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Abstract. We consider a normalized Eisenstein series of weight k on a con-
gruence subgroup of type Γ0(N) with Nebentypus character χ which vanishes
at all cusps of Γ0(N) inequivalent to the cusp at infinity. We determine con-
ditions on N , k, χ, and an ideal a in certain number fields, under which their
Fourier series are congruent to 1 (mod a).

1. Introduction and Statement of Results

If k ≥ 4 is an even integer, then it is well-known [K, pg.111] that the normal-
ized Eisenstein series given by

Ek(z) = 1 −
2k

Bk

∑

n≥1

σk−1(n)qn

is a modular form of weight k with respect to SL(2, Z), where Bk is the kth Bernoulli
number, q := e2πiz, and σk(n) is the function which sums the kth powers of the
positive divisors of n. Swinnerton-Dyer [Sw-D] showed that Ek(z) satisfies the
following congruence property:

Theorem (Swinnerton-Dyer). If ` ≥ 5 is a prime, then Ek(z) ≡ 1 (mod `)
if and only if k ≡ 0 (mod ` − 1).

This follows from the Von Staudt-Claussen Theorem regarding the divisibility
of the denominators of Bernoulli numbers.

Here we generalize Swinnerton-Dyer’s result to certain Eisenstein series in
spaces of modular forms of weight k on a congruence subgroup of type Γ0(N)
with Nebentypus character χ. These spaces are denoted by Mk(Γ0(N), χ). For
background on integer weight modular forms, see [K]. Following the methods in
Sections 1-3 of Chapter VII of Schoeneberg’s book, Elliptic Modular Functions ,
we develop the Fourier expansion at infinity of a normalized Eisenstein series
EN,k,χ(z) ∈ Mk(Γ0(N), χ) which vanishes at all cusps of Γ0(N) inequivalent to
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2 EISENSTEIN SERIES

the cusp at infinity, and we state conditions on N , k, and χ guaranteeing the exis-
tence of these series. (Schoeneberg does this for Eisenstein series without character
on an arbitrary subgroup of level N). Using these expansions, we obtain conditions
on N , k, and χ, and an ideal a in certain number fields, under which EN,k,χ(z) ≡ 1
(mod a).

Theorem 1.1 lists formulas for EN,k,χ(z) when they exist.

Theorem 1.1. Suppose χ is a Dirichlet character with modulus N and con-

ductor f , and τm(d, χ) :=
m−1
∑

h=1

χ(h)ζdh
m , where ζm := e

2πi
m . Suppose also that if χ is

nontrivial and N = 1 or 2, then k ≥ 4 is an even integer satisfying χ(−1) = (−1)k,

and if χ is nontrivial and N > 2, then k ≥ 3 is an integer satisfying χ(−1) = (−1)k.

Then the series EN,k,χ(z) given by the following formulas are normalized modular

forms in Mk(Γ0(N), χ) which vanish at all cusps of Γ0(N) inequivalent to the cusp

at infinity.

1. If χ is trivial and N = 1, then for an even integer k ≥ 4,

(1) EN,k,χ(z) = Ek(z) = 1 −
2k

Bk

∑

n≥1

σk−1(n)qn.

If χ is trivial and N > 1, then for an even integer k ≥ 4,

(2) EN,k,χ(z) = 1 −
2kφ(N)

NkBk

∏

p|N

(

1 −
1

pk

)

∑

n≥1









∑

d|n
d>0

dk−1 µ(N/ gcd(d, N))

φ(N/ gcd(d, N))









qn,

where φ denotes Euler’s phi function, and µ denotes the Möbius function.

2. If χ is nontrivial, then

(3)

EN,k,χ(z) = 1−
k

(N
f )kτf (1, χ)Bk,χ

∑

n≥1









∑

d|n
d>0

dk−1(τN (d, χ) + (−1)kτN (−d, χ))









qn,

where Bk,χ is the generalized Bernoulli number associated to χ.

3. If χ is nontrivial and primitive, then

(4) EN,k,χ(z) = 1 −
2k

Bk,χ

∑

n≥1









∑

d|n
d>0

χ(d)dk−1









qn.

