Curvelets and Approximation Theory

Francisco Blanco-Silva

Department of Mathematics Purdue University

IMA Thematic Year on Imaging, Sep. 2005-Jun. 2006

Mathematicians are like Frenchmen: Whatever you say to them, they translate into their own language and forthwith it is something entirely different.

Johan Wolfgang von Goethe

Outline

(1) Curvelet Transforms

- Background and Motivation
- Continuous Curvelet Transform
- Discrete Curvelet Transform
(2) Analysis with Curvelets
- Curvelets and Singularities
- Curvelets and Cartoons
- Curvelets and Besov Spaces

Outline

(1) Curvelet Transforms

- Background and Motivation
- Continuous Curvelet Transform
- Discrete Curvelet Transform
(2) Analysis with Curvelets
- Curvelets and Singularities
- Curvelets and Cartoons
- Curvelets and Besov Spaces

Curvelets then and now

- Curvelets were introduced in 1999 by Candès and Donoho to address the edge representation problem. The definition they gave was based on windowed ridgelets.

IMA

Curvelets then and now

- Curvelets were introduced in 1999 by Candès and Donoho to address the edge representation problem. The definition they gave was based on windowed ridgelets.

Curvelets then and now

- Curvelets were introduced in 1999 by Candès and Donoho to address the edge representation problem. The definition they gave was based on windowed ridgelets.
- In 2002, they simplified the definition of curvelets and constructed a new tight frame.

Curvelets then and now

- Curvelets were introduced in 1999 by Candès and Donoho to address the edge representation problem. The definition they gave was based on windowed ridgelets.
- In 2002, they simplified the

$$
\|f\|_{2}^{2}=\iiint\left|\left\langle\Phi_{\alpha \beta \theta}, f\right\rangle\right|^{2} \frac{d \alpha}{\alpha^{3}} d \theta d \beta
$$ definition of curvelets and constructed a new tight frame.

- In 2003, they developed a Continuous Curvelet Transform.

$$
f=\iiint\left\langle\Phi_{\alpha \beta \theta}, f\right\rangle \Phi_{\alpha \beta \theta} \frac{d \alpha}{\alpha^{3}} d \theta d \beta
$$

Curvelets then and now

- Curvelets were introduced in 1999 by Candès and Donoho to address the edge representation problem. The definition they gave was based on windowed ridgelets.
- In 2002, they simplified the definition of curvelets and constructed a new tight frame.
- In 2003, they developed a Continuous Curvelet Transform.

$$
\begin{aligned}
f= & \iiint\left\langle\Phi_{\alpha \beta \theta}, f\right\rangle \Phi_{\alpha \beta \theta} \frac{d \alpha}{\alpha^{3}} d \theta d \beta \\
& +\int\left\langle\gamma_{\beta}, f\right\rangle \gamma_{\beta} d \beta \\
\|f\|_{2}^{2} & =\iiint\left|\left\langle\Phi_{\alpha \beta \theta}, f\right\rangle\right|^{2} \frac{d \alpha}{\alpha^{3}} d \theta d \beta \\
& +\int\left|\left\langle\gamma_{\beta}, f\right\rangle\right|^{2} d \beta
\end{aligned}
$$

Some applications to Imaging

- Candès, Donoho, Starck:
- Image Denoising.

Some applications to Imaging

- Candès, Donoho, Starck:
- Image Denoising.
- Imaging in Astrophysics.

Some applications to Imaging

- Candès, Donoho, Starck:
- Image Denoising.
- Imaging in Astrophysics.
- Donoho, Elad, Querre, Starck: Morphological
Component Analysis.

Some applications to Imaging

- Candès, Donoho, Starck:
- Image Denoising.
- Imaging in Astrophysics.
- Donoho, Elad, Querre, Starck: Morphological
Component Analysis.
- Douma, Herrmann, de Hoop...: Seismic Imaging.

Outline

(1) Curvelet Transforms

- Background and Motivation
- Continuous Curvelet Transform
- Discrete Curvelet Transform
(2) Analysis with Curvelets
- Curvelets and Singularities
- Curvelets and Cartoons
- Curvelets and Besov Spaces

Curvelets: Construction in the frequency domain

Amplitude Window

$W \in C_{0}^{\infty}(0, \infty)$ nonnegative with support $\left[\frac{1}{\alpha_{0}}, \alpha_{0}\right]$ for some $\alpha_{0}>1$ (usually, $\alpha_{0}=2$), and $\int_{0}^{\infty} W(t)^{2} \frac{d t}{t}=1$.

Curvelets: Construction in the frequency domain

Amplitude Window

$W \in C_{0}^{\infty}(0, \infty)$ nonnegative with support $\left[\frac{1}{\alpha_{0}}, \alpha_{0}\right]$ for some $\alpha_{0}>1$ (usually, $\alpha_{0}=2$), and $\int_{0}^{\infty} W(t)^{2} \frac{d t}{t}=1$.

