Fall 2009

Problem 1. Use the definition of definite integral to express the integrals as limits.

(a) $\int_{1}^{2} 2x \, dx$ (b) $\int_{0}^{1} \frac{x}{x+1} \, dx$ (c) $\int_{1}^{2} \sqrt{x} \, dx$ (d) $\int_{-\pi/2}^{\pi/2} (1+\cos x) \, dx$

Problem 2. Sketch the region whose signed area is represented by the following definite integral, and evaluate the integral using an appropriate formula from geometry.

(a)
$$\int_{0}^{3} x \, dx$$

(b) $\int_{0}^{2} \left(1 - \frac{1}{2}x\right) dx$
(c) $\int_{0}^{5} 2 \, dx$
(d) $\int_{-1}^{2} |2x - 3| \, dx$

 \mathbf{P}

Problem 3. Use the properties of definite integrals and appropriate formulas from geometry to evaluate the following integrals.

(a)
$$\int_{-1}^{3} (4-5x) dx$$

(b) $\int_{-2}^{2} (1-3|x|) dx$
(c) $\int_{0}^{1} (x+2\sqrt{1-x^2}) dx$
(d) $\int_{-3}^{0} (2+\sqrt{9-x^2}) dx$
roblem 4. Find $\int_{-1}^{2} (f(x)+2g(x)) dx$ if $\int_{-1}^{2} f(x) dx = 5$ and $\int_{-1}^{2} g(x) dx = -3$.

Problem 5. Find
$$\int_{1}^{4} (3f(x) - g(x)) dx$$
 if $\int_{1}^{4} f(x) dx = 2$ and $\int_{1}^{4} g(x) dx = 10$.

Problem 6. Evaluate the following limits by expressing them as a definite integral over the interval [a, b], and applying appropriate formulas from geometry.

(a)
$$\lim_{n \to \infty} \sum_{k=1}^{n} (3x_k^* + 1)\Delta x; a = 0, b = 1.$$

(b) $\lim_{n \to \infty} \sum_{k=1}^{n} \sqrt{4 - (x_k^*)^2} \Delta x; a = -2, b = 2.$