In what follows, let Kχ = Q(χ) denote the extension of Q obtained by adjoining
the values of χ, let OKχ

denote the ring of integers of Kχ, and denote by OKχ,N

the ring of integers of Kχ,N = Q(χ, ζN ). We also define ordm(n) to be the power
of m dividing n if m and n are integers. If α = a

b ∈ Q, then ordm(α) := ordm(a)−
ordm(b). Theorems 1.2 and 1.3 generalize Swinnerton-Dyer’s Theorem to the series
(2) and (4) listed in Theorem 1.1.
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Theorem 1.2. Suppose that ` is an odd prime, χ is the trivial Dirichlet char-

acter modulo N , and k ≥ 4 is an even integer. Then the following are true:

1. EN,k,χ(z) ≡ 1 (mod `) if and only if k ≡ 0 (mod ` − 1) and N = `t for

some nonnegative integer t.
2. EN,k,χ(z) ≡ 1 (mod 2) if and only if N = 2apb, where p is an odd prime

satisfying ord2(p
k − 1) = 1 + ord2(k) and a and b are nonnegative integers.

Remark. Theorems 1.2.1 and 1.2.2 contain Swinnerton-Dyer’s Theorem as a

special case, the case where N = 1.

Theorem 1.3. Suppose that ` is an odd rational prime, a is an ideal in OKχ,N

with the property that a - (2), and χ is a nontrivial primitive Dirichlet character.

Then for an integer k ≥ 3 satisfying χ(−1) = (−1)k, we have:

1. If N has at least two distinct prime divisors, then

EN,k,χ(z) 6≡ 1 (mod a).

2. If N = 4 and a - (4), then

E4,k,χ(z) 6≡ 1 (mod a).

If N = 2t for some integer t ≥ 3, then

E2t,k,χ(z) 6≡ 1 (mod a).

3. If N = `, then

E`,k,χ(z) 6≡ 1 (mod a)

unless there is a primitive root g of Z/`Z satisfying

p = gcd(`, 1 − χ(g)gk) 6= (1),

where p is an ideal in OKχ
. In this case

E`,k,χ(z) ≡ 1 (mod pordp(`)).

4. If N = ` and χ =
(

•
`

)

, the Legendre symbol, then

E`,k,(•`)
≡ 1 (mod `)

if and only if k ≡ `−1
2 (mod ` − 1).

5. If N = `t for some integer t ≥ 2, and if gcd(`, 1 − χ(g)gk) = (1) for every

primitive root g of Z/`Z, then

E`t,k,χ(z) 6≡ 1 (mod a).

Note that if a is an ideal in OKχ,N and if j is a positive integer, then Ej
N,k,χ(z) ≡

1 (mod a) whenever EN,k,χ(z) ≡ 1 (mod a), where Ej
N,k,χ(z) ∈ Mjk(Γ0(N), χ).
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2. Background on Schoeneberg’s Eisenstein Series

Before proceeding with the proof of Theorems 1.1-1.3, we describe the basic
properties of Schoeneberg’s primitive and reduced Eisenstein series, the building
blocks for the Eisenstein series EN,k,χ(z) that we construct. We keep the notation
from Schoeneberg’s book in what follows.

If f : H 7→ Ĉ, where H is the upper half plane and Ĉ = C ∪ {∞}, and if

S =

[

a b
c d

]

∈ SL(2, Z), then f(z)|kS := (cz + d)−kf(Sz). Suppose that N ≥ 1

and k ≥ 3 are integers, and m =

[

m1

m2

]

and a =

[

a1

a2

]

are pairs of integers.

Schoeneberg defines the inhomogenous Eisenstein series of weight k and level N as
follows [Sc, pg.155, (2)]:

GN,k,a(z) =
∑

m1≡a1 (mod N)
m2≡a2 (mod N)

m6=0

(m1z + m2)
−k,

(In his notation, Schoeneberg refers to modular forms having dimension −k < 0,
rather than having weight k > 0, which means the same. We prefer to use the term
weight .) If gcd(a1, a2, N) = 1, then GN,k,a(z) is called a primitive Eisenstein series.

The relevant facts about primitive Eisenstein series are these:

1. [Sc, pg.155, Thm.1] For all a, GN,k,a(z) ∈ Mk(Γ(N)).
2. [Sc, pg.155, (3)] For all a,

(5) GN,k,−a(z) = (−1)kGN,k,a(z).

3. [Sc, pg.155, (3)] If a ≡ a1 (mod N), then

(6) GN,k,a(z) = GN,k,a1
(z).

4. [Sc, pg.156, (4)] If A ∈ SL(2, Z), then

(7) GN,k,a(z)|kA = GN,k,A′a(z),

where A′ is the transpose of A.
5. [Sc, pg.157, (5)] For integers a and b, define

(8) δ

(

a

b

)

=

{

1 if b | a,

0 if b - a.

