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Image Decompositions

Let an image be modeled by a function

f : [0, 1]2 → [0, 255].

Decompose that function in a Riesz basis

(wavelets, curvelets, etc.)

f =
∑
α

cαψα

where α is a generalized index.

For wavelets, α specifies the scale, the transla-

tion, and whether the wavelet ψ is horizontal, ver-

tical, or diagonal.

For curvelets, α specifies the scale, orientation,

and translation of the curvelet.



Nonlinear Approximation

Given a Riesz basis, one can consider parametrized

subsets of L2(I):

ΣN = {linear combinations of no more than N

Riesz basis elements}.
And, we can look at the error of approximation

by functions in those subsets:

EN (f) = inf
S∈ΣN

‖f − S‖L2(I).

We can define approximation spaces by how

quickly EN (f) tends to zero:

|f |Aα∞ = sup
N>0

NαEN (f),

and for 0 < q <∞,

|f |Aαq =

(∑
N>0

[NαEN (f)]q
1

N

)1/q

.

Called nonlinear approximation because ΣN is not

a linear space:

S1, S2 ∈ ΣN 6⇒ S1 + S2 ∈ ΣN .



Approximation Spaces and Smoothness Spaces

Meta-Theorem. Given any approximation

method, there is a family of smoothness spaces,

such that a function can be approximated to a

given rate using that approximation method if

and only if it is in a smoothness space associated

with that rate of approximation.

And vice versa.

This meta-theorem was formalized as a tautology

by DeVore and Popov.

For some approximation methods, the smoothness

spaces are classical.

For example, nonlinear approximation by

wavelets yields

Aαq = B2α
q (Lq(I)) when

1

q
= α+

1

2
,

where Bαq (Lq(I)) is the Besov space with α

“derivatives” in Lq(I).



What are the Approximation Spaces for Curvelets?

Nobody knows. (Unless it was done recently ...)

For some functions, curvelets perform much bet-

ter than wavelets (Donoho and Candes).

Is the set of functions for which curvelets per-

form at a certain rate strictly bigger than the set

of functions for which wavelets perform at the

same rate? I.e., is

Aαq (wavelet) ( Aαq (curvelet)?

Nobody knows.

If f is a “typical natural image” with

f ∈ Aα1
q1

(wavelet) and f ∈ Aα2
q2

(curvelet),

is α1 < α2? I.e., are curvelets better?

Nobody ...

But one can experiment ...



Our Experiment

Take 24 high quality images distributed by Ko-

dak in the 90s.

For both wavelets and curvelets, write

f =
∑
α

cαψα,

choose a sequence of tolerances ε1, ... Let

Nk = #{‖cαψα‖L2(I) ≥ εk},

and

Ek =
∥∥∥f − ∑

‖cαψα‖L2(I)≥εk

cαψα

∥∥∥
L2(I)

.

If (big, bold “if”) Ek ≈ CN−αk , i.e.,

logEk ≈ −α logNk + logC,

then, approximately,

f ∈ Aα∞ and |f |Aα∞ ≈ C.



Experimental Method

2048× 3072 PhotoCD images
Photoshop−→

2048× 3072 24-bit RGB images
GraphicConverter−→

2048× 3072 8-bit greyscale images
crop−→

2048× 2048 8-bit greyscale images.

For curvelets use CurveLab 2.0 for decomposition

and reconstruction.

For wavelets use Lucier’s biorthogonal 2-6 pro-

grams for decomposition and reconstruction. So

use scalar quantization instead of thresholding,

but same theorems apply.



Results

WAVELETS CURVELETS
Image α correlation α correlation

IMG0001 -0.334137 -0.95 -0.254534 -0.97
IMG0002 -0.248966 -0.96 -0.194984 -0.98

IMG0003 -0.288569 -0.99 -0.262188 -0.99

IMG0004 -0.301217 -0.99 -0.260947 -0.99
IMG0005 -0.432991 -0.97 -0.343005 -0.96

IMG0006 -0.334473 -0.95 -0.270084 -0.96
IMG0007 -0.329154 -0.99 -0.308024 -0.99

IMG0008 -0.337559 -0.96 -0.273487 -0.98
IMG0009 -0.282722 -0.98 -0.249841 -0.99

IMG0010 -0.262158 -0.98 -0.232546 -0.99

IMG0011 -0.321989 -0.97 -0.258699 -0.98
IMG0012 -0.308411 -0.99 -0.285750 -0.99

IMG0013 -0.307241 -0.93 -0.203144 -0.93
IMG0014 -0.356034 -0.98 -0.284708 -0.98

IMG0015 -0.346455 -0.99 -0.290807 -0.99
IMG0016 -0.268068 -0.96 -0.222829 -0.98

IMG0017 -0.274453 -0.98 -0.237508 -0.99
IMG0018 -0.273756 -0.94 -0.217761 -0.96

IMG0019 -0.322174 -0.97 -0.261727 -0.99

IMG0020 -0.320285 -0.99 -0.288679 -0.99
IMG0021 -0.309660 -0.97 -0.250962 -0.98

IMG0022 -0.284261 -0.97 -0.232663 -0.98
IMG0023 -0.309470 -0.99 -0.307909 -0.99

IMG0024 -0.363456 -0.96 -0.291762 -0.97



Discussion

If we did the computations correctly, then:

Wavelets approximate (these) “natural im-

ages” better than curvelets do.


