Qualifying Exam in Linear Algebra and Numerical Linear Algebra

August, 2002

Linear Algebra

Do all five problems.

1. Let V be the vector space of all $n \times n$ matrices over a field of characteristic $p \neq 2$. A linear operator T on V is defined by $T(A) = A + A^t$.
 (a) Find the rank and the nullity of T.
 (b) Show that $V = R(T) \oplus N(T)$.

2. Let \mathbb{F} be a field with q elements. Find the number of invertible $n \times n$ matrices over \mathbb{F}.

3. Show that, over \mathbb{C}, a linear operator T is nilpotent if and only if the trace of T^k is equal to 0 for all k.

4. Classify up to similarity all $n \times n$ matrices A such that $A^2 = A$.

5. Let A be an $n \times n$ matrix over \mathbb{Q} with the characteristic polynomial of $f(x) = x^n + 14x^{n-1} - 49x^2 + 21$ ($n \geq 4$). Show that
 (a) Every non-zero vector in \mathbb{Q}^n is cyclic under A.
 (b) A is diagonalizable over \mathbb{C}.

Numerical Linear Algebra

Do three of the following four problems.

1. Let $A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ -1 & 0 \end{bmatrix}$ and $b = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$.
 (a) Find a reduced QR factorization of A.
 (b) Find the Cholesky factorization of $A^T A$.
 (c) Find the least squares solution of the overdetermined system $Ax = b$ using (i) the QR factorization of A and (ii) the Cholesky factorization of $A^T A$ (applied to the normal equation).
 (d) For a general full rank matrix $A \in \mathbb{R}^{m \times n}$ ($m \gg n$) and an arbitrary $b \in \mathbb{R}^m$, which approach is more efficient for finding the least squares solution of $Ax = b$?