Problem 1.
Let G and H be finite Abelian groups such that $G \times G \cong H \times H \times H$. Prove that there is a finite Abelian group K such that $H \cong K \times K$.

Problem 2.
Let V be a vector space with subspaces U and W, neither one contained in the other. Show that there are disjoint, non-empty sets $A \subseteq U$ and $B \subseteq W$ such that $A \cup B$ is a basis for $U + W$. Show by example that A can span a proper subspace of U and simultaneously B span a proper subspace of W, while $A \cup B$ is still a basis for $U + W$.

Problem 3.
(a) Prove that $2x^3 + 6x^2 + 9x + 12$ is irreducible in $\mathbb{Z}[x]$.
(b) Prove that $x^3y + x^2y^2 + x + y^3$ is irreducible in $\mathbb{Z}[x, y]$.

Problem 4.
Prove that a group with a proper subgroup of finite index has a proper normal subgroup of finite index.

Problem 5.
Make a list, as long as possible, of square matrices over the reals such that
(1) Each matrix on the list has characteristic polynomial $(x - 2)^3(x - 3)^3$,
(2) Each matrix on the list has minimal polynomial $(x - 2)^2(x - 3)^2$, and
(3) No two distinct matrices on the list are similar.
Demonstrate that your list has all the desired attributes.

Problem 6.
Prove that a commutative ring R cannot have three distinct proper nontrivial ideals $I, J,$ and K such that $I \subseteq J, I + K = R,$ and $J \cap K = \{0\}$.

Problem 7.
Let F be a field and let A and B be nonsingular (invertible) 3×3 matrices over F. Suppose that $B^{-1}AB = 2A$. Prove the statements below. Even if you cannot establish one part, you may use it in subsequent parts.
(a) The characteristic of F is 7.
(b) A has trace 0.
(c) $A^3 = aI$ for some scalar $a \in F$.

Problem 8.
Prove that every group of order 18 which has a normal subgroup of order 2 is an Abelian group.

Problem 9.
Let R be a commutative ring. Prove that R has no infinite ascending chain $I_0 \subseteq I_1 \subseteq I_2 \subseteq \ldots$ of ideals if and only if every ideal of R is finitely generated.

Problem 10.
Let T be a linear operator on the inner product space V such that T has an adjoint T^*. Let W be a T-invariant subspace of V. (So T_W, the restriction of T to W, is a linear operator on W). Assume T_W also has an adjoint $(T_W)^*$. Recall $W^\perp = \{ z \in V \mid \langle y, z \rangle = 0 \text{ for all } y \in W \}$.
(a) Prove W^\perp is T^*-invariant.
(b) Prove that if W is both T and T^*-invariant, then $(T_W)^* = (T^*)_W$.
(c) Assume further that V is a finite dimensional complex vector space and that T is a normal operator. Prove T_W is a normal operator on W.