Phase Window

$V \in C_{0}^{\infty}(\mathbb{R})$ nonnegative with support in $[-1,1]$ and $\|V\|_{2}=1$.

Dilations, Rotations, Shifts

$W(|\xi|) V\left(\frac{6}{\pi} \arg \xi\right)$

$W(|\xi|) V\left(\frac{48}{\pi} \arg \xi\right)$

Dilations, Rotations, Shifts

$W(|\xi|) V\left(\frac{6}{\pi} \arg \xi\right)$

$W(|\xi|) V\left(\frac{48}{\pi} \arg \xi\right)$

Dilations, Rotations, Shifts

$W(|\xi|) V\left(\frac{6}{\pi} \arg \xi\right)$

$W(|\xi|) V\left(\frac{48}{\pi} \arg \xi\right)$

Dilations, Rotations, Shifts

$W(|\xi|) V\left(\frac{6}{\pi} \arg \xi\right)$

$W(|\xi|) V\left(\frac{48}{\pi} \arg \xi\right)$

Dilations, Rotations, Shifts

$W(|\xi|) V\left(\frac{6}{\pi} \arg \xi\right)$

$W(|\xi|) V\left(\frac{48}{\pi} \arg \xi\right)$

Dilations, Rotations, Shifts

$W(|\xi|) V\left(\frac{6}{\pi} \arg \xi\right)$

$W(3 \mid \xi) V\left(\frac{6}{\pi} \arg \xi\right)$

Dilations, Rotations, Shifts

$W(|\xi|) V\left(\frac{48}{\pi} \arg \xi\right)$
$W(|\xi|) V\left(\frac{48}{\pi}\left(\arg \xi-\frac{\pi}{6}\right)\right)$

Dilations, Rotations, Shifts

$W(|\xi|) V\left(\frac{6}{\pi} \arg \xi\right) \quad W(|\xi|) V\left(\frac{6}{\pi} \arg \xi\right) e^{2 \pi i[(-1,1) \cdot \xi]}$

Putting it all together

Definition (Curvelets)

$\Phi_{\alpha \beta \theta}: \mathbb{R}^{2} \rightarrow \mathbb{C}$ with parameters $\alpha \in(0, \infty)$ (shape AND scaling), $\beta \in \mathbb{R}^{2}$ (location), and $\theta \in \mathbb{S}^{1}$ (direction).

$$
\mathcal{F}\left(\Phi_{\alpha \beta \theta}\right)(\xi)=W_{\alpha}(|\xi|) V_{\varphi(\alpha)}\left(\arg _{\theta} \xi-\arg \theta\right) e^{2 \pi i(\beta \cdot \xi)}
$$

Putting it all together

Definition (Curvelets)

$\Phi_{\alpha \beta \theta}: \mathbb{R}^{2} \rightarrow \mathbb{C}$ with parameters $\alpha \in(0, \infty)$ (shape AND scaling), $\beta \in \mathbb{R}^{2}$ (location), and $\theta \in \mathbb{S}^{1}$ (direction).

$$
\mathcal{F}\left(\mathbf{\Phi}_{\alpha \beta \theta}\right)(\xi)=W_{\alpha}(|\xi|) V_{\varphi(\alpha)}\left(\arg _{\theta} \xi-\arg \theta\right) e^{2 \pi i(\beta \cdot \xi)}
$$

- $W_{\alpha}(\xi)=\frac{1}{\alpha^{1 / 2}} W\left(\frac{|\xi|}{\alpha}\right)$

Putting it all together

Definition (Curvelets)

$\Phi_{\alpha \beta \theta}: \mathbb{R}^{2} \rightarrow \mathbb{C}$ with parameters $\alpha \in(0, \infty)$ (shape AND scaling), $\beta \in \mathbb{R}^{2}$ (location), and $\theta \in \mathbb{S}^{1}$ (direction).

$$
\mathcal{F}\left(\boldsymbol{\Phi}_{\alpha \beta \theta}\right)(\xi)=W_{\alpha}(|\xi|) V_{\varphi(\alpha)}\left(\arg _{\theta} \xi-\arg \theta\right) e^{2 \pi i(\beta \cdot \xi)}
$$

- $W_{\alpha}(\xi)=\frac{1}{\alpha^{1 / 2}} W\left(\frac{|\xi|}{\alpha}\right)$
- $V_{\varphi(\alpha)}\left(\arg _{\theta} \xi-\arg \theta\right)=\frac{1}{\varphi(\alpha)^{1 / 2}} V\left(\frac{\arg _{\theta} \xi-\arg \theta}{\varphi(\alpha)}\right)$

Putting it all together

Definition (Curvelets)

