modulo "m of {g1, . . . , gµ}. Hence, we have v!(g1) = 0. !

For the next lemmas, let f(z) ∈ Ωodd
! (m) ⊆ S∗ be as in (4.3). There exists

a1, . . . , aµ ∈ Z/"mZ with

(4.14) f(z) ≡ a1g1 + · · · + aµgµ (mod "m).

Lemma 4.9. For 1 ≤ j ≤ µ, let aj be as in (4.14). We have aj ≡ 0 (mod "m−1).
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Proof. If f(z) ≡ 0 (mod "m), then the result holds with ai ≡ 0 (mod "m) by (4.14)
since {g1, . . . , gµ} is a basis for S∗. Recalling that f(z) ≡ 0 (mod "m−1), it suffices
to consider v!(f) = m−1. If the statement of the lemma is false, then, for example,
we have v!(a1) < m − 1. Using (4.14) and v!(f) = m − 1, we find that

0 ≡ a1g1 + · · · + aµgµ (mod "v!(a1)+1);

multiplying by "m−(v!(a1)+1) gives

0 ≡ "m−(v!(a1)+1)(a1g1 + · · · + aµgµ) (mod "m).

We compute v!
(
"m−(v!(a1)+1)a1

)
= m − (v!(a1) + 1) + v!(a1) = m − 1; it fol-

lows that "m−(v!(a1)+1)a1 !≡ 0 (mod "m), contradicting the linear independence of
{g1, . . . , gµ}. Hence, we have a1 ≡ 0 (mod "m−1). !

Lemma 4.10. Let c! be as in (4.2). Then we have

f(z) | X(")c! ≡ f(z) (mod "m).

Proof. For all 1 ≤ j ≤ µ, we have gj(z) (mod ") in S. Hence, from (4.2), we see
that gj(z) | X(")c! ≡ gj(z) (mod "m). With aj as in (4.14), Lemma 4.9 implies
ajgj(z) | X(")c! ≡ ajgj(z) (mod "m). It follows that

f(z) | X(")c! ≡ (a1g1 + · · ·+aµgµ) | X(")c! ≡ a1g1 + · · ·+aµgµ ≡ f(z) (mod "m).

!

Lemma 4.11. Let 1 ≤ i ≤ ". Then we have

(4.15) L!(b; z) | X (", m)! ≡ L!(b; z) | X (", m)!−i − if(z) (mod "m).

Proof. We induct on i. From (4.3) and Lemma 4.10, we compute

L!(b; z) | X (", m)! ≡ (L!(b; z) | X (", m)) | X (", m)!−1

≡ (L!(b; z) − f(z)) | X (", m)!−1

≡ L!(b; z) | X (", m)!−1 − f(z) | X (", m)!−1

≡ L!(b; z) | X (", m)!−1 − f(z) (mod "m).

Next, we fix 1 ≤ i ≤ "− 1 and use (4.3), Lemma 4.10, and (4.15) to compute

L!(b; z) | X (", m)! ≡ L!(b; z) | X (", m)!−i − if(z)

≡ (L!(b; z) | X (", m)) | X (", m)!−(i+1) − if(z)

≡ (L!(b; z) − f(z)) | X (", m)!−(i+1) − if(z)

≡ L!(b; z) | X (", m)!−(i+1) − (i + 1)f(z) (mod "m).

The result follows. !

To complete the proof of Corollary 1.3, we let i = " in the lemma and recall that
f(z) ≡ 0 (mod "m−1) to obtain

L!(b + 2c!"
m−1; z) = L!(b; z) | X (", m)! ≡ L!(b; z) − "f(z) ≡ L!(b; z) (mod "m).
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5. The proof of Theorem 1.2

5.1. Preliminary lemmas. We observe from Lemma 3.1 (resp. Claim 4.6 (1))
that D(") (resp. X(")) preserves S!−1 ∩ Z(!)[[q]] with coefficients reduced modulo
". We recall that S is the largest subspace of S!−1 ∩ Z(!)[[q]] over Z/"Z on which
X(") is an isomorphism. We define

(5.1) d! := min
{
t ≥ 0 : ∀f ∈ M!−1 ∩ Z(!)[[q]], f | D(") | X(")t ∈ S

}
.

It follows that a simple bound on d! is

d! ≤ dim(S!−1) =

⌊
"− 1

12

⌋
.

We note again, for primes 5 ≤ " < 1300, that we have d! = 0. We prove the
following general theorem.

