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Mathematicians are like Frenchmen:
Whatever you say to them, they translate into
their own language and forthwith it is some-
thing entirely different.

Johan Wolfgang von Goethe
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An Example

Image generated from a Landsat satellite image draped over an
elevation model produced by the Shuttle Radar Topography Mis-
sion (SRTM).

Natural colors of the scene are enhanced by image processing.
The scene includes some infrared reflectance (as green) to high-
light the vegetation pattern as well as shading of the elevation
model to further highlight the topographic features.




Image Acquisition
Optical Imaging
Imaging from Wave Propagation
Other Imaging Devices




Optical Imaging

» (Chemical) Photography/Film
» Computational Imaging (Digital Photography/Video)
» Dark-field Imaging (Scattered-light registration)

i
L. J. M. Daguerre.
First photography, taken in 1839




Optical Imaging

» (Chemical) Photography/Film
» Computational Imaging (Digital Photography/Video)
» Dark-field Imaging (Scattered-light registration)

Interference filter array
Microlens array

Signal separator

Image sensor

Fig. 3. TOMBO system with different interference filter on each unit




Optical Imaging

» (Chemical) Photography/Film
» Computational Imaging (Digital Photography/Video)
» Dark-field Imaging (Scattered-light registration)




Imaging from Wave Propagation

vV vVv.v. v .Yy

Transmission Imaging
Radar Imaging
Interferometry
Quantum Tunneling

Volume Imaging

The hand of Mrs. Wilhelm
Rontgen: The first X-ray image,
1895.

In Otto Glasser, “Wilhelm Conrad
Rontgen and the early history of
the Réntgen rays.” London, 1933.
National Library of Medicine.




Imaging from Wave Propagation

» Transmission Imaging
» Radar Imaging

» Interferometry

» Quantum Tunneling

» Volume Imaging
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Imaging from Wave Propagation

Transmission Imaging
Radar Imaging
Interferometry

Quantum Tunneling

vV vVv.v. v .Yy

Volume Imaging




Imaging from Wave Propagation

» Transmission Imaging
» Radar Imaging

» Interferometry

» Quantum Tunneling

» Volume Imaging

Control voltages for piezotube

Tunneling Distance control
current amplifier  and scanning unit

Piezoelectric tube
with electrodes

Tunneling

voltage

Data processing
and display




Imaging from Wave Propagation

Transmission Imaging
Radar Imaging
Interferometry

Quantum Tunneling

vV vVv.v. v Yy

Volume Imaging

inline direction (km)

crossline direction (km)




Image from Wave Propagation

Volume Imaging

» Atom probe tomography » Optical projection

» Confocal laser scannig tomography

IICTOscopy » Photoacoustic tomography

» Cryo-electron tomography > Positron emission

» Electrical capacitance tomography

tomography » Quantum tomography

» Electrical impedance

» Single photon emission
tomography

computed tomography
» Functional magnetic

_ : » Seismic tomography
resonance imaging

» Ultrasound transmission

» Magnetic induction tomography
tomography
) » X-ray tomography
» Magnetic resonance

imaging » Zeeman-Doppler




Other Imaging Devices

» Atomic-force Imaging

» Printing

Electronics

Photodiode

Laser

Sample Surface Cantilever & Tip
.PZT Scanner
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Other Imaging Devices

» Atomic-force Imaging

» Printing

CIMI




Image Processing
Image Analysis
Editing and Restoration
Image Compression




Image Analysis
Low-level Image Analysis
Low level analysis aims at extracting reliable, local geometric
information from a mathematical image:
» Edge detection

» Level lines, curvature.




Image Analysis

Global Image Analysis
» Smoothness
» Quadtree decomposition
» Perimeter Determination
» Image Area

» Topology (Euler number)




Image Analysis
Global Image Analysis

Smoothness

v

Quadtree decomposition
Perimeter Determination

Image Area

vV vyVvyy

Topology (Euler number)




Image Analysis

Global Image Analysis

Smoothness

v

Quadtree decomposition
Perimeter Determination

Image Area

vV vyVvyy

Topology (Euler number)




Image Analysis

Visual Learning and Recognition

» Segmentation
» Pattern Recognition
» Motion Recognition

» Data Cloud Assimilation




Image Analysis

Visual Learning and Recognition

» Segmentation
» Pattern Recognition
» Motion Recognition

» Data Cloud Assimilation
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Image Analysis