Then

GN,k,a(z) =
∑

ν≥0

αν(N, k, a)e
2πiνz

N ,

where

(9) α0(N, k, a) = δ

(

a1

N

)

∑

m2≡a2 (mod N)
m2 6=0

m−k
2 ,
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and for ν ≥ 1,

(10) αν(N, k, a) =
(−2πi)k

Nk(k − 1)!

∑

m|ν
ν
m

≡a1 (mod N)

mk−1sgn(m)ζa2m
N .

One may also define reduced Eisenstein series. If gcd(a1, a2, N) = 1, then these
may be written [Sc, pg.158, (7)]:

G∗
N,k,a(z) =

∑

m≡a (mod N)
gcd(m1,m2)=1

(m1z + m2)
−k.

Facts 1-4 concerning primitive Eisenstein series also hold for reduced Eisenstein
series. The reduced Eisenstein series are expressible as a linear combination of
primitive Eisenstein series [Sc, pg.159, (9)]:

(11) G∗
N,k,a(z) =

∑

t (mod N)









∑

dt≡1 (mod N)
d>0

µ(d)

dk









GN,k,ta(z).

We now proceed with the proof of Theorem 1.1

3. The Proof of Theorem 1.1

We note that Γ0(N) =

µ1
⋃

ν=1

Γ(N)Aν , where the coset representatives Aν lie in

the set

(12)

{[

αν βν

γν δν

]

∈ SL(2, Z)

}

,

where αν ∈ (Z/NZ)∗, βν ∈ Z/NZ, γν ≡ 0 (mod N), δν ≡ α−1
ν (mod N), and

µ1 = [Γ0(N) : Γ(N)]. We suppose that χ is a Dirichlet character with modulus N
and conductor f . As our goal is to construct modular forms for Mk(Γ0(N), χ), we
impose the condition that k ≥ 3 is an integer with the property that

(13) χ(−1) = (−1)k.

If A =

[

a b
c d

]

∈ Γ0(N), then the transformation law satisfied by modular forms

f(z) ∈ Mk(Γ0(N), χ) is given by:

(14) f(z)|kA = χ(d)f(z).

An application of (14) using A = −I ∈ Γ0(N) shows that the spaces Mk(Γ0(N), χ)
contain only the modular form which is identically zero when (13) does not hold.
We claim that

G∗

Γ0(N),k,χ,
h

0

1

i(z) =

µ1
∑

ν=1

χ(δν)G∗

N,k,
h

0

1

i(z)|kAν

is a modular form in Mk(Γ0(N), χ) with the property that it vanishes at all cusps
of Γ0(N) inequivalent to the cusp at infinity.
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Observing that G∗

Γ0(N),k,χ,
h

0

1

i(z) is a linear combination of reduced, and hence,

by (11), primitive Eisenstein series, we impose the additional condition that k ≥ 4
is an even integer when N = 1 or 2. When N = 1 or 2 and k ≥ 3 is an odd integer,
it follows by (6) and (5) that

GN,k,a(z) = GN,k,−a(z)

= −GN,k,a(z).

This shows that GN,k,a(z) = 0 in this case.

To verify that G∗

Γ0(N),k,χ,
h

0

1

i(z) ∈ Mk(Γ0(N), χ), we only need to show that it

satisfies (14) since it clearly satisfies the remaining defining properties of a modular

form in Mk(Γ0(N), χ). If A =

[

a b
c d

]

∈ Γ0(N), then AνA = GνAν′ for some

Gν ∈ Γ(N), and for some ν′ uniquely determined by ν which runs through {1, ..., µ1}

as ν does. Moreover, Aν′ =

[

αν′ βν′

γν′ δν′

]

, with δν ≡ d−1δν′ (mod N). Therefore,

G∗

Γ0(N),k,χ,
h

0

1

i(z)|kA =

µ1
∑

ν=1

χ(δν)G∗

N,k,
h

0

1

i(z)|kAνA

=

µ1
∑

ν′=1

χ(d−1δν′)G∗

N,k,
h

0

1

i(z)|kGνAν′

= χ(d)

µ1
∑

ν′=1

χ(δν′)G∗

N,k,
h

0

1

i(z)|kAν′

= χ(d)G∗

Γ0(N),k,χ,
h

0

1

i(z),

so G∗

Γ0(N),k,χ,
h

0

1

i(z) ∈ Mk(Γ0(N), χ).