$\Phi_{\alpha \beta \theta}: \mathbb{R}^{2} \rightarrow \mathbb{C}$ with parameters $\alpha \in(0, \infty)$ (shape AND scaling), $\beta \in \mathbb{R}^{2}$ (location), and $\theta \in \mathbb{S}^{1}$ (direction).

$$
\mathcal{F}\left(\mathbf{\Phi}_{\alpha \beta \theta}\right)(\xi)=W_{\alpha}(|\xi|) V_{\varphi(\alpha)}\left(\arg _{\theta} \xi-\arg \theta\right) e^{2 \pi i(\beta \cdot \xi)}
$$

- $W_{\alpha}(\xi)=\frac{1}{\alpha^{1 / 2}} W\left(\frac{|\xi|}{\alpha}\right)$
- $V_{\varphi(\alpha)}\left(\arg _{\theta} \xi-\arg \theta\right)=\frac{1}{\varphi(\alpha)^{1 / 2}} V\left(\frac{\arg _{\theta} \xi-\arg \theta}{\varphi(\alpha)}\right)$
- $\Phi_{\alpha \beta \theta}(x)=\Phi_{\alpha 0 \theta}(x-\beta)$

A word about the aspect-ratio weight function φ

The width and length of a curvelet obey the anisotropy scaling relation width $_{\alpha} /$ length $_{\alpha} \asymp \varphi(\alpha)$.

A word about the aspect-ratio weight function φ

- Candès-Donoho, 1999-2002: width \approx length ${ }^{2}$.

A word about the aspect-ratio weight function φ

- Candès-Donoho, 1999-2002: width \approx length 2.
- Candès-Donoho, 2003: width \approx length $^{1 / s}$, any $0<s<1$.

A word about the aspect-ratio weight function φ

- Candès-Donoho, 1999-2002: width \approx length 2.
- Candès-Donoho, 2003: width \approx length $^{1 / s}$, any $0<s<1$.
- width $_{\alpha} /$ length $_{\alpha} \asymp \varphi(\alpha)$, where $\varphi:(0, \infty) \rightarrow\left(0, \frac{\pi}{4}\right)$ satisfies:
- Non-decreasing in $\left(0, m_{\varphi}\right)$ and non-increasing in $\left(m_{\varphi}, \infty\right)$.
- $\varphi\left(m_{\varphi}\right)=M<\frac{\pi}{4}, \lim _{\alpha \rightarrow 0} \varphi(\alpha)=0$ and $\lim _{\alpha \rightarrow \infty} \varphi(\alpha)=0$.
- Neither $\left.\varphi(\cdot)\right|_{\left(m_{\varphi}, \infty\right)}$ nor $\left.\varphi(1 / \cdot)\right|_{\left(0, m_{\varphi}\right)}$ decrease rapidly.

Gathering Information

Definition (Curvelet Coefficient)

For each choice of parameters $\alpha \in(0, \infty), \beta \in \mathbb{R}^{2}$ and $\theta \in \mathbb{S}^{1}$, the inner product

$$
\left\langle f, \Phi_{\alpha \beta \theta}\right\rangle=\int f(x) \overline{\mathbf{\Phi}_{\alpha \beta \theta}(x)} d x
$$

offers local information of a function $f \in L_{2}\left(\mathbb{R}^{2}\right)$ at the location β, in the direction θ, and frequency $\left(\alpha / \alpha_{0}, \alpha_{0} \alpha\right)$.

Gathering Information

Definition (Curvelet Coefficient)

For each choice of parameters $\alpha \in(0, \infty), \beta \in \mathbb{R}^{2}$ and $\theta \in \mathbb{S}^{1}$,

$$
\left\langle\nu, \Phi_{\alpha \beta \theta}\right\rangle
$$

offers local information of a tempered distribution $\nu \in \mathcal{S}^{\prime}\left(\mathbb{R}^{2}\right)$ at the location β, in the direction θ, and frequency $\left(\alpha / \alpha_{0}, \alpha_{0} \alpha\right)$.

Resolution of the identity for CCT in $L_{2}\left(\mathbb{R}^{2}\right)$

Calderón formula for CCT
For any function $f \in L_{2}\left(\mathbb{R}^{2}\right)$,

$$
f(x)=\int_{0}^{\infty} \int_{\mathbb{S}^{1}} \int_{\mathbb{R}^{2}}\left\langle f, \boldsymbol{\Phi}_{\alpha \beta \theta}\right\rangle \boldsymbol{\Phi}_{\alpha \beta \theta}(x) d \beta d \sigma(\theta) d \alpha
$$

Parseval's Formula for CCT in $L_{2}\left(\mathbb{R}^{2}\right)$

Inner product identity

$$
\langle f, g\rangle=\int_{0}^{\infty} \int_{\mathbb{S}^{1}} \int_{\mathbb{R}^{2}}\left\langle f, \boldsymbol{\Phi}_{\alpha \beta \theta}\right\rangle \overline{\left\langle g, \boldsymbol{\Phi}_{\alpha \beta \theta}\right\rangle} d \beta d \sigma(\theta) d \alpha
$$