Theorem 5.1. Let " ≥ 5 be prime, let m ≥ 1, and let d! be as in (5.1). Then we
have

b!(m) ≤ 2(d! + 1)m − 1 = 2d! + 2m − 1.

Remark. Theorem 1.2 is the case d! = 0.

The proof of Theorem 5.1 requires four preliminary lemmas.

Lemma 5.2. Let " ≥ 5 be prime, let m ≥ 1, and let d! be as in (5.1). Suppose,
for some even b ≥ 0, that λ(z) ∈ Λeven

! (b, m) and that 0 ≤ v!(λ) = i < m. Suppose
further that f(z) ∈ M!−1 ∩ Z(!)[[q]] satisfies

λ(z) ≡ "if(z) (mod "i+1).

Then there exists µ(z) ∈ Ωodd
! (m) such that

λ(z) | D(") | X(")d! ≡ µ(z) (mod "i+1).

Proof. Since f(z) ∈ M!−1 ∩ Z(!)[[q]], (5.1) implies that f(z) | D(") | X(")d! ∈ S.
The hypotheses on λ(z) imply that "−iλ(z) ∈ Z(!)[[q]] and that "−iλ(z) ≡ f(z)
(mod "). We apply Lemma 4.2 with A = Z/"Z, M = S, T = X("), and m = f(z) |
D(") | X(")d! to find, for all n ≥ 0, that

λ(z)

"i
| D(") | X(")d! (mod ")(5.2)

∈ SpanZ/!Z

{
λ(z)

"i
| D(") | X(")d!+n,

λ(z)

"i
| D(") | X(")d!+n+1, . . .

}
.

Observing that i+1 ≤ m and that λ(z) ∈ Λeven
! (b, m), we see that λ(z) (mod "i+1) ∈

Λeven
! (b, i + 1). Hence, for all j ≥ 0, we have

(5.3) λ(z) | D(") | X(")d!+j (mod "i+1) ∈ Λodd
! (b + 2(d! + j) + 1, i + 1).

We multiply (5.2) by "i and we use (5.3) together with the nesting property of
the modules Λodd

! (b, m) as in the remark following Corollary 3.5 to establish for all
n ≥ 0 that

λ(z) | D(") | X(")d! (mod "i+1)

∈ SpanZ/!i+1Z
{
λ(z) | D(") | X(")d!+n, . . .

}
⊆ Λodd

! (b + 2(d! + n) + 1, i + 1).

In particular, for odd b′ large enough with b′ > b!(m), we conclude that there
exists µ(z) ∈ Ωodd

! (m) = Λodd
! (b′, m) with λ(z) | D(") | X(")d! ≡ µ(z) (mod "i+1),

as required. !
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As in the proof of Theorem 4.3, we set S∗ ⊂ S!m−1(!−1) ∩ Z(!)[[q]] to be the
largest Z/"mZ-submodule such that X(") is an isomorphism on S∗ modulo "m. We
need the following lemma to prove Lemma 5.5 below.

Lemma 5.3. Let " ≥ 5 be prime, let m ≥ 1, let f(z) ∈ S∗, and suppose that
0 ≤ v!(f) = i < m. Then for all 1 ≤ s ≤ m− i, the form f(z) is congruent modulo
"i+s to a form in S!s−1(!−1).

Proof. We proceed via induction on s ≥ 1. The case s = 1 follows from Lemma
4.4. Therefore, we fix 1 ≤ s0 < m − i and suppose, for all 1 ≤ s ≤ s0, that f(z)
is congruent modulo "i+s to a form in S!s−1(!−1). Since v!(f) = i, we note for all
such s that "−if(z) is congruent modulo "s to a form in S!s−1(!−1). In particular,
with s = s0, we obtain fs0(z) ∈ S!s0−1(!−1) with

(5.4) "−if(z) ≡ "−ifs0(z) (mod "s0).

Next, we observe that

(5.5)
fs0(z)

"i
· E!−1(z)!

s0−1(!−1) ∈ S!s0 (!−1).

From Proposition 2.5 and (5.4) we see, for all 1 ≤ s ≤ s0, that

(5.6)
fs0(z)

"i
· E!−1(z)!

s0−1(!−1) ≡ fs0(z)

"i
≡ f(z)

"i
(mod "s).