Next, we calculate the value of G∗

Γ0(N),k,χ,
h

0

1

i(z) at an arbitrary cusp −d
c . To

do this, we form A =

[

a b
c d

]

∈ SL(2, Z), and consider G∗

Γ0(N),k,χ,
h

0

1

i(z)|kA−1 =

∑

n≥0

r(n)q
n
N . The value of G∗

Γ0(N),k,χ,
h

0

1

i(z) at −d
c is r(0). The first step in the

calculation is to simplify G∗

Γ0(N),k,χ,
h

0

1

i(z)|kA−1 using (7) twice and (12):

G∗

Γ0(N),k,χ,
h

0

1

i(z)|kA−1 =

µ1
∑

ν=1

χ(δν)G∗

N,k,
h

0

1

i(z)|kAνA−1

=

µ1
∑

ν=1

χ(δν)G∗

N,k,
h γν

δν

i(z)|kA−1

= N
∑

h∈(Z/NZ)∗

χ(h)G∗

N,k,
h

0

h

i(z)|kA−1

= N
∑

h∈(Z/NZ)∗

χ(h)G∗

N,k,
h

−ch
ah

i(z).(15)
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In view of (15), we simplify G∗

N,k,
h

−ch

ah

i(z) using (11):

G∗

N,k,
h

−ch
ah

i(z) =
∑

ν≥0

α∗
ν

(

N, k,
[

−ch
ah

])

e
2πiνz

N

=
∑

t∈(Z/NZ)∗









∑

dt≡1 (mod N)
d>0

µ(d)

dk









G
N,k,

h

−tch
tah

i(z).(16)

We follow Schoeneberg’s computation of α∗
0

(

N, k,
[

−ch

ah

])

and note that the first

equality is obtained by applying (9) and (16) [Sc, pg.160]:

α∗
0

(

N, k,
[

−ch
ah

])

=
∑

t∈(Z/NZ)∗









∑

dt≡1 (mod N)
d>0

µ(d)

dk









δ

(

−tch

N

)

∑

m≡tah (mod N)
m6=0

m−k

= δ

(

−ch

N

)

∑

d>0

∑

md≡ah (mod N)
m6=0

µ(d)

(dm)k

= δ

(

−ch

N

)

∑

m≡ah (mod N)
m6=0

m−k
∑

d|m
d>0

µ(d)(17)

Observe that since

(18)
∑

d|m
d>0

µ(d) =

{

1 if m = 1, or− 1,

0 if m 6= 1, or− 1,

it follows that α∗
0

(

N, k,
[

−ch

ah

])

6= 0 if and only if c ≡ 0 (mod N) and d ≡ h

(mod N), i.e., if and only if −d
c is Γ(N)-equivalent to the cusp at infinity. Contin-

uing our calculation, we now have

(19) r(0) = N
∑

h∈(Z/NZ)∗

χ(h)α∗
0

(

N, k,
[

−ch

ah

])

by (15). Therefore, r(0) = 0 at all cusps of Γ(N) inequivalent to the cusp at
infinity, and hence, at all cusps of Γ0(N) inequivalent to the cusp at infinity since
Γ(N) ⊂ Γ0(N).

It remains to show that the value of G∗

Γ0(N),k,χ,
h

0

1

i(z) at the cusp at infinity

is nonzero. Combining the previous facts given by (17), (19), (18), and (13), we
calculate:

r(0) = N
∑

h∈(Z/NZ)∗

χ(h)
∑

m≡h (mod N)
m6=0

m−k
∑

d|m
d>0

µ(d)

= N(χ(1)(1)k + χ(−1)(−1)k)

= 2N.(20)
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This proves that G∗

Γ0(N),k,χ,
h

0

1

i(z) satisfies the cusp conditions stated in Theorem

1.1.

We now develop the normalized Fourier expansion of G∗

Γ0(N),k,χ,
h

0

1

i(z) at in-

finity. Recall that k is even when N = 1 or 2. Letting st :=
∑

dt≡1 (mod N)
d>0

µ(d)

dk
for

t ∈ (Z/NZ)∗, we simplify G∗

Γ0(N),k,χ,
h

0

1

i(z) using (15) and (11):

G∗

Γ0(N),k,χ,
h

0

1

i(z) = N
∑

h∈(Z/NZ)∗

χ(h)G∗

N,k,
h

0

h

i(z)

= N
∑

h∈(Z/NZ)∗

χ(h)
∑

t∈(Z/NZ)∗

stG
N,k,

h

0

th

i(z).

Letting c(N) := N
∑

t∈(Z/NZ)∗

stχ(t), a constant dependent only on N , and making

the change of variable j = th, we obtain

(21) G∗

Γ0(N),k,χ,
h

0

1

i(z) = c(N)
∑

j∈(Z/NZ)∗

χ(j)G
N,k,

»

0

j

–(z).

