Problem 1. Write each expression in sigma notation but do not evaluate

- (a) $1 + 2 + 3 + \dots + 10$ (b) $3 \cdot 1 + 3 \cdot 2 + 3 \cdot 3 + \dots + 3 \cdot 20$
- (c) $2+4+6+8+\cdots+20$
- (d) $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \frac{1}{5}$

Problem 2. Express the sum of the even intgers from 2 to 100 in sigma notation

Problem 3. Evaluate the following sums

(a)
$$\sum_{k=1}^{100} (7k+1)$$

(b) $\sum_{k=1}^{6} (k-k^3)$
(c) $\sum_{k=1}^{30} k(k-2)(k+2)$

Problem 4. Express the following sums in closed form

(a)
$$\sum_{k=1}^{n} \frac{3k}{n}$$

(b)
$$\sum_{k=1}^{n-1} \frac{k^2}{n}$$

(c)
$$\sum_{k=1}^{n} \left(\frac{5}{n} - \frac{2k}{n}\right)$$

Problem 5. Express the following functions of n in closed form and then find the limit

(a)
$$\lim_{n \to \infty} \frac{1+2+3+\dots+n}{n^2}$$

(b) $\lim_{n \to \infty} \frac{1^2+2^2+3^2+\dots+n^2}{n^3}$
(c) $\lim_{n \to \infty} \sum_{k=1}^n \frac{5k}{n^2}$
(d) $\lim_{n \to \infty} \sum_{k=1}^{n-1} \frac{2k^2}{n^3}$

Problem 6. USe the definition of **area under a curve** with x_k^* as the *right* endpoint of each subinterval to find the are under the curve y = f(x) over the specified intervals.

(a)
$$f(x) = x/2; [1, 4]$$

(b) $f(x) = 9 - x^2; [0, 3]$

Problem 7. USe the definition of **area under a curve** with x_k^* as the *left* endpoint of each subinterval to find the are under the curve y = f(x) over the specified intervals.

(a) f(x) = 5 - x; [0, 5] (b) $f(x) = 1 - x^3$; [-3, -1]