Noting the induction hypothesis on "−if(z), (5.5), and (5.6), we conclude for all

1 ≤ s ≤ s0 + 1 that "−ifs0(z)E!−1(z)!
s0−1(!−1) is congruent modulo "s to a form in

S!s−1(!−1). We also note by Proposition 2.3 (2), that "−ifs0(z)E!−1(z)!
s0−1(!−1) |

U(") is congruent modulo "s to a form in the same space. Hence, we may apply
Lemma 3.1 and (1.8) to show, for all 1 ≤ s ≤ s0 + 1 and for all t ≥ 1, that there
exists Fs,t(z) ∈ S!s−1(!−1) such that

(5.7)
fs0(z)

"i
· E!−1(z)!

s0−1(!−1) | X(")t ≡ Fs,t(z) (mod "s).

Since f(z) ∈ S∗, Lemma 4.1 implies that there exists n ≥ 1 with f(z) | X(")n ≡
f(z) (mod "m). We use i + s0 + 1 ≤ m and v!(f(z)) = i to conclude that

(5.8)
f(z)

"i
| X(")n ≡ f(z)

"i
(mod "s0+1).

For convenience, we set

(5.9) f∗(z) := f(z) − fs0(z)E!−1(z)!
s0−1(!−1).

Multiplying by "i in (5.6) gives

f∗(z) ≡ 0 (mod "i+s0).

Therefore, we consider the quantity

k = w!

(
f∗

"i+s0

)
.

If k = −∞, then (5.5) and (5.9) imply that f(z) is congruent (mod "i+s0+1) to a
form in S!s0(!−1). Hence, we suppose that k != −∞; we have k ≡ 0 (mod " − 1).
With n as in (5.8), we apply Claim 4.6 to find, for r ≥ 1 large enough, that

(5.10) w!

(
f∗

"i+s0
| X(")nr

)
≤ "s0("− 1).
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We first suppose that this filtration is not −∞; it must therefore be j("−1) for some
0 ≤ j ≤ "s0 . Using Proposition 2.5, It follows that there exists Gr(z) ∈ S!s0 (!−1)

for which

(5.11)
f∗(z)

"i+s0
| X(")nr · E!−1(z)!

s0−j ≡ Gr(z) (mod ").

Starting from

f(z) = fs0(z) · E!−1(z)!
s0−1(!−1) + f∗(z),

we apply X(")nr and (5.8) (multiplying by "i) to obtain

(5.12) f(z) ≡ fs0(z) ·E!−1(z)!
s0−1(!−1) | X(")nr +f∗(z) | X(")nr (mod "i+s0+1).

In (5.7), we let t = nr and s = s0 + 1, and we multiply by "i to show that the
first summand on the right side of (5.12) is congruent modulo "i+s0+1 to a form
in S!s0(!−1). Similarly, we multiply by "i+s0 in (5.11) to deduce that the second
summand on the right side of (5.12) is congruent modulo "i+s0+1 to a form in
S!s0(!−1). We now see that the left side of (5.12) must also be in this space modulo
"i+s0+1. Hence, the lemma is proved when (5.10) is not −∞. When (5.10) has value
−∞, we deduce that f∗(z) | X(")nr ≡ 0 (mod "i+s0+1). We insert this into (5.12)
and note again that the first summand on the right side of (5.12) is in S!s0 (!−1)

modulo "i+s0+1 to obtain the desired result. !

Remarks.

(1) A modification of the proof using Proposition 2.5 shows that the conclusion
continues to hold under the weaker hypothesis that f(z) ≡ 0 (mod "i) (i.e.,
v!(f) ≥ i).

(2) The lemma also continues to hold for f(z) ∈ S∗ | U("). As discussed in
the proof of Theorem 4.3, S∗ | U(") is the largest Z/"mZ-submodule of
S!m−1(!−1) on which Y (") is an isomorphism modulo "m. Further, we note
that Ωeven

! (m) ⊆ S∗ | U(") and Ωodd
! (m) ⊆ S∗.

We next prove the m = 1 case of Theorem 5.1.

Lemma 5.4. Let " ≥ 5 be prime, and let d! be as in (5.1). Then we have

L!(2d! + 1; z) ∈ Ωodd
! (1).

Proof. We apply Lemma 5.2 with

λ(z) = L!(0; z) = 1 ∈ Λeven
! (0, 1), f(z) = E!−1(z) ∈ M!−1 ∩ Z(!)[[q]];

hence, we have i = 0. In particular, Lemma 5.2 yields µ(z) ∈ Ωodd
! (m) with

L!(2d! + 1; z) = L!(0; z) | D(") | X(")d! ≡ µ(z) (mod ").

Since reduction modulo " maps Ωodd
! (m) → Ωodd

! (1), the lemma follows. !

The final preliminary lemma plays a central role in the proof of Theorem 5.1 for
m ≥ 2.