Substituting (9) and (10) in (21), we have

G∗

Γ0(N),k,χ,
h

0

1

i(z) = c(N)
∑

j∈(Z/NZ)∗

χ(j)×











∑

m≡j (mod N)
m6=0

m−k +
(−2πi)k

Nk(k − 1)!

∑

n≥1











∑

d|n
n
d
≡0 (mod N)

dk−1sgn(d)ζdj
N











q
n
N











.

(22)

Using (22) and (13), observe that the constant term r(0) may also be expressed as

r(0) = c(N)
∑

j∈(Z/NZ)∗

χ(j)
∑

m≡j (mod N)
m6=0

m−k

= c(N)
∑

m≥1

χ(m)m−k(1 + χ(−1)(−1)k)

= 2c(N)L(k, χ),(23)
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where L(k, χ) is the Dirichlet L-function associated to χ. Substituting (23) in (22)
gives us

G∗

Γ0(N),k,χ,
h

0

1

i(z) = c(N)×











2L(k, χ) +
(−2πi)k

Nk(k − 1)!

∑

n≥1











∑

j∈(Z/NZ)∗

χ(j)
∑

d|n
n
d
≡0 (mod N)

dk−1sgn(d)ζdj
N











q
n
N











.

It is clear from (20) and (23) that c(N) 6= 0. Therefore, we can define

EN,k,χ(z) := (2L(k, χ)c(N))−1G∗

Γ0(N),k,χ,
h

0

1

i(z) = 1 +
(−2πi)k

2Nk(k − 1)!L(k, χ)
×

∑

n≥1











∑

j∈(Z/NZ)∗

χ(j)
∑

d|n
n
d
≡0 (mod N)

dk−1sgn(d)ζdj
N











q
n
N ∈ Mk(Γ0(N), χ).

Noting that
∑

j∈(Z/NZ)∗

χ(j)
∑

d|n

dk−1sgn(d)ζdj
N =

∑

j∈(Z/NZ)∗

χ(j)
∑

d|n
d>0

dk−1(ζdj
N + (−1)kζ−dj

N )

=
∑

d|n
d>0

dk−1(τN (d, χ) + (−1)kτN (−d, χ)),

and that the condition n
d ≡ 0 (mod N) allows us to make the change of variable

n → nN , our formula becomes:

EN,k,χ(z) = 1+
(−2πi)k

2Nk(k − 1)!L(k, χ)

∑

n≥1









∑

d|n
d>0

dk−1(τN (d, χ) + (−1)kτN (−d, χ))









qn.

We now simplify EN,k,χ(z) in the three cases specified in Theorem 1.1 using certain
well-known facts. If χ is the trivial character with modulus N , then χ = χ and k
is even. We use the following facts to obtain formulas (1) and (2):

1. [Ir-R, Thm.2, pg.231] If k is a positive even integer, then

2ζ(k) =
(−1)

k
2
+1(2π)kBk

k!
,

where ζ(s) is the Riemann zeta function.
2. [Ir-R, pg.255] If χ is trivial, then

L(k, χ) =











ζ(k) if N = 1,

ζ(k)
∏

p|N

(

1 −
1

pk

)

if N > 1.
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3. [A, pg.164] If χ is trivial, then

τN (d, χ) = τN (−d, χ)

=
φ(N)µ(N/ gcd(d, N))

φ(N/ gcd(d, N))
.

When χ is a nontrivial character with modulus N and conductor f , we use a
different set of facts to produce the formula (3):

1. [Ir-R, Prop.16.6.2] If χ is nontrivial and k is a positive integer, then

L(1 − k, χ) = −
Bk,χ

k
.

2. If k is a positive integer, then

Γ(k) = (k − 1)!,

where Γ(s) is the classical Γ-function.
3. If χ is nontrivial and k is a positive integer, and if we define

δχ :=

{

1 if χ(−1) = −1,

0 if χ(−1) = 1,

then the functional equation for L(k, χ) is [Iw, Ch.1, Sec.1.2]:

L(k, χ) =
τf (1, χ)

2i δχ

(

2π

f

)k
L(1 − k, χ)

Γ(k) cos
(

π(k−δχ)
2

) .

If χ is a nontrivial primitive character with modulus N , we know the additional
fact [A, Thm.8.15]:

τN (d, χ) = χ(d)τN (1, χ),

which we substitute in (3) to obtain (4). This finishes the proof of Theorem 1.1.

