Edge detection using the Hidden Markov Tree Model for the Complex Wavelet Transform

Francisco Blanco-Silva

January 25, 2008

Dual-Tree Complex Wavelet Transform

Coefficients at finest scale (6 directions)

The Wavelet-domain hidden Markov Tree

To each wavelet coefficient $w_k = u_k + iv_k$, associate a discrete hidden state q_k that takes on values $m = \mathbf{S}, \mathbf{L}$ with probability mass function $p(q_k)$.

Conditioned on $q_k = m$, w_k is Gaussian with mean $\mu_{k,m}$ and variance $\sigma_{k,m}^2$. Thus, overall marginal pdf is

$$g(w_k) = \sum_{m=\mathbf{S},\mathbf{L}} p(q_k = m) g(w_k | q_k = m),$$

with $g(w_k|q_k = m) \approx \mathcal{N}(\mu_{k,m}, \sigma_{k,m}).$

Image Analysis

- ▶ Smooth Region. Both the coefficient and its parent have small magnitude (state S).
- ▶ Isolated Edge. Both coefficient and parent have large magnitude (state L), corresponding phases are statistically similar.
- ▶ Texture Region. Both coefficient and parent have large magnitude, but corresponding phases are very different.

Detection of sequences L-L-· · · with constant variance $\sigma = 0.5$

The results depend very strongly on variance

Removal of texture region ($\sigma = 0.4$)

Comparison to Canny

METOA

original