Lemma 5.5. Suppose that " ≥ 5 is prime, m ≥ 2, 1 ≤ s ≤ m − 1, and d! is
as in (5.1). Then there exists ν(2(d! + 1)s; z) ∈ Ωeven

! (m) and τ (2(d! + 1)s; z) ∈
S!m−s−1(!−1) ∩ Z(!)[[q]] with the following properties.

(1) We have τ (2(d! + 1)s; z) ≡ 0 (mod "s).
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(2) For all k with s+1 ≤ k ≤ m, the form τ (2(d! +1)s; z) is congruent modulo
"k to a form in S!k−s−1(!−1).

(3) We have L!(2(d! + 1)s; z) ≡ ν(2(d! + 1)s; z) + τ (2(d! + 1)s; z) (mod "m).

Proof. The proof proceeds by induction on s. In view of the proof of Lemma 5.4,
we see that there exists µ(z) ∈ Ωodd

! (m) with

(5.13) L!(2d! + 1; z) ≡ µ(z) (mod ").

Since D(") : Ωeven
! (m) → Ωodd

! (m) is an isomorphism, there exists ν(2d!; z) ∈
Ωeven

! (m) with

(5.14) ν(2d!; z) | D(") ≡ µ(z) (mod "m).

We claim that the form L!(2d!; z)− ν(2d!; z) satisfies the hypotheses of Lemma
3.6. We observe that ν(2d!; z) ∈ Ωeven

! (m) implies, for all 1 ≤ k ≤ m, that ν(2d!; z)
(mod "k) ∈ Ωeven

! (k) ⊆ M!k−1(!−1). Similarly, Corollary 3.5 implies that L!(2d!; z)

is congruent modulo "k to a form in M!k−1(!−1). Therefore, there exists α(k; z) ∈
M!k−1(!−1) ∩ Z[[q]] with

(5.15) L!(2d!; z) − ν(2d!; z) ≡ α(k; z) (mod "k).

Moreover, (1.7), (5.13), and (5.14) imply that
(5.16)

(L!(2d!; z) − ν(2d!; z)) | D(") ≡ L!(2d! + 1; z) − ν(2d!; z) | D(") ≡ 0 (mod ").

Hence, our claim holds. Applying Lemma 3.6 and using (5.15) gives, for 2 ≤ k ≤ m,
a form h(k; z) ∈ S!k−2(!−1) ∩ Z[[q]] with

(5.17) (L!(2d!; z) − ν(2d!; z)) | Y (") ≡ α(k; z) | Y (") ≡ h(k; z) (mod "k).

We next claim that τ (2(d!+1); z) := h(m; z) ∈ S!m−2(!−1) satisfies the conclusion
of the present lemma for s = 1. For 2 ≤ k ≤ m, (5.17) implies that h(m; z) ≡ h(k; z)
(mod "k), and (1.9), (5.16), and (5.17) imply that h(m; z) ≡ 0 (mod "). Now, since
Y (") : Ωeven

! (m) → Ωeven
! (m), we have

(5.18) ν(2(d! + 1); z) := ν(2d!; z) | Y (") ∈ Ωeven
! (m).

It follows from (1.10), (1.9), (5.17), and (5.18) that

L!(2(d! + 1); z) = L!(2d!; z) | Y (")

= ν(2d!; z) | Y (") + (L!(2d!; z) − ν(2d!; z)) | Y (")

≡ ν(2(d! + 1); z) + h(m; z)

≡ ν(2(d! + 1)s; z) + τ (2(d! + 1); z) (mod "m).

We now suppose, for fixed 1 ≤ s ≤ m − 2, that there exists ν(2(d! + 1)s; z) and
τ (2(d! + 1)s; z) satisfying the conclusion of the lemma. Condition (1) implies that
v!(τ (2(d! + 1)s; z)) ≥ s; we may assume that

(5.19) v!(τ (2(d! + 1)s; z)) = s.

We first show that τ (2(d! + 1)s; z) satisfies the hypotheses of Lemma 5.2. The
hypothesis on ν(2(d! + 1)s; z), the definition of b!(m), and the nesting property of
the modules Λeven

! (2(d! + 1)s; m) give

(5.20) ν(2(d! + 1)s; z) ∈ Ωeven
! (m) = Λeven

! (b!(m), m) ⊆ Λeven
! (2(d! + 1)s, m).

