Qualifying Examination in Linear Algebra
August 2008, Math700 and Math 706

Please use only one side of the paper and start each problem on a new page.

The field of complex numbers is denoted by \(\mathbb{C} \), the field of rational numbers by \(\mathbb{Q} \), and the ring of integers is denoted by \(\mathbb{Z} \).

1. Let \(V \) and \(W \) be vector spaces over the field \(\mathbb{F} \). Let \(v_1, \ldots, v_k \in V \) and \(w_1, \ldots, w_k \) vectors in \(W \) such that if \(a_1, \ldots, a_k \in \mathbb{F} \) then
\[
a_1v_1 + a_2v_2 + \cdots + a_kv_k = 0 \quad \implies \quad a_1w_1 + a_2w_2 + \cdots + a_kw_k = 0.
\]
 (a) Show there is a linear map \(T: V \to W \) such that \(T(v_i) = w_i \) for \(i = 1, 2, \ldots, k \).
 (b) What conditions on \(v_1, v_2, \ldots, v_k \) imply that \(T \) is unique?

2. Let \(V \) be a finite dimensional complex inner product vector space. If \(W \) is a subspace of \(V \), the orthogonal complement of \(W \) is denoted by \(W^\perp \). If \(T: V \to V \) is linear, the adjoint of \(T \) is denoted by \(T^* \).
 (a) Show that a subspace \(W \) of \(V \) is \(T \)-invariant by if and only if \(W^\perp \) is \(T^* \)-invariant.
 (b) Show that if \(\langle T(x), x \rangle = 0 \), for all \(x \in V \), then \(T = 0 \).

3. Find all possible rational and Jordan canonical forms of a \(4 \times 4 \) matrix over \(\mathbb{C} \) with characteristic polynomial \((x - 1)^2(x + 1)^2 \) and with \(\text{rank}(A + I) = 3 \).

4. Let \(T \) be a linear operator on a vector space \(V \) and \(Z(\alpha, T) = \text{Span}(\alpha, T(\alpha), T^2(\alpha), \cdots) \) be the \(T \)-cyclic subspace of \(V \) generated by \(\alpha \). Let \(V_i = Z(\alpha_i, T) \) and \(P_i(x) \) be the characteristic polynomials of \(T|_{V_i} \). Show that if \(P_1(x) \) and \(P_2(x) \) are relatively prime, then \(Z(\alpha_1 + \alpha_2, T) = V_1 \oplus V_2 \).
Math706 – Numerical Linear Algebra

Qualifying Exam

August, 2008

Note: You must show all of your work to get a credit for a correct answer.

1. (a) For the matrix
 \[A = \begin{bmatrix} 5.2 & 0.6 & 2.2 \\ 0.6 & 6.4 & 0.5 \\ 2.2 & 0.5 & 4.7 \end{bmatrix}, \]
 compute an upper bound for the condition number \(\kappa_2(A) \), using the estimates of
 the eigenvalues by the theorem of Gershgorin.

 (b) Find the Householder reflector that maps the vector \[\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \]
 to \[\begin{bmatrix} -1 \\ 0 \\ \sqrt{2} \end{bmatrix}. \]

2. State whether the following algorithm is backward stable, stable but not backward stable,
 or unstable, and prove it or at least give a reasonably convincing argument –
 Data: none. Solution: \(e \), computed by summing \(\sum_{k=0}^{\infty} 1/k! \) from left to right using \(\otimes \)
 and \(\Theta \), stopping when a summand is reached of magnitude \(< \epsilon_{\text{machine}} \).

3. (a) Sketch the proof that every Hermitian, positive definite matrix \(A \) (i.e., \(x^*Ax > 0 \)
 for all \(x \neq 0 \)) has a unique Cholesky factorization (i.e, \(A = R^*R \) with \(r_{jj} > 0 \)).

 (b) Find the Cholesky factorization of
 \[A = \begin{bmatrix} 1 & -1 & 2 \\ -1 & 10 & 7 \\ 2 & 7 & 17 \end{bmatrix} \]

4. Compute one step of the QR algorithm (for computing eigenvalues) with the matrix
 \[A = \begin{bmatrix} 2 & \epsilon \\ \epsilon & 1 \end{bmatrix}. \]
 (a) Without shift.
 (b) With shift \(\mu = 1 \).

5. (a) Let \(A \in \mathbb{R}^{m \times m} \) be spd. Assume that there are exactly \(k \leq m \) distinct eigenvalues
 of \(A \). Show that the CG method for solving a linear system with the coefficient
 matrix \(A \) will terminate in at most \(k \) iterations.

 (b) Let the matrix \(A \) have the form \(A = \begin{bmatrix} I & Y \\ Y & I \end{bmatrix} \). Assume that GMRES is used to
 solve a linear system with the coefficient matrix \(A \). What is maximum number of steps that GMRES would require to converge? Explain in details.