Quiz 2

January 17, 2008

Name
Instructions. Complete the following exercises to the best of your ability. Please show all work in an organized and legible manner Do not use a calculator. You may use the back of this page if you need more room; however please indicate when you have done so.

1. Evaluate the definite integral

$$
\int_{\ln 2}^{\ln \left(\frac{2}{\sqrt{3}}\right)} \frac{e^{-x}}{\sqrt{1-e^{-2 x}}} d x
$$

Substitute $u=e^{-x}$ so that, from the chain rule, $d u=-e^{-x} d x$ whence $d x=-\frac{1}{u} d u$. Integrating with respect to u, the upper and lower bounds become

$$
\begin{aligned}
e^{-\ln 2} & =\frac{1}{2} \quad \text { and } \\
e^{-\ln \left(\frac{2}{\sqrt{3}}\right)} & =\frac{\sqrt{3}}{2}
\end{aligned}
$$

respectively. Therefore

$$
\begin{aligned}
\int_{\ln 2}^{\ln \left(\frac{2}{\sqrt{3}}\right)} \frac{e^{-x}}{\sqrt{1-e^{-2 x}}} d x & =-\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} \frac{1}{\sqrt{1-u^{2}}} d u \\
& =-\left.\left(\sin ^{-1} u\right)\right|_{\frac{1}{2}} ^{\frac{\sqrt{3}}{2}} \\
& =-\left(\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)-\sin ^{-1}\left(\frac{1}{2}\right)\right) \\
& =-\left(\frac{\pi}{3}-\frac{\pi}{6}\right)=-\frac{\pi}{6}
\end{aligned}
$$