From condition (3), we see that τ (2(d!+1)s; z) ≡ L!(2(d!+1)s; z)−ν(2(d!+1)s; z)
(mod "m). In view of (5.20), it follows that τ (2(d! + 1)s; z) ∈ Λeven

! (2(d! + 1)s, m).
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With k = s + 1 in condition (2), we find that τ (2(d! + 1)s; z) is congruent modulo
"s+1 to a form in S!−1. We may now apply Lemma 5.2 to τ (2(d!+1)s; z) to produce
γ(s; z) ∈ Ωodd

! (m) with

(5.21) τ (2(d! + 1)s; z) | D(") | X(")d! ≡ γ(s; z) (mod "s+1).

From (5.19), we find that

(5.22) γ(s; z) ≡ 0 (mod "s).

Since D(") : Ωeven
! (m) → Ωodd

! (m) is an isomorphism, there exists β(s; z)∈Ωeven
! (m)

with

(5.23) β(s; z) | D(") ≡ γ(s; z) (mod "m).

Noting (5.22) and that s < m, we also have β(s; z) | D(") ≡ 0 (mod "s). Reduction
modulo "s surjects onto Ωeven

! (s), and D(") is an isomorphism on Ωeven
! (s). Hence,

we deduce that

(5.24) β(s; z) ≡ 0 (mod "s).

Using (1.8) and (1.9), we observe that

(5.25) τ (2(d! + 1)s; z) | D(") | X(")d! = τ (2(d! + 1)s; z) | Y (")d! | D(").

Since s + 1 < m, it follows from (5.21), (5.23), and (5.25) that

(5.26) τ (2(d! + 1)s; z) | Y (")d! | D(") ≡ β(s; z) | D(") (mod "s+1).

We next show that

(5.27) Ξ(z) :=
τ (2(d! + 1)s; z) | Y (")d! − β(s; z)

"s

satisfies the hypotheses of Lemma 3.6. Dividing by "s in (5.26) gives

(5.28) Ξ(z) | D(") =
τ (2(d! + 1)s; z) | Y (")d! − β(s; z)

"s
| D(") ≡ 0 (mod ").

Condition (2) and (5.19) imply, for all s + 1 ≤ k ≤ m, that "−sτ (2(d! + 1)s; z)
is congruent modulo "k−s to a form in S!k−s−1(!−1). We use Proposition 2.3 and
Lemma 3.1 (replacing k with k−s and n with m−s) to show that "−sτ (2(d!+1)s; z) |
Y (")d! remains in the space S!k−s−1(!−1)∩Z(!)[[q]] with coefficients reduced modulo

"k−s. In view of (5.24) and the fact that β(s; z) ∈ Ωeven
! (m), we apply Lemma 5.3

and the remarks following it to "−sβ(s; z) to show that the same conclusion holds
for this form. From (5.27) we therefore conclude, for all s + 1 ≤ k ≤ m, that Ξ(z)
modulo "k−s is congruent to a form in S!k−s−1(!−1). We may now apply Lemma 3.6
(with j = k − s and n = m − s) to Ξ(z) to obtain, for all s + 2 ≤ k ≤ m, forms
f(k; z) ∈ S!k−s−2(!−1) with

(5.29) Ξ(z) | Y (") ≡ f(k; z) (mod "k−s).

To conclude, we show that

τ (2(d! + 1)(s + 1); z) := "sf(m; z) ∈ S!m−s−2(!−1),(5.30)

ν(2(d! + 1)(s + 1); z) := (ν(2(d! + 1)s; z) | Y (")d! + β(s; z)) | Y (")(5.31)

satisfy the conditions of the lemma. From (5.27), (5.29), and (5.30), we observe
that
(5.32)
τ (2(d! + 1)(s + 1); z) ≡

(
τ (2(d! + 1)s; z) | Y (")d! − β(s; z)

)
| Y (") (mod "m).
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We first note that since Y (") maps Ωeven
! (m) to itself and since ν(2(d! +1)s; z) and

β(s; z) ∈ Ωeven
! (m), we have ν(2(d! + 1)(s + 1); z) ∈ Ωeven

! (m). To verify condition
(1), we multiply by "s and apply U(") in (5.28) to obtain "s · Ξ(z) | Y (") ≡ 0
(mod "s+1). Similarly, in (5.29), we multiply by "s and set k = m. Noting that
s + 1 < m and using (5.30), we find that "s · Ξ(z) | Y (") ≡ τ (2(d! + 1)(s + 1); z)
(mod "s+1). It follows that τ (2(d! + 1)(s + 1); z) ≡ 0 (mod "s+1), as desired. From
(5.29) and (5.30), we find, for all s + 2 ≤ k ≤ m, that τ (2(d! + 1)(s + 1); z) is
congruent modulo "k to a form in S!k−s−2(!−1), namely "sf(k; z). This is condition
(2) of the lemma. Lastly, we verify condition (3). By the induction hypothesis,
(1.10), (1.9), (5.31), and (5.32), we have