Visual Learning and Recognition

» Segmentation

» Pattern Recognition

» Motion Recognition

» Data Cloud Assimilation




Image Analysis

Visual Learning and Recognition

» Segmentation

» Pattern Recognition

» Motion Recognition

» Data Cloud Assimilation




Image Analysis

Visual Learning and Recognition

» Segmentation

» Pattern Recognition

» Motion Recognition

» Data Cloud Assimilation




Image Analysis

Visual Learning and Recognition

Segmentation

Pattern Recognition

>
>

» Motion Recognition

» Data Cloud Assimilation




Image Analysis

Visual Learning and Recognition
» Segmentation
» Pattern Recognition

» Motion Recognition

» Data Cloud Assimilation




Image Analysis

Visual Learning and Recognition

» Segmentation
» Pattern Recognition
» Motion Recognition

» Data Cloud Assimilation

AFRL/MNG VEAA Data Set#1
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Image Analysis

Visual Learning and Recognition
» Segmentation
» Pattern Recognition
» Motion Recognition

» Data Cloud Assimilation
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Image Analysis

Visual Learning and Recognition

» Segmentation
» Pattern Recognition
» Motion Recognition

» Data Cloud Assimilation

CIMI
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Image Analysis

Visual Learning and Recognition

» Segmentation
» Pattern Recognition
» Motion Recognition

» Data Cloud Assimilation
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Editing and Restoration

Intensity Adjustment

Denoising

Deblurring

>
>
» Inpainting
>
>

Distortion Correction

top

bottom

low high
pixel value




Editing and Restoration

Intensity Adjustment

Denoising

Deblurring

>
>
» Inpainting
>
>

Distortion Correction

washing out colors

top

bottom

low high
pixel value




Editing and Restoration

>
>
>
>
>

Intensity Adjustment

Denoising
Inpainting

Deblurring

Distortion Correction

top

bottom

ga

amma correction

N

low

high
pixel value




Editing and Restoration

Intensity Adjustment

Denoising

>
>

» Inpainting
» Deblurring
>

Distortion Correction
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Editing and Restoration

Intensity Adjustment

Denoising

>

>

» Inpainting
» Deblurring
>

Distortion Correction




Editing and Restoration

Intensity Adjustment
Denoising
Inpainting

Deblurring

vV v v VvY

Distortion Correction




Editing and Restoration

Intensity Adjustment

Denoising

>

>

» Inpainting
» Deblurring
>

Distortion Correction




Editing and Restoration

Intensity Adjustment

Denoising

>

>

» Inpainting
» Deblurring
>

Distortion Correction




Editing and Restoration

Intensity Adjustment

Denoising

>

>

» Inpainting
» Deblurring
>

Distortion Correction

Reference image Image to be restored

SPOT 5 HRG satellite with Hypermode sampling




Image Compression

1,024 x 1,024 = 1,048,576 pixels




Image Compression

1,024 x 1,024 = 1,048,576 pixels 1 wavelet coefficient




Image Compression

1,024 x 1,024 = 1,048,576 pixels 1+ 4 =5 wavelet coefficients




Image Compression

1,024 x 1,024 = 1,048,576 pixels 1+ 4+ 16 = 21 wavelet coefficients




Image Compression

1,024 x 1,024 = 1,048,576 pixels 144+ 16 + 64 = 85 wavelet coefficients




Image Compression

1,024 x 1,024 = 1,048,576 pixels 144+ 16 + 64 + 256 = 341 wavelet coefficients




Image Compression

1,024 x 1,024 = 1,048,576 pixels 144+ 16 + 64 + 256 + 1024 = 1365 wavelet coefficients




Image Compression

1,024 x 1,024 = 1,048,576 pixels 1+4+16 + 64 + 256 + 1024 + 4096 = 5461 wavelet coefficients




Techniques
Learning Theory
P.D.E. Models
Inverse Problems
Approximation Theory
Multi-resolution Analysis
Variational Methods




Learning Theory

Example: Data Cloud Assimilation (Dr. Binev’s presentation)




P.D.E. Models

Example: Canny’s Edge Detector
Definition (Canny’s edge points)
Smooth function f: [0,1]? — R.
Euclidean surface S = {(z,y, f(z,y)) € R®: 0 < z,y < 1}.
Edges are points (z,y) with D f(x,y) maximal on the gradient
lines.




P.D.E. Models

Example: Canny’s Edge Detector
Definition (Canny’s edge points)
Smooth function f: [0,1]? — R.
Euclidean surface S = {(x,y, f(x,y)) eR}:0<z,y< 1}.
Edges are points (z,y) with Df(x,y) maximal on the gradient
lines.

D*f(Df(x,y), Df(x,y)) =0 and |Df(x,y)] is large.




