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Mathematicians are like Frenchmen:
Whatever you say to them, they translate into
their own language and forthwith it is some-
thing entirely different.

Johan Wolfgang von Goethe
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An Example

Image generated from a Landsat satellite image draped over an
elevation model produced by the Shuttle Radar Topography Mis-
sion (SRTM).
Natural colors of the scene are enhanced by image processing.
The scene includes some infrared reflectance (as green) to high-
light the vegetation pattern as well as shading of the elevation
model to further highlight the topographic features.
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Optical Imaging

I (Chemical) Photography/Film
I Computational Imaging (Digital Photography/Video)
I Dark-field Imaging (Scattered-light registration)

L. J. M. Daguerre.
First photography, taken in 1839
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Imaging from Wave Propagation

I Transmission Imaging
I Radar Imaging
I Interferometry
I Quantum Tunneling
I Volume Imaging

The hand of Mrs. Wilhelm
Röntgen: The first X-ray image,
1895.

In Otto Glasser, “Wilhelm Conrad
Röntgen and the early history of
the Röntgen rays.” London, 1933.
National Library of Medicine.
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Image from Wave Propagation
Volume Imaging

I Atom probe tomography
I Confocal laser scannig

microscopy
I Cryo-electron tomography
I Electrical capacitance

tomography
I Electrical impedance

tomography
I Functional magnetic

resonance imaging
I Magnetic induction

tomography
I Magnetic resonance

imaging

I Optical projection
tomography

I Photoacoustic tomography
I Positron emission

tomography
I Quantum tomography
I Single photon emission

computed tomography
I Seismic tomography
I Ultrasound transmission

tomography
I X-ray tomography
I Zeeman-Doppler
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Image Analysis
Low-level Image Analysis

Low level analysis aims at extracting reliable, local geometric
information from a mathematical image:

I Edge detection
I Level lines, curvature.



Image Analysis
Global Image Analysis

I Smoothness
I Quadtree decomposition
I Perimeter Determination
I Image Area
I Topology (Euler number)
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Image Analysis
Visual Learning and Recognition

I Segmentation
I Pattern Recognition
I Motion Recognition
I Data Cloud Assimilation
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Image Analysis
Visual Learning and Recognition

I Segmentation
I Pattern Recognition
I Motion Recognition
I Data Cloud Assimilation

AFRL/MNG VEAA Data Set#1
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Editing and Restoration

I Intensity Adjustment
I Denoising
I Inpainting
I Deblurring
I Distortion Correction
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Editing and Restoration

I Intensity Adjustment
I Denoising
I Inpainting
I Deblurring
I Distortion Correction

Reference image Image to be restored

SPOT 5 HRG satellite with Hypermode sampling



Image Compression

1, 024× 1, 024 = 1, 048, 576 pixels



Image Compression

1, 024× 1, 024 = 1, 048, 576 pixels 1 wavelet coefficient



Image Compression

1, 024× 1, 024 = 1, 048, 576 pixels 1 + 4 = 5 wavelet coefficients



Image Compression

1, 024× 1, 024 = 1, 048, 576 pixels 1 + 4 + 16 = 21 wavelet coefficients



Image Compression

1, 024× 1, 024 = 1, 048, 576 pixels 1 + 4 + 16 + 64 = 85 wavelet coefficients



Image Compression

1, 024× 1, 024 = 1, 048, 576 pixels 1 + 4 + 16 + 64 + 256 = 341 wavelet coefficients



Image Compression

1, 024× 1, 024 = 1, 048, 576 pixels 1 + 4 + 16 + 64 + 256 + 1024 = 1365 wavelet coefficients



Image Compression

1, 024× 1, 024 = 1, 048, 576 pixels 1 + 4 + 16 + 64 + 256 + 1024 + 4096 = 5461 wavelet coefficients
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Learning Theory
Example: Data Cloud Assimilation (Dr. Binev’s presentation)



P.D.E. Models
Example: Canny’s Edge Detector

Definition (Canny’s edge points)

Smooth function f : [0, 1]2 → R.
Euclidean surface S =

{(
x, y, f(x, y)

)
∈ R3 : 0 ≤ x, y ≤ 1

}
.

Edges are points (x, y) with Df(x, y) maximal on the gradient
lines.

D2f
(
Df(x, y), Df(x, y)

)
= 0 and |Df(x, y)| is large.
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{(
x, y, f(x, y)

)
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}
.

Edges are points (x, y) with Df(x, y) maximal on the gradient
lines.

D2f
(
Df(x, y), Df(x, y)

)
= 0 and |Df(x, y)| is large.

Original image, followed by edge points.