Parseval's Formula for CCT in $L_{2}\left(\mathbb{R}^{2}\right)$

Inner product identity

$$
\langle f, g\rangle=\int_{0}^{\infty} \int_{\mathbb{S}^{1}} \int_{\mathbb{R}^{2}}\left\langle f, \boldsymbol{\Phi}_{\alpha \beta \theta}\right\rangle \overline{\left\langle g, \boldsymbol{\Phi}_{\alpha \beta \theta}\right\rangle} d \beta d \sigma(\theta) d \alpha
$$

In particular,

Parseval's Formula for CCT

$$
\|f\|_{L_{2}\left(\mathbb{R}^{2}\right)}^{2}=\int_{0}^{\infty} \int_{\mathbb{S}^{1}} \int_{\mathbb{R}^{2}}\left|\left\langle f, \Phi_{\alpha \beta \theta}\right\rangle\right|^{2} d \beta d \sigma(\theta) d \alpha
$$

Outline

(1) Curvelet Transforms

- Background and Motivation
- Continuous Curvelet Transform
- Discrete Curvelet Transform
(2) Analysis with Curvelets
- Curvelets and Singularities
- Curvelets and Cartoons
- Curvelets and Besov Spaces

Discretization of the Curvelet Transform I

Discretization

- ($0, \infty$): For each $n \in \mathbb{Z}$, $\alpha_{n}=\alpha_{0}^{n}$.

Discretization of the Curvelet Transform I

Discretization

- ($0, \infty$): For each $n \in \mathbb{Z}$, $\alpha_{n}=\alpha_{0}^{n}$.
- \mathbb{S}^{1} :

$$
\text { - } \varphi_{n}=\inf _{z \in \mathbb{Z}}\left\{\frac{1}{2 \pi z} \geq \varphi\left(\alpha_{n}\right)\right\}
$$

Discretization of the Curvelet Transform I

Discretization

- ($0, \infty$): For each $n \in \mathbb{Z}$, $\alpha_{n}=\alpha_{0}^{n}$.
- \mathbb{S}^{1} :
- $\varphi_{n}=\inf _{z \in \mathbb{Z}}\left\{\frac{1}{2 \pi z} \geq \varphi\left(\alpha_{n}\right)\right\}$.
- Chosen n, for each $k \in \mathbb{Z}$, $\theta_{n k}=e^{i k \varphi_{n}}$.

Discretization of the Curvelet Transform I

Discretization

- ($0, \infty$): For each $n \in \mathbb{Z}$, $\alpha_{n}=\alpha_{0}^{n}$.
- \mathbb{S}^{1} :

$$
\text { - } \varphi_{n}=\inf _{z \in \mathbb{Z}}\left\{\frac{1}{2 \pi z} \geq \varphi\left(\alpha_{n}\right)\right\} .
$$

- Chosen n, for each $k \in \mathbb{Z}$, $\theta_{n k}=e^{i k \varphi_{n}}$.
- \mathbb{R}^{2} : Chosen n, for each

$$
z \in \mathbb{Z}^{2}, \beta_{n z}=\frac{\pi}{\alpha_{n+1}} z
$$

Discretization of the Curvelet Transform II

Amplitude and Phase Windows

- $W \in C_{0}^{\infty}(0, \infty)$ nonnegative with supp $W=\left[\frac{1}{\alpha_{0}}, \alpha_{0}\right]$, and $W(u)^{2}+W\left(\alpha_{0} u\right)^{2}=1$ for $\frac{1}{\alpha_{0}} \leq u \leq 1$.

Discretization of the Curvelet Transform II

Amplitude and Phase Windows

- $W \in C_{0}^{\infty}(0, \infty)$ nonnegative with supp $W=\left[\frac{1}{\alpha_{0}}, \alpha_{0}\right]$, and $W(u)^{2}+W\left(\alpha_{0} u\right)^{2}=1$ for $\frac{1}{\alpha_{0}} \leq u \leq 1$.
- $V \in C_{0}^{\infty}(\mathbb{R})$ nonnegative with $\operatorname{supp} V=[-1,1]$, and $V(t)^{2}+V(t-1)^{2}=1$ for $0 \leq t<1$.

Discretization of the Curvelet Transform II

Amplitude and Phase Windows

- $W \in C_{0}^{\infty}(0, \infty)$ nonnegative with supp $W=\left[\frac{1}{\alpha_{0}}, \alpha_{0}\right]$, and $W(u)^{2}+W\left(\alpha_{0} u\right)^{2}=1$ for $\frac{1}{\alpha_{0}} \leq u \leq 1$.
- $V \in C_{0}^{\infty}(\mathbb{R})$ nonnegative with $\operatorname{supp} V=[-1,1]$, and $V(t)^{2}+V(t-1)^{2}=1$ for $0 \leq t<1$.