P.D.E. Models

Example: Canny’s Edge Detector
Definition (Canny’s edge points)
Smooth function f: [0,1]* — R.
Euclidean surface S = {(z,y, f(z,y)) € R®: 0 < z,y < 1}.
Edges are points (z,y) with Df(x,y) maximal on the gradient
lines.

D*f(Df(z,y), Df(x,y)) =0 and |Df(z,y)] is large.

el ur «

Original image, followed by edge points.
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P.D.E. Models

Example: Canny’s Edge Detector
Definition (Canny’s edge points)
Smooth function f: [0,1]* — R.
Euclidean surface S = {(z,y, f(z,y)) € R®: 0 < z,y < 1}.
Edges are points (z,y) with Df(x,y) maximal on the gradient
lines.

D*f(Df(z,y), Df(x,y)) =0 and |Df(z,y)] is large.

= ! Lo N
Tmage smoothed out, followed by edge points.
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P.D.E. Models

Example:

1.

Gl W

Canny’s Edge Detector

Convolution of the image by a Gaussian kernel
Estimation of D2f(Df, Df) (finite difference scheme)
Convolution of D?f(Df, Df) with a small Gauss kernel
Thresholding of the gradient of the result of Step 1
Zero-crossings of the result of the Step 3, only displayed
when the threshold of Step 4 is achieved.

" oM
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Inverse Problems
Example: X-ray Tomography




Inverse Problems
Example: X-ray Tomography

fl.y)

Basic Idea

X-ray with intensity A on a line
(z(t),y(t)) with equation

t(sin o, — cos ) + s(cos o, sin )
shot through a flat object 2 with

density f(z,y).
Recorded intensity A’ satisfies:

[e.e]

log(A/A") :/ f(z(t),y(t)) dt.

—00




Inverse Problems
Example: X-ray Tomography

Basic Idea
X-ray with intensity A on a line
: (z(t),y(t)) with equation
t(sin av, — cos @) + s(cos v, sin )
shot through a flat object Q2 with

g density f(z,y).
Recorded intensity A’ satisfies:

e}

| log(A/A") = / f(z(t),y(t)) dt.

—00

0 50 100 150
8 (degrees)




Inverse Problems
Example: X-ray Tomography

Definition (Radon Transform)

Radon transform of a function f on the plane:

Rifl(a.) = | 7 p (). () dt

—00

Formal adjoint of the Radon transform:

2T
R*[g](x) = /0 g(a,n(a) - m) da




Inverse Problems
Example: X-ray Tomography

Filtered back-projection

1 *
f=-RH[RS].

where ﬁm(w) = |w| h(w) is the ramp-filter of h: R — R




Approximation Theory

Example: Computation of Smoothness




Approximation Theory

Example: Computation of Smoothness

Definition (Besov Spaces)
Given f: R? = R, for h € RY, set for any n € N,

n

Ajf(x) = A Apf(a) = (=1 (]) f(x + kh).

k=0

For 1 > 0, set w,(f, ),,—sup|h|<tHA f’
f € BJ(L.(RY)) if

(e%] 1/
e +{ [ (s 4} < o0

L,(R4)"




Approximation Theory

Example: Computation of Smoothness

The (n,7) plane




Approximation Theory

Example: Computation of Smoothness

The (n,7) plane

¢ 9B (Loo(RY)




Approximation Theory

Example: Computation of Smoothness

The (n,7) plane

¢ 9B (Loo(RY)




Approximation Theory

Example: Computation of Smoothness

The (n,7) plane

¢ 9B (Loo(RY)




Approximation Theory

Example: Computation of Smoothness

Theorem (DeVore, Popov)

If n,7 > 0 are related by g
continuously embedded in L2 (]R

Lo(R?)

1/2

CIMI




Approximation Theory

Example: Computation of Smoothness

Theorem
f € B/ (L(R?)) if and only if |f — [} | 1,r2) = O(N/2).

Approzimation by selecting
the N largest terms in the
Wavelet decomposition




Approximation Theory

Example: Computation of Smoothness

Theorem
f € BY(L,(R?)) if and only if || f — fX’ Lo (R2) — O(N/2),

Approzimation by selecting
the N largest terms in the
Wavelet decomposition

or equivalently, log|| f — fK,V||L2(R2) =0(—1ZlogN).




Approximation Theory

Example: Computation of Smoothness

logllf — X Il 1o(r2)

I

2% oo%%

) [

—13 —12.5 —12 —11.5 —11 —10.5




Approximation Theory

Example: Computation of Smoothness

logllf — X Il 1o(r2)

I

_—~
2% “ra(]
20 >
-
14 7
—13 —12.5 —12 —11.5 —11 —10.5




Approximation Theory

Example: Computation of Smoothness

slope ~ 0.3072
n =~ 0.6144




Multi-resolution Analysis

Dual-Tree Complex Wavelet Transform

Coefficients at finest scale (6 directions)

R
il

i
-—

AT

|
|
El a

Original Image » . »
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Multi-resolution Analysis

The Wavelet-domain hidden Markov Tree

To each wavelet coefficient wjy = uy + vy, associate a discrete
hidden state q; that takes on values m = S, L with probability
mass function p(gy).

