PROBLEM 1.
Characterize up to similarity those 3×3 matrices A over the real numbers such that $f(A) = 0$ where $f(x) = x(x - 1)^2(x - 2)^3$.

PROBLEM 2.
Characterize up to isomorphism all Abelian groups of order 600.

PROBLEM 3.
(a) Prove that $3x^3 + 6x^2 + 12x + 14$ is irreducible in $\mathbb{Z}[x]$.
(b) Prove that $x^2y^3 + x^2y^2 + x^2y - 2xy^2 + x + y^3 + y^2 - y - 1$ is irreducible in $\mathbb{Z}[x,y]$.

PROBLEM 4.
Let A be a non-zero $n \times n$ matrix over a field F. Prove each of the following.
(a) If A^{-1} exists, then A^{-1} can be written as a polynomial in A.
(b) If A^{-1} does not exist, then there is an integer $k > 0$ and a non-zero $n \times n$ matrix B such that $A^kB = BA^k = 0$.

PROBLEM 5.
Let G be a group. Prove that G is finite if and only if G has only finitely many subgroups.

PROBLEM 6.
Prove that the ring \mathbb{Z}_{10} and the ring $\mathbb{Z}_{10} \times \mathbb{Z}_{21}$ are isomorphic.

PROBLEM 7.
Let V be vector space and let $\{0\} = V_0 \subset V_1 \subset V_2 \subset \cdots \subset V_n = V$ be a chain of $n + 1$ distinct subspaces of V so that for each $j < n$ there is no subspace which lies properly between V_j and V_{j+1}. That is, this is a maximal chain of subspaces of V. Let W be a subspace of V and put $W_j = V_j \cap W$ for all $j \leq n$. Evidently, $\{0\} = W_0 \subset W_1 \subset \cdots \subset W_n = W$ is a chain of subspaces of W.
(a) Determine the dimension of each V_j, and produce a basis $\{v_1, v_2, \ldots\}$ for V such that $v_i \in V_i$.
(b) Give an explicit example to show that the subspaces W_0, W_1, \ldots, W_n need not be distinct.
(c) Prove that $W_0 \subset \cdots \subset W_n = W$ is a maximal chain of subspaces of W.

PROBLEM 8.
Let $p, q \in \mathbb{Z}$ be primes with $q \leq p$ and $p \neq 1 \mod q$. Prove that any group of order pq is Abelian.

PROBLEM 9.
Let T be a linear operator on a complex vector space V, and assume that T^adj exists.
(a) Prove that if T is self-adjoint (Hermitian), then $\langle Tx, x \rangle$ is real for all $x \in V$.
(b) Prove the converse of (a). You may use the fact that $\langle Tx, x \rangle = 0$ for all $x \in V$ implies that $T = 0$, the zero operator.
(c) Prove that if V is finite dimensional, T is self-adjoint, and $A = [T]_\beta$ is a matrix representation of T with respect to some orthonormal basis β of V, then there is a a real diagonal matrix D and a unitary matrix U so that $A = U^\text{adj}DU$. Do not just say that this is a theorem in the book, but explain how D and U arise from T or A (quoting theorems as you need them).

PROBLEM 10.
Prove that in a principal ideal domain every nontrivial prime ideal is maximal. Give an example of an integral domain with a nontrivial prime ideal that is not maximal.