L!(2(d! + 1)(s + 1); z) ≡ L!(2(d! + 1)s; z) | Y (")d!+1

≡ (ν(2(d! + 1)s; z) + τ (2(d! + 1)s; z)) | Y (")d!+1

≡ (ν(2(d! + 1)s; z) | Y (")d! + β(s; z)) | Y (")

+ (τ (2(d! + 1)s; z) | Y (")d! − β(s; z)) | Y (")

≡ ν(2(d! + 1)(s + 1); z) + τ (2(d! + 1)(s + 1); z) (mod "m).

The lemma is proved. !

5.2. Proof of Theorem 5.1. Let " ≥ 5 be prime. To prove Theorem 5.1, it suffices
to show for all m ≥ 1 that

(5.33) L!(2(d! + 1)m − 1; z) ∈ Ωodd
! (m).

The m = 1 case is Lemma 5.4. We now use Lemmas 5.2 and 5.5 to prove
the theorem for m ≥ 2. We let s = m − 1 in Lemma 5.5 to obtain
ν(2(d! + 1)(m − 1); z) ∈ Ωeven

! (m) and τ (2(d! + 1)(m − 1); z) ∈ S!−1 ∩ Z[[q]]
satisfying conditions (1), (2), and (3) of the lemma. Condition (1) states that
τ (2(d! + 1)(m − 1); z) ≡ 0 (mod "m−1). If τ (2(d! + 1)(m − 1); z) ≡ 0 (mod "m),
then condition (3) implies that L!(2(d! + 1)(m − 1); z) ≡ ν(2(d! + 1)(m − 1); z)
(mod "m). It follows that L!(2(d! + 1)(m − 1); z) ∈ Ωeven

! (m). Basic properties of
X(") and D(") given in the beginning of Section 4.1 imply that

(5.34) D(")X(")d! : Ωeven
! (m) → Ωodd

! (m).

Hence, we find that L!(2(d!+1)m−1; z) = L!(2(d!+1)(m−1); z) | D(") | X(")d! ∈
Ωodd

! (m). Therefore, we assume that

(5.35) v!(τ (2(d! + 1)(m − 1); z)) = m − 1.

In this case, condition (3) gives
(5.36)
L!(2(d! +1)(m−1); z) ≡ ν(2(d! +1)(m−1); z)+ τ (2(d! +1)(m−1); z) (mod "m).

It follows that τ (2(d! +1)(m−1); z) ∈ Λeven
! (2(d! +1)(m−1), m). Moreover, (5.35)

and the fact that τ (2(d! + 1)(m − 1); z) ∈ S!−1 imply that this form satisfies the
hypotheses of Lemma 5.2. Using this lemma and the isomorphism (5.34), we deduce
the existence of β(z) ∈ Ωeven

! (m) with

(5.37) τ (2(d! + 1)(m − 1); z) | D(") | X(")d! ≡ β(z) | D(") | X(")d! (mod "m).
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We now rewrite (5.36) as

L!(2(d! + 1)(m − 1); z) ≡ ν(2(d! + 1)(m − 1); z) + β(z)

+ (τ (2(d! + 1)(m − 1); z) − β(z)) (mod "m).

From (5.37), we find that

L!(2(d! + 1)m − 1; z) = L!(2(d! + 1)(m − 1); z) | D(") | X(")d!

≡ (ν(2(d! + 1)(m − 1); z) + β(z)) | D(") | X(")d!

+ (τ (2(d! + 1)(m − 1); z) − β(z)) | D(") | X(")d!

≡ (ν(2(d! + 1)(m − 1); z) + β(z)) | D(") | X(")d! (mod "m).

Using (5.34) again we conclude that L!(2(d! + 1)m − 1; z) ∈ Ωodd
! (m), completing

the proof of the theorem. !

6. Calculations: Examples and comments

6.1. Examples. In this section, we give selected examples to illustrate Theorem
1.2 and Corollary 1.3. In the course of our investigation, we calculated bases for
the spaces Ωodd

! (m) and Ωeven
! (m) in the following cases:

• m = 1, primes 13 ≤ " < 1300,
• m = 2, primes 13 ≤ " ≤ 89,
• m = 3, primes 13 ≤ " ≤ 29,
• m = 4, " = 13.