Conditioned on g = m, wy is Gaussian with mean py, ,,, and
variance O’k . Thus, overall marginal pdf is

glwe) = > plax = m)g(wilgk = m),

m=S,L

with g(wk|qk = m) ~ N(Mk,ma O'k,m)-




Multi-resolution Analysis
Edge detection

magnitude |wg|

I

phase Zw;



Multi-resolution Analysis
Edge detection

S /L-state (s = white, L = black)
L ff'
lll\ ” IH|
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Multi-resolution Analysis
Edge detection

S/L-state (S = white, L = black)
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Multi-resolution Analysis
Edge detection

S/L-state (S = white, L = black)
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Multi-resolution Analysis
Edge detection

S/L-state (S = white, L = black)

phase Zwy

- g
scale 4



Multi-resolution Analysis

Image Analysis

» Smooth Region. Both the coefficient and its parent have
small magnitude (state S).

» Isolated Edge. Both coefficient and parent have large
magnitude (state L), corresponding phases are statistically
similar.

» Texture Region. Both coeflicient and parent have large
magnitude, but corresponding phases are very different.




Multi-resolution Analysis

Experiments: Detection of sequences L-L-- - - with constant variance o = 0.5
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Multi-resolution Analysis

Experiments: Results depend very strongly on variance

1 . ﬁ\-n‘"'w.'r \"_\'ﬂl
P 1
|
E T
i
\
B0 \ 1
L]
I
& L,-' i
it
10 i b i
- y
‘o : _.1
-
@™ w W o® W 1

original




Multi-resolution Analysis

Experiments: Removal of texture region (o = 0.4)
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Multi-resolution Analysis

Experiments: Comparison to Canny

edge map (Canny) edge map (HMM)
edge (IMG, ’canny’) (0 =0.3)




Variational Methods

Example: Restoration of Irregularly Sampled Images

Reference image Image to be restored

SPOT 5 HRG satellite with Hypermode sampling




Variational Methods

Example: Restoration of Irregularly Sampled Images

Image Formation Model

g=Ta-(f*h)+n

» f: the ideal undistorted image

» h: blurring kernel

» n: white noise with standard deviation o
» A: sampling grid. A = Z? + (Z?)

» c: perturbation.

Zak cos (2m (&, ) + ¢r), x €R’

Var{c} = A2
supp(é) C [ — T, T;l] for some period T, > 2
» I'y: sampling operator I'y = Y, ., 6(- — k).




Variational Methods

Example: Restoration of Irregularly Sampled Images

Technical details: Modulation Transfer Function

Sensors & conductivity. Isotropic low-pass filter. Motion blur effect.

hs(€) = e 2mPE ho(€) = e 2maclél har(€) = sinc7é - d
R = A e
0 L] 0 0 o0
[ L] o o ©
(o] L] o o] [+]
Fl*QI:);: @ x e o o b
o B M/'




Variational Methods

Example: Restoration of Irregularly Sampled Images

Image Formation Model
g=Tpr-(fxh)+n
Solution: Variational Model

min [ - (02 e ) —g) |2 [1971)

» w: vector of weights used either as preconditioner or local
constraints

» p: spectral projector in a low frequency region




Variational Methods

Example: Restoration of Irregularly Sampled Images

Solution: Variational Model, vector notation
min {;HW(SHPFf —9)|I* + )\J(f)}

. I": Fourier transform
. P: Spectral projector

. H: Convolution

e N

. S: Fourier coefficients to irregular samples

. W: Spatial weights
Jo J(f) = [IVf]

IS2EN




Variational Methods

Example: Restoration of Irregularly Sampled Images

Solution: Variational Model, Euler-Lagrange Equation

0c F*P*H*S"W2SHPFf — F*P*H* S*W?2g+XdJ(f)
T

~~ | —
T P

» O0J(f): subdifferential of J.

0J(f) = {z € L*(Q) : J(y) = I(f) = {x,y — f),y € L*(Q)}




Variational Methods

Example: Restoration of Irregularly Sampled Images

Solution: Variational Model, Evolution Equation

fo=—[F'T'Ff — F'% + XoJ(f)]
Solved by implicit Euler scheme

fort = fo € =T[F'T'F i — F7'% + 20T (frs1)]
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