4. The Proof of Theorem 1.2

The proof of Theorem 1.2 relies on some well-known facts about the ordinary
Bernoulli numbers, Bk:

Theorem 4.1 (Von Staudt-Claussen) [Ir-R, Thm.3, pg.233]. Suppose

that ` is a prime and k is a positive even integer. If ` − 1 - k, then ord`(Bk) ≥ 0,
and if ` − 1 | k, then ord`(Bk) = −1.

Theorem 4.2 [Ir-R, Thm.15.2.4]. Suppose that ` is a prime and k is a

positive even integer. If ` − 1 - k, then ord`

(

Bk

k

)

≥ 0.

In the case where χ is the trivial character modulo 1 and ` is a rational
prime, the desired result follows by applying Theorem 4.1 to formula (1). This
is Swinnerton-Dyer’s Theorem.
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Therefore, we consider the cases in which N > 1. We let EN,k,χ(z) =
∑

n≥0

a(n)qn

and cN := N
Q

p|N p . To start, we simplify the coefficient a(cN ):

a(cN ) =
−2kφ(N)

NkBk

∏

p|N

(

1 −
1

pk

)

∑

d| N
Q

p|N
p

dk−1 µ(N/ gcd(d, N))

φ(N/ gcd(d, N)
.

Since

µ(N/ gcd(d, N)) =



















(−1)ω(N) if d = N/
∏

p|N

p,

0 if d < N/
∏

p|N

p,

where ω(N) is the number of distinct prime divisors of N , it follows that

a(cN ) =
(−1)ω(N)+12k

Bk

∏

p|N

(pk − 1)
.

Note that

(24) ord`(a(cN )) = ord`(2) + ord`(k) − ord`(Bk) −
∑

p|N

ord`(p
k − 1)

for a given prime `. Assuming for now that ` is odd, we analyze a(cN ) (mod `) in
several cases.

case 1. ` − 1 - k.

ord`

(

Bk

k

)

≥ 0 by Theorem 4.2, so ord`(a(cN )) ≤ 0 by (24), and hence, EN,k,χ(z) 6≡
1 (mod `).

Cases 2a and 2b concern the situation where `−1 | k. In this situation, Theorem
4.1 implies that ord`(Bk) = −1. We suppose that ord`(k) = j. Then

(25) k = `j(` − 1)m = φ(`j+1)m

for some positive integer m coprime to `.

case 2a. ` − 1 | k and ` - N .

gcd(p, `) = 1 for every prime p | N since ` - N , so pk ≡ 1 (mod `j+1) by (25).
Using (24) we have

ord`(a(cN )) ≤ (j + 1)(1 − ω(N)).

ω(N) ≥ 1 since N > 1, so ord`(a(cN )) ≤ 0 in this case. Consequently, EN,k,χ(z) 6≡ 1
(mod `).

case 2b. ` − 1 | k and ` | N .

Using (24) and (25) again, we have

ord`(a(cN )) ≤ (j + 1)(2 − ω(N)).

It follows that if N is not a positive power of `, then ord`(a(cN )) ≤ 0, in which case
EN,k,χ(z) 6≡ 1 (mod `).
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Therefore, in the case where ` is an odd prime we know the following:
EN,k,χ(z) 6≡ 1 (mod `) if k 6≡ 0 (mod ` − 1) or if N 6= `t for all positive integers t.
We now prove the converse.

For an odd prime ` and a positive integer t, we simplify E`t,k,χ(z) by first
observing that

φ(`t)µ(`t/ gcd(d, `t))

φ(`t/ gcd(d, `t)
=











`t−1(` − 1) if ord`(d) = t,

−`t−1 if ord`(d) = t − 1,

0 if ord`(d) ≤ t − 2.

= `t−1

(

δ

(

d

`t

)

` − δ

(

d

`t−1

))

,(26)

using the notation defined by (8). After substituting (26) in (2), we obtain

E`t,k,χ(z) = 1 −
2k`t−1

`tkBk

(

1 − 1
`k

)×









∑

n≥1









∑

d|n
d>0

dk−1δ

(

d

`t

)

`









qn −
∑

n≥1









∑

d|n
d>0

dk−1δ

(

d

`t−1

)









qn









.(27)

Making the change of variables d → d`t gives us

∑

n≥1









∑

d|n
d>0

dk−1δ

(

d

`t

)

`









qn = `t(k−1)+1
∑

n≥1











∑

d| n

`t

d>0

dk−1











qn

= `t(k−1)+1
∑

n≥1

σk−1

( n

`t

)

qn,(28)

and similarly, making the change of variables d → d`t−1 gives us

(29)
∑

n≥1









∑

d|n
d>0

dk−1δ

(

d

`t−1

)









qn = `(t−1)(k−1)
∑

n≥1

σk

( n

`t−1

)

qn,

where σk

(

a
b

)

= 0 if a and b are integers with b 6= 0 but a
b 6∈ Z. Substituting (28)

and (29) in (27) yields

(30) EN,k,χ(z) = 1 −
2k

Bk(`k − 1)

∑

n≥1

(

`kσk−1

( n

`t

)

− σk−1

( n

`t−1

))

qn.