Definition

$$
\phi_{n k z}=\left(\frac{\varphi_{n}^{1 / 2}}{2 \alpha_{0}^{n / 2+1}}\right) \Phi_{\alpha_{n} \beta_{n z} \theta_{n k}}
$$

Discretization of the Curvelet Transform II

Amplitude and Phase Windows

- $W \in C_{0}^{\infty}(0, \infty)$ nonnegative with supp $W=\left[\frac{1}{\alpha_{0}}, \alpha_{0}\right]$, and $W(u)^{2}+W\left(\alpha_{0} u\right)^{2}=1$ for $\frac{1}{\alpha_{0}} \leq u \leq 1$.
- $V \in C_{0}^{\infty}(\mathbb{R})$ nonnegative with $\operatorname{supp} V=[-1,1]$, and $V(t)^{2}+V(t-1)^{2}=1$ for $0 \leq t<1$.

Definition

$$
\boldsymbol{\phi}_{n k z}=\left(\frac{\varphi_{n}^{1 / 2}}{2 \alpha_{0}^{n / 2+1}}\right) \boldsymbol{\Phi}_{\alpha_{n} \beta_{n z} \theta_{n k}}
$$

Discretization of the Curvelet Transform to obtain tight frames in $L_{2}\left(\mathbb{R}^{2}\right)$

Theorem

$$
\left\{\phi_{n k z}: n \in \mathbb{Z} ; k=1, \ldots, 2 \pi / \varphi_{n} ; z \in \mathbb{Z}^{2}\right\}
$$

is a tight frame in $L_{2}\left(\mathbb{R}^{2}\right)$ with frame bound 1 .

$$
\|f\|_{L_{2}\left(\mathbb{R}^{2}\right)}^{2}=\sum_{n \in \mathbb{Z}} \sum_{k=1}^{2 \pi / \varphi_{n}} \sum_{z \in \mathbb{Z}^{2}}\left|\left\langle f, \phi_{n k z}\right\rangle\right|^{2}
$$

Discretization of the Curvelet Transform to obtain tight frames in $L_{2}\left(\mathbb{R}^{2}\right)$

Theorem

$$
\left\{\phi_{n k z}: n \in \mathbb{Z} ; k=1, \ldots, 2 \pi / \varphi_{n} ; z \in \mathbb{Z}^{2}\right\}
$$

is a tight frame in $L_{2}\left(\mathbb{R}^{2}\right)$ with frame bound 1 .

$$
\begin{gathered}
\|f\|_{L_{2}\left(\mathbb{R}^{2}\right)}^{2}=\sum_{n \in \mathbb{Z}} \sum_{k=1}^{2 \pi / \varphi_{n}} \sum_{z \in \mathbb{Z}^{2}}\left|\left\langle f, \phi_{n k z}\right\rangle\right|^{2} \\
f=\sum_{n \in \mathbb{Z}} \sum_{k=1}^{2 \pi / \varphi_{n}} \sum_{z \in \mathbb{Z}^{2}}\left\langle f, \phi_{n k z}\right\rangle \phi_{n k z} .
\end{gathered}
$$

Outline

(1) Curvelet Transforms

- Background and Motivation
- Continuous Curvelet Transform
- Discrete Curvelet Transform
(2) Analysis with Curvelets
- Curvelets and Singularities
- Curvelets and Cartoons
- Curvelets and Besov Spaces

Watch your step!

$$
\langle\delta, g\rangle=g(0)
$$

- $\left\langle\delta, \boldsymbol{\Phi}_{\alpha 0 \theta}\right\rangle=\Theta\left(\frac{1}{\varphi(\alpha)}\right)$ for all $\theta \in \mathbb{S}^{1}$ as $\alpha \rightarrow \infty$.

Watch your step!

$$
\langle\delta, g\rangle=g(0)
$$

- $\left\langle\delta, \Phi_{\alpha 0 \theta}\right\rangle=\Theta\left(\frac{1}{\varphi(\alpha)}\right)$ for all $\theta \in \mathbb{S}^{1}$ as $\alpha \rightarrow \infty$.
- $\lim _{\alpha \rightarrow \infty}\left\langle\delta, \Phi_{\alpha \beta \theta}\right\rangle=0$ (rapidyl) for $\beta \neq 0$ and all $\theta \in \mathbb{S}^{1}$.