We first give examples of Theorem 1.2. We recall from (1.13) that r!(m) is the rank
of Ωodd

! (m) as a Z/"mZ-module and that R! = ( !+12
24 ) is the upper bound for this

rank.

Example 1. Let " = 29. We find that r29(1) = 1 = R29. By the third remark
after Theorem 1.1, we see that r29(m) = 1 for all m ≥ 1. We compute b29(1) = 1,
b29(2) = 3, and b29(3) = 5. We use this data and explicit computation to verify, for
all n ≥ 0, that

p(29n + 23) ≡ 10p(293n + 806) (mod 29),

p(293n + 806) ≡ 329p(295n + 19308) (mod 292),

p(295n + 19308) ≡ 14706p(297n + 13656152078) (mod 293).

Example 2. Let " = 89. We have r89(1) = 4 = R89; therefore, we have r89(m) = 4
for all m ≥ 1. We also compute b89(1) = 1 and b89(2) = 3. Our computations yield
the following congruences for all n ≥ 0:

p(89n + 26) ≡ 87p(893n + 7591) + 62p(895n + 1628684006)

+14p(897n + 12900806011196)

+78p(899n + 102 . . . 186) (mod 89),

p(893n + 7591) ≡ 1244p(895n + 1628684006)

+5135p(897n + 12900806011196)

+1082p(899n + 102 . . . 186)

+968p(8911n + 809 . . . 976) (mod 892).
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Example 3. Let " = 1297. We calculate r1297(1) = 54. Hence, for all m ≥ 1, we
have r1297(m) = 54. We also have b1297(1) = 1. For all n ≥ 0, we find that

p(1297n + 1243) ≡1171p(12973n+2090915695)+207p(12975n+3517357200300163)

...

+1242p(1297107n+116...975)+1108p(1297109n+195...683) (mod 1297).

For all primes " ≤ 1297 with the exception of " = 607, our calculations show that
r!(1) = R!, and hence, that r!(m) = R! for all m ≥ 1. For " = 607, we find that
r607(m) = R607 − 1 for all m ≥ 1.

We next give examples of Corollary 1.3.

Example 1. Let " = 37. We find that c37 = 36, and we discover, for all n ≥ 0,
that

p(37n + 17) ≡ p(3773n + 138 · · · 7757) (mod 37).

Example 2. Let " = 137. Our computations give c137 = 177423288. Thus, the
following congruence holds for all n ≥ 0:

p(137n + 40) ≡ p(137354846577n + 531 · · · 1080) (mod 137).

6.2. Comments on computation. Let " ≥ 13 be prime, and let m ≥ 1. We
describe how to calculate a relation modulo "m between the r!(m) + 1 functions
{L!(b!(m); z), L!(b!(m)+2; z), . . . , L!(b!(m)+2r!(m); z)} ⊆ Ωodd

! (m). By Corollary
3.5, this calculation takes place in the Z/"mZ-module S!m−1(!−1) ∩ Z(!)[[q]] with
coefficients reduced modulo "m.

Let

t!,m =

⌊
"m−1("− 1)

12

⌋
.

We require the rank of S!m−1(!−1), given by

s!,m :=

{
t!,m − 1 if "m−1("− 1) ≡ 2 (mod 12),

t!,m otherwise,

and we require the forms

F!,m(z) :=






1 if "m−1("− 1) ≡ 0 (mod 12),

E4(z)2E6(z) if "m−1("− 1) ≡ 2 (mod 12),

E4(z) if "m−1("− 1) ≡ 4 (mod 12),

E6(z) if "m−1("− 1) ≡ 6 (mod 12),

E4(z)2 if "m−1("− 1) ≡ 8 (mod 12),

E4(z)E6(z) if "m−1("− 1) ≡ 10 (mod 12).

In this notation, a standard upper-triangular basis for the space S!m−1(!−1) is
{
∆(z)kE4(z)3(s!,m−k)F!,m(z) = qk + · · ·

}s!,m

k=1
.

Hence, to distinguish a form in S!m−1(!−1) it suffices to compute its coefficients to
order O(qt!,m).

We seek to efficiently calculate Φ!(z) = η("2z)/η(z) (mod "m). When m = 1,
we use (2.10). For m ≥ 2, we use the following proposition.
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Proposition 6.1. Let m ≥ 2. Then we have

(6.1) Φ!(z) ≡ η("2z)η(z)2!
m−1

η("m+1z)2!m−1

m∏

k=1

η("kz)2!
m−2!m−1

(mod "m).