E`t,k,χ(z) ≡ 1 (mod `) since ord`

(

2k
Bk(`k−1)

)

≥ 1 by Theorem 4.1. This proves

Theorem 1.2.1.

Next, we assume ` = 2. If ord2(k) = j, then

(31) k = 2jm = φ(2j+1)m
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for some positive odd integer m. Moreover, Theorem 4.1 implies that ord2(Bk) =
−1 for every positive even integer k ≥ 4. We examine ord2(a(cN )) in two cases.

case 1′. 2 - N.

ord2(p
k − 1) ≥ j + 1 for every prime p | N using (31), so

ord2(a(cN )) ≤ 1 + (j + 1)(1 − ω(N))

using (24). If ω(N) > 1, it follows that EN,k,χ(z) 6≡ 1 (mod 2). Furthermore, if
N = pb for some odd prime p and positive integer b, and if ord2(p

k − 1) > j + 1,
then Epb,k,χ(z) 6≡ 1 (mod 2).

case 2′. 2 | N.

Using (31) and (24) as in case 1′, we obtain

ord2(a(cN )) ≤ 1 + (j + 1)(2 − ω(N)).

If ω(N) > 2, then EN,k,χ(z) 6≡ 1 (mod 2). Also, if N = 2apb for some odd prime
p and positive integers a and b, and if ord2(p

k − 1) > j + 1, then E2apb,k,χ(z) 6≡ 1
(mod 2).

Hence, EN,k,χ(z) 6≡ 1 (mod 2) if N does not have the form 2apb, where p is an
odd prime satisfying

(32) ord2(p
k − 1) = j + 1

and a and b are nonnegative integers. We therefore examine EN,k,χ(z) (mod 2)
when N does have this form.

In the case where N = 2a for some positive integer a and in the case where
N = pb where p is an odd prime satisfying (32) and b is a positive integer, the
formulas for EN,k,χ(z) are given by (30) with ` = 2 and ` = p, respectively. The
reasoning used there can also be used to show that EN,k,χ(z) ≡ 1 (mod 2) in these
cases.

In the case where N = 2apb for some odd prime p satisfying (32) and a and
b positive integers, a formula for E2apb,k,χ(z) can be found by applying the same
reasoning used to derive (30):

E2apb,k,χ(z) = 1 −
2k

Bk(pk − 1)(2k − 1)

∑

n≥1

A(n)qn,

where

A(n) =

(2p)kσk−1

(

n

2apb

)

− pkσk−1

(

n

2a−1pb

)

− 2kσk−1

(

n

2apb−1

)

+ σk−1

(

n

2a−1pb−1

)

.

Now observe that E2apb,k,χ(z) ≡ 1 (mod 2) since ord2

(

2k
Bk(pk−1)(2k−1)

)

= 1 using

Theorem 4.1. This completes the proof of Theorem 1.2.
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5. The Proof of Theorem 1.3

The proof of Theorem 1.3 follows by applying the Theorems of Carlitz (The-
orems 5.1, 5.2) regarding the divisibility properties of the generalized Bernoulli
numbers Bk,χ to the formula (4). We extend the definition of ord to rings of inte-
gers of number fields in the obvious way.

Theorem 5.1 (Carlitz) [C, Thm.1]. Suppose that k is a positive integer,

` is a rational prime, and χ is a nontrivial primitive Dirichlet character with con-

ductor N . Then
Bk,χ

k
=

R

D
,

where R and D are elements in OKχ
with gcd(R, D) = 1. If N has at least two

distinct rational prime divisors, then D = 1. If N = `t, then D is a product of

prime divisors of `.

We denote the series in formula (4) by EN,k,χ(z) =
∑

n≥0 b(n)qn, and observe
that

b(1) =
−2k

Bk,χ
.

If N has at least two rational prime divisors, then there is an R ∈ OKχ
for which

b(1) = −2
R

by Theorem 5.1. It follows that if a is an ideal in OKχ,N and a - (2),
then orda(b(1)) ≤ 0, so that EN,k,χ(z) 6≡ 1 (mod a), proving Theorem 1.3.1. The
proofs of Theorems 1.3.2-1.3.5 follow from Theorem 5.2.