Watch your step!

$$
\langle\delta, g\rangle=g(0)
$$

- $\left\langle\delta, \Phi_{\alpha 0 \theta}\right\rangle=\Theta\left(\frac{1}{\varphi(\alpha)}\right)$ for all $\theta \in \mathbb{S}^{1}$ as $\alpha \rightarrow \infty$.
- $\lim _{\alpha \rightarrow \infty}\left\langle\delta, \Phi_{\alpha \beta \theta}\right\rangle=0$ (rapidyl) for $\beta \neq 0$ and all $\theta \in \mathbb{S}^{1}$.

$$
\gamma_{s}(x)=|x|^{s},-2<s<0
$$

$$
\text { - }\left\langle\gamma_{s}, \boldsymbol{\Phi}_{\alpha 0 \theta}\right\rangle=\Theta\left(\frac{1}{\alpha^{2}+s \varphi(\alpha)^{2}}\right)
$$

$$
\text { for all } \theta \in \mathbb{S}^{1} \text { as } \alpha \rightarrow \infty \text {. }
$$

Watch your step!

$$
\langle\delta, g\rangle=g(0)
$$

- $\left\langle\delta, \Phi_{\alpha 0 \theta}\right\rangle=\Theta\left(\frac{1}{\varphi(\alpha)}\right)$ for all $\theta \in \mathbb{S}^{1}$ as $\alpha \rightarrow \infty$.
- $\lim _{\alpha \rightarrow \infty}\left\langle\delta, \Phi_{\alpha \beta \theta}\right\rangle=0$ (rapidyl) for $\beta \neq 0$ and all $\theta \in \mathbb{S}^{1}$.

$$
\gamma_{s}(x)=|x|^{s},-2<s<0
$$

- $\left\langle\gamma_{s}, \boldsymbol{\Phi}_{\alpha 0 \theta}\right\rangle=\Theta\left(\frac{1}{\alpha^{2+s} \varphi(\alpha)^{2}}\right)$
for all $\theta \in \mathbb{S}^{1}$ as $\alpha \rightarrow \infty$.
- $\lim _{\alpha \rightarrow \infty}\left\langle\gamma_{s}, \Phi_{\alpha \beta \theta}\right\rangle=0$ (rapidyl)
for $\beta \neq 0$ and all $\theta \in \mathbb{S}^{1}$.

Watch your step!

$$
\left\langle\nu_{x}, g\right\rangle=\int_{\mathbb{R}} g(x, 0) d x
$$

$$
\text { as } \alpha \rightarrow \infty \text {. }
$$

$$
\text { - } \lim _{\alpha \rightarrow \infty}\left\langle\nu_{x}, \Phi_{\alpha \beta \frac{\pi}{2}}\right\rangle=0 \text { (rapidyly) }
$$ otherwise.

Watch your step!

$$
\begin{aligned}
& \left\langle\nu_{x}, g\right\rangle=\int_{\mathbb{R}} g(x, 0) d x \\
& \text { - }\left\langle\nu_{x}, \Phi_{\alpha(\lambda, 0) \frac{\pi}{2}}\right\rangle=\Theta\left(\frac{1}{\alpha \varphi(\alpha)^{2}}\right) \\
& \text { as } \alpha \rightarrow \infty \text {. } \\
& \text { - } \lim _{\alpha \rightarrow \infty}\left\langle\nu_{x}, \Phi_{\alpha \beta\left(\theta \neq \frac{\pi}{2}\right)}\right\rangle \underset{\text { (rapilay })}{ } \\
& \text { - } \lim _{\alpha \rightarrow \infty}\left\langle\nu_{x}, \Phi_{\alpha \beta \frac{\pi}{2}}\right\rangle=0 \text { (rapidy! } \\
& \text { otherwise. }
\end{aligned}
$$

$$
\begin{gathered}
H(x, y)=\mathbf{1}_{\{y \geq 0\}} \\
\bullet\left\langle H, \boldsymbol{\Phi}_{\left.\alpha(\lambda, 0) \frac{\pi}{2}\right\rangle}\right\rangle=\Theta\left(\frac{1}{\varphi(\alpha)^{2}}\right) \\
\text { as } \alpha \rightarrow \infty . \\
\bullet \lim _{\alpha \rightarrow \infty}\left\langle H, \Phi_{\alpha \beta\left(\theta \neq \frac{\pi}{2}\right)}\right\rangle=0 \\
\text { (rappily') } \\
\text { - } \lim _{\alpha \rightarrow \infty}\left\langle H, \Phi_{\alpha \beta \frac{\pi}{2}}\right\rangle=0 \text { (rapidy!) } \\
\text { otherwise. }
\end{gathered}
$$

Microlocal Analysis

Theorem (Candès, Donoho)

The $\alpha \rightarrow \infty$ asymptotics of the Continuous Curvelet Transform precisely resolve the wavefront set of tempered distributions.

Microlocal Analysis

Theorem (Candès, Donoho)

The $\alpha \rightarrow \infty$ asymptotics of the Continuous Curvelet Transform precisely resolve the wavefront set of tempered distributions.

