The field of complex numbers is denoted by \mathbb{C} and the ring of integers is denoted by \mathbb{Z}.

1. Let \mathcal{P}_3 be the vector space of polynomials of degree at most three over the complex numbers \mathbb{C}. Define a linear map $T: \mathcal{P}_3 \to \mathcal{P}_3$ by
 \[Tp(x) = p(x + 2). \]

 Find
 \begin{enumerate}
 \item The trace of T,
 \item The determinant of T, and
 \item The Jordan canonical form of T.
 \end{enumerate}

2. Classify up to isomorphism all groups of order 45.

3. Let G be a finite group and $Z(G)$ the center of G. Then show that $G/Z(G)$ is never a cyclic group with more than one element.

4. Show that the quotient ring $\mathbb{C}[x]/(x^2+1)$ is isomorphic to the direct product $\mathbb{C} \times \mathbb{C}$. Here (x^2+1) is the ideal generated by $x^2 + 1$.

5. Let V be a finite dimensional vector space over the field \mathbb{F} and let V^* be the dual space of V. Let S be a non-empty subset of V and let
 \[W = \{ w \in V : \text{for all } f \in V^* \text{ if } f(v) = 0 \text{ for all } v \in S, \text{ then } f(w) = 0 \}. \]

 Show that W is span of S.

6. Let G and H be finite Abelian groups with $H \times H \cong G \times G$. Show that $H \cong G$.

7. Let D be a commutative ring with identity such that $D[x]$ is a principal ideal domain. Show that D is a field.

8. Let A be an $n \times n$ matrix with $A^3 = 4A$. Show that
 \[-2 \text{ rank}(A) \leq \text{ trace}(A) \leq 2 \text{ rank}(A). \]

9. \begin{enumerate}
 \item Show that $x^3y + x^3 + x^2y^2 - x^2y + xy^2 + y$ is irreducible in $\mathbb{Z}[x,y]$.
 \item Show that $5x^4 - 2x^2 + x + 15$ is irreducible in $\mathbb{Z}[x]$.
 \end{enumerate}

10. Let P be a Sylow subgroup of the finite group G and let H be a subgroup of G with $N_G(P) \leq H$. Prove $H = N_G(H)$.

Qualifying Examination in Algebra
August 2003

The field of complex numbers is denoted by \(\mathbb{C} \) and the ring of integers is denoted by \(\mathbb{Z} \).

1. Let \(\mathcal{P}_3 \) be the vector space of polynomials of degree at most three over the complex numbers \(\mathbb{C} \). Define a linear map \(T : \mathcal{P}_3 \to \mathcal{P}_3 \) by

\[Tp(x) = p(x + 2). \]

Find

(a) The trace of \(T \),
(b) The determinant of \(T \), and
(c) The Jordan canonical form of \(T \).

2. Classify up to isomorphism all groups of order 45.

3. Let \(G \) be a finite group and \(Z(G) \) the center of \(G \). Then show that \(G/Z(G) \) is never a cyclic group with more than one element.

4. Show that the quotient ring \(\mathbb{C}[x]/(x^2+1) \) is isomorphic to the direct product \(\mathbb{C} \times \mathbb{C} \). Here \((x^2+1) \) is the ideal generated by \(x^2+1 \).

5. Let \(V \) be a finite dimensional vector space over the field \(\mathbb{F} \) and let \(V^\ast \) be the dual space of \(V \). Let \(S \) be a non-empty subset of \(V \) and let

\[W = \{ w \in V : \text{ for all } f \in V^\ast \text{ if } f(v) = 0 \text{ for all } v \in S, \text{ then } f(w) = 0 \}. \]

Show that \(W \) is span of \(S \).

6. Let \(G \) and \(H \) be finite Abelian groups with \(H \times H \cong G \times G \). Show that \(H \cong G \).

7. Let \(D \) be a commutative ring with identity such that \(D[x] \) is a principal ideal domain. Show that \(D \) is a field.

8. Let \(A \) be an \(n \times n \) matrix with \(A^3 = 4A \). Show that

\[-2 \text{ rank}(A) \leq \text{ trace}(A) \leq 2 \text{ rank}(A). \]

9. (a) Show that \(x^3y + x^3 + x^2y^2 - x^2y + xy^2 + y \) is irreducible in \(\mathbb{Z}[x, y] \).

(b) Show that \(5x^4 - 2x^2 + x + 15 \) is irreducible in \(\mathbb{Z}[x] \).

10. Let \(P \) be a Sylow subgroup of the finite group \(G \) and let \(H \) be a subgroup of \(G \) with \(N_G(P) \leq H \). Prove \(H = N_G(H) \).