Theorem 5.2 (Carlitz) [C, Thm.4]. Suppose χ is a nontrivial primitive

character with conductor N , and ` is an odd rational prime. Then the following

are true.

1. If N = `, then
Bk,χ

k ∈ Z unless there is a primitive root g of Z/`Z for which

(33) p = gcd(`, 1 − χ(g)gk) 6= (1),

where p is an ideal in OKχ
. In this case,

`Bk,χ + 1 ≡ 0 (mod p1+ord`(k)).

2. If N = `t for some integer t ≥ 2, then
Bk,χ

k ∈ Z unless there is a primitive

root g of Z/`Z for which

p = gcd(`, 1 − χ(g)gk) 6= (1),

where p is an ideal in OKχ
. In this case,

(1 − χ(1 + `))
Bk,χ

k
≡ 1 (mod p).

3. If N = 4, then

Bk,χ

k
≡

{

1 (mod 1
2 ) if k odd,

0 (mod 1) if k even.

4. If N = 2t, for some integer t ≥ 3, then
Bk,χ

k ∈ Z.
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Note that if (33) holds, and if we let Bk,χ =
Uk,χ

Vk,χ
, where Uk,χ and Vk,χ ∈ OKχ

and gcd(Uk,χ, Vk,χ) = 1, then

(34) ordp(Bk,χ) = −ordp(`) ≤ −1.

We now proceed with the proofs of Theorems 1.3.2-1.3.5. We assume in all
cases that ` is an odd rational prime, a is an ideal in OKχ,N with the property
that a - (2), χ is a nontrivial primitive Dirichlet character, and k ≥ 3 is an integer
satisfying χ(−1) = (−1)k.

Proof (of Theorem 1.3.2). If N = 4 and k is even, then χ is trivial. If
N = 4 and k is odd, then b(1) = −4

s for some nonzero integer s by Theorem 5.2.3.
If a - (4), then orda(b(1)) ≤ 0, so E4,k,χ(z) 6≡ 1 (mod a). If N = 2t for some
integer t ≥ 3, then b(1) = −2

j for some nonzero integer j by Theorem 5.2.4. Hence,

orda(b(1)) ≤ 0, so E2t,k,χ(z) 6≡ 1 (mod a).

Proof (of Theorem 1.3.3). If N = ` and gcd(`, 1−χ(g)gk) = (1) for every
primitive root g of Z/`Z, then b(1) = −2

j for some nonzero integer j by Theorem

5.2.1. Hence, orda(b(1)) ≤ 0, so E`,k,χ(z) 6≡ 1 (mod a). If there is a primitive root
g of Z/`Z for which p = gcd(`, 1−χ(g)gk) 6= (1), then ordp(Bk,χ) = −ordp(`) ≤ −1
by (34). It follows that ordp(b(n)) ≥ 1 for every n ≥ 1 by formula (4), and thus,

E`,k,χ(z) ≡ 1 (mod pordp(`)).

Proof (of Theorem 1.3.4). Suppose N = ` and χ =
(

·
`

)

, the Legendre
symbol. If we choose an arbitrary primitive root g of Z/`Z and suppose that there

is an a ∈ Z/`Z for which a2 ≡ g (mod `), then g
`−1

2 ≡ a`−1 ≡ 1 (mod `) since
gcd(a, `) = 1. This contradicts the hypothesis that g is a primitive root of Z/`Z,
so

(

g
`

)

= −1. Using this fact, observe that gcd(`, 1 −
(

g
`

)

gk) = gcd(`, 1 + gk) 6= (1)

if and only if gk ≡ −1 (mod `), i.e., if and only if k ≡ `−1
2 (mod ` − 1). In this

case gcd(`, 1 −
(

g
`

)

gk) = (`), so ord`

(

Bk,(·
`)

)

≤ −1 by (34). Using formula (4), it

follows that ord`(b(n)) ≥ 1 for all n ≥ 1 if and only if k ≡ `−1
2 (mod ` − 1).

Proof (of Theorem 1.3.5). If N = `t for some integer t ≥ 2, and if gcd(`, 1−
χ(g)gk) = (1) for every primitive root g of Z/`Z, then b(1) = −2

j for some nonzero

integer j by Theorem 5.2.2. Hence, orda(b(1)) ≤ 0, so E`t,k,χ(z) 6≡ 1 (mod a).

Q.E.D.
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