Given a tempered distribution $\nu \in S^{\prime}\left(\mathbb{R}^{2}\right)$, let

$$
\begin{aligned}
\mathcal{R}=\{ & \left\{\left(\beta_{0}, \theta_{0}\right) \in \mathbb{R}^{2} \times \mathbb{S}^{1}:\left\langle\nu, \boldsymbol{\Phi}_{\alpha \beta \theta}\right\rangle\right. \text { decays rapidly } \\
& \text { near } \left.\left(\beta_{0}, \theta_{0}\right) \text { as } \alpha \rightarrow \infty\right\}
\end{aligned}
$$

Then $W F(\nu)$ is the complement of \mathcal{R}.

Who cares?

Seamless Denoising

Peter Massopust. Mathematical Problems Associated with a Class of Non-destructive Evaluations.

Outline

(1) Curvelet Transforms

- Background and Motivation
- Continuous Curvelet Transform
- Discrete Curvelet Transform
(2) Analysis with Curvelets
- Curvelets and Singularities
- Curvelets and Cartoons
- Curvelets and Besov Spaces

Nonlinear Approximation to "cartoon" functions

A. C. Calder et al. High-Performance Reactive Fluid Flow Simulations Using Adaptive Mesh Refinement on Thousands of Processors.

- Approximation by selecting the N largest terms in the Fourier series:

$$
\left\|f-f_{N}^{\mathcal{F}}\right\|_{L_{2}\left(\mathbb{R}^{2}\right)}=\Theta\left(N^{-1 / 4}\right)
$$

Nonlinear Approximation to "cartoon" functions

- Approximation by selecting the N largest terms in the Fourier series:

$$
\left\|f-f_{N}^{\mathcal{F}}\right\|_{L_{2}\left(\mathbb{R}^{2}\right)}=\Theta\left(N^{-1 / 4}\right)
$$

- Approximation by selecting the N largest terms in the Wavelet Decomposition:

$$
\left\|f-f_{N}^{\mathcal{W}}\right\|_{L_{2}\left(\mathbb{R}^{2}\right)}=\Theta\left(N^{-1 / 2}\right)
$$

A. C. Calder et al. High-Performance Reactive Fluid Flow Simulations Using Adaptive Mesh Refinement on Thousands of Processors.

Nonlinear Approximation to "cartoon" functions

A. C. Calder et al. High-Performance Reactive Fluid Flow Simulations Using Adaptive Mesh Refinement on Thousands of Processors.

- Approximation by selecting the N largest terms in the Fourier series:

$$
\left\|f-f_{N}^{\mathcal{F}}\right\|_{L_{2}\left(\mathbb{R}^{2}\right)}=\Theta\left(N^{-1 / 4}\right)
$$

- Approximation by selecting the N largest terms in the Wavelet Decomposition:

$$
\left\|f-f_{N}^{\mathcal{W}}\right\|_{L_{2}\left(\mathbb{R}^{2}\right)}=\Theta\left(N^{-1 / 2}\right)
$$

- Approximation by superposition of N triangles with arbitrary shapes and locations:

$$
\left\|f-f_{N}^{\mathcal{T}}\right\|_{L_{2}\left(\mathbb{R}^{2}\right)}=\Theta\left(N^{-1}\right)
$$

Nonlinear Approximation to "cartoon" functions

A. C. Calder et al. High-Performance Reactive Fluid Flow Simulations Using Adaptive Mesh Refinement on Thousands of Processors.

- Approximation by selecting the N largest terms in the Fourier series:

$$
\left\|f-f_{N}^{\mathcal{F}}\right\|_{L_{2}\left(\mathbb{R}^{2}\right)}=\Theta\left(N^{-1 / 4}\right)
$$

- Approximation by selecting the N largest terms in the Wavelet Decomposition:

$$
\left\|f-f_{N}^{\mathcal{W}}\right\|_{L_{2}\left(\mathbb{R}^{2}\right)}=\Theta\left(N^{-1 / 2}\right)
$$

- Approximation by superposition of N triangles with arbitrary shapes and locations:

$$
\left\|f-f_{N}^{\mathcal{T}}\right\|_{L_{2}\left(\mathbb{R}^{2}\right)}=\Theta\left(N^{-1}\right)
$$

- Approximation by selecting the N largest terms in the Curvelet Decomposition:

$$
\left\|f-f_{N}^{\mathcal{C}}\right\|_{L_{2}\left(\mathbb{R}^{2}\right)}=\Theta\left(N^{-1}(\log N)^{3 / 2}\right)
$$

Outline

(1) Curvelet Transforms

- Background and Motivation
- Continuous Curvelet Transform
- Discrete Curvelet Transform
(2) Analysis with Curvelets
- Curvelets and Singularities
- Curvelets and Cartoons
- Curvelets and Besov Spaces

How smooth is this function?