P.D.E. Models
Example: Canny’s Edge Detector

Definition (Canny’s edge points)

Smooth function f : [0, 1]2 → R.
Euclidean surface S =

{(
x, y, f(x, y)

)
∈ R3 : 0 ≤ x, y ≤ 1

}
.

Edges are points (x, y) with Df(x, y) maximal on the gradient
lines.

D2f
(
Df(x, y), Df(x, y)

)
= 0 and |Df(x, y)| is large.

Image smoothed out, followed by edge points.



P.D.E. Models
Example: Canny’s Edge Detector

1. Convolution of the image by a Gaussian kernel
2. Estimation of D2f(Df,Df) (finite difference scheme)
3. Convolution of D2f(Df,Df) with a small Gauss kernel
4. Thresholding of the gradient of the result of Step 1
5. Zero-crossings of the result of the Step 3, only displayed

when the threshold of Step 4 is achieved.
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Example: X-ray Tomography



Inverse Problems
Example: X-ray Tomography

Basic Idea
X-ray with intensity A on a line(
x(t), y(t)

)
with equation

t(sinα,− cosα) + s(cosα, sinα)
shot through a flat object Ω with
density f(x, y).
Recorded intensity A′ satisfies:

log(A/A′) =
∫ ∞
−∞

f
(
x(t), y(t)

)
dt.
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Inverse Problems
Example: X-ray Tomography

Definition (Radon Transform)

Radon transform of a function f on the plane:

R[f ](α, s) =
∫ ∞
−∞

f
(
x(t), y(t)

)
dt

Formal adjoint of the Radon transform:

R∗[g](x) =
∫ 2π

0
g
(
α,n(α) · x

)
dα



Inverse Problems
Example: X-ray Tomography

Filtered back-projection

f =
1

4π
R∗H

[
Rf
]
,

where Ĥ[h](ω) = |ω| ĥ(ω) is the ramp-filter of h : R→ R
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Example: Computation of Smoothness



Approximation Theory
Example: Computation of Smoothness

Definition (Besov Spaces)

Given f : Rd → R, for h ∈ Rd, set for any n ∈ N,

∆n
hf(x) = ∆n−1

h ∆hf(x) =
n∑
k=0

(−1)n−k
(
η
k

)
f(x+ kh).

For η > 0, set ωη(f, t)r = sup|h|<t
∥∥∆dηeh f

∥∥
Lr(Rd)

.

f ∈ Bη
q

(
Lr(Rd)

)
if

‖f‖Lr(Rd) +
{∫ ∞

0

(
t−ηωη(f, t)r

)q dt
t

}1/q
<∞



Approximation Theory
Example: Computation of Smoothness

The (η, r) plane

1/r

η
Bη
q

(
Lr(Rd)

)
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Approximation Theory
Example: Computation of Smoothness

The (η, r) plane

1/r

η
Bη
q

(
Lr(Rd)
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q
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Approximation Theory
Example: Computation of Smoothness

The (η, r) plane

1/r

η
Bη
q

(
Lr(Rd)

)ζ Bζ
q

(
L∞(Rd)

)

1/p

Lp(Rd)L∞(Rd)



Approximation Theory
Example: Computation of Smoothness

Theorem (DeVore, Popov)

If η, r > 0 are related by 1
r = η

2 + 1
2 , then Bη

r

(
Lr(R2)

)
is

continuously embedded in L2(R2).

1/2 1/r

η slo
pe

=
2
L2(R2)

Bη
r

(
Lr(R2)

)



Approximation Theory
Example: Computation of Smoothness

Theorem
f ∈ Bη

r

(
Lr(R2)

)
if and only if ‖f − fWN ‖L2(R2) = Θ(N−η/2).

Approximation by selecting
the N largest terms in the
Wavelet decomposition

or equivalently, log‖f − fWN ‖L2(R2) = Θ
(
− η

2 logN
)
.



Approximation Theory
Example: Computation of Smoothness

Theorem
f ∈ Bη

r

(
Lr(R2)

)
if and only if ‖f − fWN ‖L2(R2) = Θ(N−η/2).

Approximation by selecting
the N largest terms in the
Wavelet decomposition

or equivalently, log‖f − fWN ‖L2(R2) = Θ
(
− η

2 logN
)
.



