Problem 1.
Give an example of two 4×4 matrices A and B with real entries such that A and B are not similar but they do have the same minimal polynomial and the same characteristic polynomial.

Problem 2.
Suppose that V is a vector space with basis B and subspaces W_0 and W_1 such that $V = W_0 + W_1$.
(a) Must there be subsets of B that are bases of W_0 and W_1? If so, prove it. If not, provide a counterexample.
(b) Must V have a basis of the form $C \cup B_0 \cup B_1$ such that C is a basis for $W_0 \cap W_1$, B_0 is a basis for W_0, and B_1 is a basis for W_1? If so, prove it. If not, provide a counterexample.

Problem 3.
$\mathbb{Z}[\sqrt{-3}]$ denotes the smallest subring of the complex numbers that contains a square root of -3.
(a) Prove that $\mathbb{Z}[\sqrt{-3}]$ is not a unique factorization domain. [Hint: factor 4.]
(b) Give an example of two integral domains D and D' such that D is a unique factorization domain and D' is a homomorphic image of D, but D' is not a unique factorization domain.

Problem 4.
Prove that $\mathbb{Q}[x]/(3x^3+2x^2+4x+6)$ is a field. Every element of this field has the form $f(x)/(3x^3+2x^2+4x+6)$ where $f(x) \in \mathbb{Q}[x]$. Find $g(x) \in \mathbb{Q}[x]$ such that $g(x)/(3x^3+2x^2+4x+6)$ is the multiplicative inverse of $x/(3x^3+2x^2+4x+6)$.

Problem 5.
Let p and q be prime numbers with $q < p$ such that q does not divide $p^2 - 1$. Prove that each group of order p^2q is Abelian.

Problem 6.
Let R be a nontrivial commutative ring such that every proper ideal of R is prime. Prove R is a field.

Problem 7.
Let W be a subspace of the vector space V. Let V^* denote the dual space of V and let W° denote the annihilator of W.
(a) Prove that W° is a subspace of V^*.
(b) Prove that $(V/W)^* \cong W^\circ$.
(c) Prove that $V^*/W^\circ \cong W^*$.

Problem 8.
Let G be a finite group, let H be a subgroup of G, and let N be a normal subgroup of G. Suppose that $|N|$ and $[G : N]$ are relatively prime and that $|H|$ divides $|N|$. Prove that $H \subseteq N$.

Problem 9.
Let T be a self-adjoint linear operator on a finite dimensional complex inner product space.
(a) Define self-adjoint both in operator terms and in matrix terms.
(b) Prove that all the coefficients of the characteristic polynomial of T are real.

Problem 10.
Let G and H be finite Abelian groups that have the same number of elements of order n, for each natural number n. Prove that G and H are isomorphic.