IMA

Besov Spaces

Definition

Given $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, for $h \in \mathbb{R}^{d}$, set for any $n \in \mathbb{N}$,

$$
\Delta_{h}^{n} f(x)=\Delta_{h}^{n-1} \Delta_{h} f(x)=\sum_{k=0}^{n}(-1)^{n-k}\binom{\eta}{k} f(x+k h)
$$

Besov Spaces

Definition

Given $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, for $h \in \mathbb{R}^{d}$, set for any $n \in \mathbb{N}$,

$$
\Delta_{h}^{n} f(x)=\Delta_{h}^{n-1} \Delta_{h} f(x)=\sum_{k=0}^{n}(-1)^{n-k}\binom{\eta}{k} f(x+k h)
$$

For $\eta>0$, set $\omega_{\eta}(f, t)_{r}=\sup _{|h|<t}\left\|\Delta_{h}^{\lceil\eta\rceil} f\right\|_{L_{r}\left(\mathbb{R}^{d}\right)}$.

Besov Spaces

Definition

Given $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, for $h \in \mathbb{R}^{d}$, set for any $n \in \mathbb{N}$,

$$
\Delta_{h}^{n} f(x)=\Delta_{h}^{n-1} \Delta_{h} f(x)=\sum_{k=0}^{n}(-1)^{n-k}\binom{\eta}{k} f(x+k h)
$$

For $\eta>0$, set $\omega_{\eta}(f, t)_{r}=\sup _{|h|<t}\left\|\Delta_{h}^{\lceil\eta\rceil} f\right\|_{L_{r}\left(\mathbb{R}^{d}\right)}$. $f \in B_{q}^{\eta}\left(L_{r}\left(\mathbb{R}^{d}\right)\right)$ if

$$
\|f\|_{L_{r}\left(\mathbb{R}^{d}\right)}+\left\{\int_{0}^{\infty}\left(t^{-\eta} \omega_{\eta}(f, t)_{r}\right)^{q} \frac{d t}{t}\right\}^{1 / q}<\infty
$$

Curvelets and Singularities

The (η, r) plane

Curvelets and Singularities

The (η, r) plane

Curvelets and Singularities
Curvelets and Cartoons
Curvelets and Besov Spaces

The (η, r) plane

Curvelets and Singularities
Curvelets and Cartoons
Curvelets and Besov Spaces

The (η, r) plane

Embedding Theorems

Theorem (DeVore, Popov)

If $\eta, r, p>0$ are related by $\frac{1}{r}=\frac{\eta}{d}+\frac{1}{p}$, then $B_{p}^{\eta}\left(L_{r}\left(\mathbb{R}^{d}\right)\right)$ is continuously embedded in $L_{p}\left(\mathbb{R}^{d}\right)$.

Embedding Theorems

Corollary (DeVore, Popov)

If $\eta, r>0$ are related by $\frac{1}{r}=\frac{\eta}{2}+\frac{1}{2}$, then $B_{r}^{\eta}\left(L_{r}\left(\mathbb{R}^{2}\right)\right)$ is continuously embedded in $L_{2}\left(\mathbb{R}^{2}\right)$.

Approximation Theorems

Theorem

$$
\begin{gathered}
f \in B_{r}^{\eta}\left(L_{r}\left(\mathbb{R}^{2}\right)\right) \text { if and only if }\left\|f-f_{N}^{\mathcal{W}}\right\|_{L_{2}\left(\mathbb{R}^{2}\right)}=\Theta\left(N^{-\eta / 2}\right) \\
\\
\begin{array}{l}
\text { Approximation by selecting } \\
\text { the } N \text { largest terms in the } \\
\text { Wavelet decomposition }
\end{array}
\end{gathered}
$$

Approximation Theorems

Theorem

$$
f \in B_{r}^{\eta}\left(L_{r}\left(\mathbb{R}^{2}\right)\right) \text { if and only if }\left\|f-f_{N}^{\mathcal{W}}\right\|_{L_{2}\left(\mathbb{R}^{2}\right)}=\Theta\left(N^{-\eta / 2}\right) .
$$

Approximation by selecting
the N largest terms in the
Wavelet decomposition

$$
\text { or equivalently, } \log \left\|f-f_{N}^{\mathcal{W}}\right\|_{L_{2}\left(\mathbb{R}^{2}\right)}=\Theta\left(-\frac{\eta}{2} \log N\right)
$$

Computation of Smoothness via Nonlinear Approximation with Wavelets

Computation of Smoothness via Nonlinear Approximation with Wavelets

Computation of Smoothness via Nonlinear Approximation with Wavelets

Curvelets and Singularities
Curvelets and Cartoons
Curvelets and Besov Spaces

Computation of Smoothness via Nonlinear Approximation with Wavelets

slope ≈-0.3072
$\eta \approx 0.6144$

Experiments

Experiments

Experiments

Curvelets and Singularities Curvelets and Cartoons
Curvelets and Besov Spaces

Which one is the one?

slope ≈-0.3072
$\eta \approx 0.6144$
slope ≈-0.2031
$\eta \approx 0.5077$