Approximation Theory
Example: Computation of Smoothness

− logN

log‖f − fWN ‖L2(R2)

−13 −12.5 −12 −11.5 −11 −10.5

14

20

26



Approximation Theory
Example: Computation of Smoothness
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Approximation Theory
Example: Computation of Smoothness

slope ≈ 0.3072

η ≈ 0.6144



Multi-resolution Analysis
Dual-Tree Complex Wavelet Transform

Original Image

Coefficients at finest scale (6 directions)

Real part Imaginary part



Multi-resolution Analysis
The Wavelet-domain hidden Markov Tree

To each wavelet coefficient wk = uk + ivk, associate a discrete
hidden state qk that takes on values m = S, L with probability
mass function p(qk).
Conditioned on qk = m, wk is Gaussian with mean µk,m and
variance σ2

k,m. Thus, overall marginal pdf is

g(wk) =
∑
m=S,L

p(qk = m)g(wk|qk = m),

with g(wk|qk = m) ≈ N (µk,m, σk,m).



Multi-resolution Analysis
Edge detection

magnitude |wk|

phase ∠wk

scale 1 scale 2 scale 3 scale 4
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Multi-resolution Analysis
Image Analysis

I Smooth Region. Both the coefficient and its parent have
small magnitude (state S).

I Isolated Edge. Both coefficient and parent have large
magnitude (state L), corresponding phases are statistically
similar.

I Texture Region. Both coefficient and parent have large
magnitude, but corresponding phases are very different.



Multi-resolution Analysis
Experiments: Detection of sequences L-L-· · · with constant variance σ = 0.5



Multi-resolution Analysis
Experiments: Results depend very strongly on variance

original L-L-· · · map L-L-· · · map
(σ = 0.5) (σ = 1)



Multi-resolution Analysis
Experiments: Removal of texture region (σ = 0.4)

original L-L-· · · map edges
(threshold = 2)



Multi-resolution Analysis
Experiments: Comparison to Canny

original

edge map (Canny) edge map (HMM)
edge(IMG,’canny’) (σ = 0.3)



Variational Methods
Example: Restoration of Irregularly Sampled Images

Reference image Image to be restored

SPOT 5 HRG satellite with Hypermode sampling



Variational Methods
Example: Restoration of Irregularly Sampled Images

Image Formation Model

g = ΓΛ · (f ∗ h) + n

I f : the ideal undistorted image
I h: blurring kernel
I n: white noise with standard deviation σ
I Λ: sampling grid. Λ = Z2 + ε(Z2)
I ε: perturbation.

ε(x) =
q∑

k=1

ak(x) cos
(
2π〈ξk, x〉+ φk

)
, x ∈ R2

Var{ε} = A2

supp(ε̂) ⊆
[
− T−1

ε , T−1
ε

]
for some period Tε > 2

I ΓΛ: sampling operator ΓΛ =
∑

k∈Λ δ(· − k).



Variational Methods
Example: Restoration of Irregularly Sampled Images

Technical details: Modulation Transfer Function

ĥ(ξ) = ĥS(ξ)ĥO(ξ)ĥM (ξ)

Sensors & conductivity.

ĥS(ξ) = e−2πcβ·ξ

Isotropic low-pass filter.

ĥO(ξ) = e−2παc|ξ|

Motion blur effect.

ĥM (ξ) = sinc τξ · d



Variational Methods
Example: Restoration of Irregularly Sampled Images

Image Formation Model

g = ΓΛ · (f ∗ h) + n

Solution: Variational Model

min
f

{
1
2

∥∥w · (ΓΛ · (p ∗ h ∗ f)− g
)∥∥2 + λ

∫
|∇f |

}
I w: vector of weights used either as preconditioner or local

constraints
I p: spectral projector in a low frequency region



Variational Methods
Example: Restoration of Irregularly Sampled Images

Solution: Variational Model, vector notation

min
f

{
1
2

∥∥W (SHPFf − g)∥∥2 + λJ(f)
}

1. F : Fourier transform
2. P : Spectral projector
3. H: Convolution
4. S: Fourier coefficients to irregular samples
5. W : Spatial weights
6. J : J(f) =

∫
|∇f |



Variational Methods
Example: Restoration of Irregularly Sampled Images

Solution: Variational Model, Euler-Lagrange Equation

0 ∈ F ∗ P ∗H∗ S∗W 2S︸ ︷︷ ︸
T

HP︸ ︷︷ ︸
T ′

Ff − F ∗ P ∗H∗ S∗W 2g︸ ︷︷ ︸
r̂︸ ︷︷ ︸

r̂′

+λ∂J(f)

I ∂J(f): subdifferential of J .

∂J(f) =
{
x ∈ L2(Ω) : J(y)− J(f) ≥ 〈x, y − f〉, y ∈ L2(Ω)

}



Variational Methods
Example: Restoration of Irregularly Sampled Images

Solution: Variational Model, Evolution Equation

ft = −
[
F−1T ′Ff − F−1r̂′ + λ∂J(f)

]
Solved by implicit Euler scheme

fn+1 − fn ∈ −τ
[
F−1T ′Ffn+1 − F−1r̂ + λ∂J(fn+1)

]
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