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Background material. Notation and Examples

Any square summable sequence (cn)n∈Z can be interpreted as
the sequence of sampled values f(n) of a band-limited function
f with supp f̂ ⊂ [−π, π].

f(x) =
∑
n∈Z

cn
sinπ(x− n)
π(x− n)

, f̂(ξ) =
∑
n∈Z

cne
−inξ.

A filtering operation corresponds to the multiplication of f̂ with
a 2π-periodic function, α̂(ξ) =

∑
n∈Z ane

−inξ. The result is
another band-limited function:

(α ∗ f)(x) =
∑
n∈Z

∑
m∈Z

an−mcm
sinπ(x− n)
π(x− n)

,

F(α ∗ f)(ξ) =
∑
n∈Z

∑
m∈Z

an−mcme
−inξ.
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Example: 3-by-3 unsharp contrast enhancement filter

f(x) α̂(ξ)
(
α ∗ f

)
(x)

(cn)n∈Z (an)n∈Z
(∑

m∈Z am−ncm

)
n∈Z

transfer function / frequency response

filter / impulse response

signal



Subband Filtering Schemes

In signal processing an in-
coming signal is often de-
composed into different fre-
quency bands after which
they can then be coded and
transmitted separately and
efficiently. This decomposi-
tion of a signal is usually
done using a collection of fil-
ters called a filter bank.

cn

a1
n a0

n
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ã1
n

+ c̃n∑
cne
−inξ ∑

c̃ne
−inξ



Reconstruction

cn

a0
n

a1
n

↓ 2

↓ 2

↑ 2

↑ 2

ã0
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ã0(z)
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ã0(z)a0(z) + ã1(z)a1(z)

)
c(z) + 1

2

(
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aliasing effects



Perfect Reconstruction

cn

a0
n

a1
n

↓ 2

↓ 2

↑ 2

↑ 2

ã0
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1
2
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ã0(z)a0(z) + ã1(z)a1(z) = 2, ã0(z)a0(−z) + ã1(z)a1(−z) = 0



Wavelets

1, 024× 1, 024 = 1, 048, 576 pixels
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1, 024× 1, 024 = 1, 048, 576 pixels 1 wavelet coefficient



Wavelets

1, 024× 1, 024 = 1, 048, 576 pixels 1 + 4 = 5 wavelet coefficients



Wavelets
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Wavelets

1, 024× 1, 024 = 1, 048, 576 pixels 1 + 4 + 16 + 64 = 85 wavelet coefficients



Wavelets

1, 024× 1, 024 = 1, 048, 576 pixels 1 + 4 + 16 + 64 + 256 = 341 wavelet coefficients



Wavelets

1, 024× 1, 024 = 1, 048, 576 pixels 21, 845 wavelet coefficients



Connection with Subband Filtering Schemes

Multiresolution analysis leads to a hierarchical scheme for the
computation of the wavelet coefficients of a function:

cn

a0
n

a1
n

↓ 2

↓ 2

a0
n

a1
n

↓ 2

↓ 2

· · ·



Problems with Real Wavelets

Shift Variance
A small shift of the signal causes major variations in the
distribution of energy between wavelet coefficients at different
scales.

Poor Directional Selectivity

The standard tensor-product construction of multi-variate
wavelets produces a checkerboard pattern that is
simultaneously oriented along several directions. This lack of
directional selectivity complicates processing of geometric image
features like ridges and edges.

N. Kingsbury: “Complex Wavelets for Shift Invariant Analysis and Filtering of Signals”
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Some Complex Wavelets do not have those problems!

N. Kingsbury: “Complex Wavelets for Shift Invariant Analysis and Filtering of Signals”

The key: “Hilbert Transform pairs”

Complex-valued scaling function φ : R→ C and complex-valued
wavelet ψ : R→ C satisfying

ψ(t) = u(t) + iHu(t).

You get extra points if u : R→ R is even, and Hu is odd.



Watch out! Not so easy to code

For a complex-valued function ψ(t) = u(t) + iHu(t),

ψ̂(ξ) = û(ξ) + iF
(
Hu
)
(ξ)

= û(ξ)− sign(ξ)û(ξ)

=


0 if ξ > 0,
û(0) if ξ = 0,
2û(ξ) if ξ < 0.

Neither a0(z) nor ã0(x) is a reasonable low-pass filter.
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The Dual-Tree CWT

The idea:
Require u(t) to be a real-valued wavelet such that Hu(t) is also
a wavelet, and perform two different subband filtering schemes
for real and imaginary parts independently.

I The filters are real; no complex arithmetic is required for
the implementation.

I The dual-tree CWT is not critically sampled: it is two
times expansive in 1-D.

I The inverse is simple: real and imaginary parts are
inverted to obtain two real signals. These two signals are
then averaged.
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