Proof. By Proposition 2.5, for all k ≥ 0, we have A!("kz)2!
m−1 ≡ 1 (mod "m).

Thus, using definitions (1.5) and (2.8), we have

Φ!(z) ≡ Φ!(z)
m∏

k=0

A!("
kz)2!

m−1

≡ η("2z)

η(z)

m∏

k=0

η("kz)2!
m

η("k+1z)2!m−1 (mod "m).

Simplification by grouping factors yields the proposition. !

We note that

(
q−

!m+1

24 η("m+1z)
)2!m−1

=
∞∏

n=1

(1 − q!
m+1n)2!

m−1

= 1 + O(q!
m+1

)

and that t!,m < "m+1. Therefore, to compute the right side of (6.1) to order O(qt!,m)
we may disregard the contribution from the denominator. Rather, to compute the
right side to suitable order, it suffices to compute

q−
!2m

12 η("2z)η(z)2!
m−1

m∏

k=1

η("kz)2!
m−2!m−1

= q
!2−1
24

∞∏

n=1

(1 − qn)2!
m−1(1 − q!

2n)
m∏

k=1

(1 − q!
kn)2!

m−2!m−1

.

For this purpose, we use Euler’s Pentagonal Number Theorem:

∞∏

n=1

(1 − qn) = 1 +
∞∑

k=1

(−1)k
(
q

k(3k−1)
2 + q

k(3k+1)
2

)
.

We now turn to computation of r!(m) and b!(m). To start, we compute

{L!(2m − 1; z), L!(2m + 1; z), . . . , L!(2(m + R! − 1) − 1; z)} (mod "m).

A collection f1, . . . , fn ∈ Z(!)[[q]] is linearly independent over Z(!)[[q]] if and only
if the relation a1f1 + · · · + anfn ≡ 0 (mod "m) implies, for all 1 ≤ i ≤ n, that
ai ≡ 0 (mod "m); if m ≥ 2, we further require that not all ai ≡ 0 (mod "). Next,
we determine the largest 0 ≤ s ≤ R! − 1 for which

I!,m,s := {L!(2m − 1; z), L!(2m + 1; z), . . . , L!(2(m + s − 1) − 1; z)} (mod "m)

is linearly independent, and we set J!,m,s := SpanZ/!mZ(I!,m,s). In all calculated
examples we found that s = R! − 1 except for " = 607, in which case, we computed
s = R607 − 2 = 24.

Continuing our search for relations modulo "m, we first suppose that

(6.2) L!(2(m + s) − 1; z) ∈ J!,m,s.

Then there exists c0, . . . , cs−1 ∈ Z for which

L!(2(m+s)−1; z) ≡ c0L!(2m−1; z)+ · · ·+cs−1L!(2(m+s−1)−1; z) (mod "m).
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As X(") is cyclic on J!,m,s, its matrix representation in the basis I!,m,s is

[X(")] =





0 0 · · · 0 c0

1 0 · · · 0 c1

0 1 · · · 0 c2
...

...
. . .

...
...

0 0 · · · 1 cs−1




.

We also suppose that

(6.3) " ! c0.

Then X(") is an isomorphism on J!,m,s since c0 ∈ (Z/"mZ)× is the determinant of
the matrix [X(")]. We conclude that

(6.4) d! = 0, b!(m) ≤ 2m − 1, r!(m) = s, Ωodd
! (m) = J!,m,s.

Conditions (6.2) and (6.3) were met in all calculated examples.
It remains to compute the precise value of b!(m). We recall, for all b ≥ b!(m),

that

SpanZ/!mZ {L!(b; z), L!(b + 2; z), . . . , L!(b + 2(r!(m) − 1); z)} = Ωodd
! (m).

Hence, there exists c0, . . . , cr!(m)−1 ∈ Z such that

(6.5) L!(b + 2r!; z) ≡ c0L!(b; z) + · · · + cr!−1L!(b + 2(r!(m) − 1); z) (mod "m).

Moreover, the coefficients are independent of b. Therefore, we seek b minimal for
which a congruence of type (6.5) holds. We use (6.4) to expedite this search.

On the other hand, if either of (6.2) or (6.3) fail to hold, then we have d! > 0.
In this setting, X(") on S!−1 has an eigenvalue λ ≡ 0 (mod "). The corresponding
eigenspace has dimension d!+1 and is not contained in S (as in (5.1)). We conclude
that r!(m) ≤ R! − d! < R!. Using these facts, an analysis similar to that for when
d! = 0 enables calculation of r!(m) and b!(m).
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