ANALYSIS QUALIFYING EXAMINATION JANUARY 1998.

Throughout this examination, unless otherwise specified, the terms measurable, a.e., refer to the Lebesgue measure \(m \) on the real line \(\mathbb{R} \), and \(L^p \) of an interval to \(L^p \) of that interval with respect to Lebesgue measure on that interval. Integrals w.r.t. Lebesgue measure will be denoted by \(\int f \, dx \). Problems one through eight are 10 points each. Problem 9 is 20 points.

1. Let \(g \in L_1(\mathbb{R}) \), \(f_n \) measurable functions such that \(f_n \geq g \) and \(f_n \uparrow f \) a.e. Prove that \(\int f_n \, dx \uparrow \int f \, dx \). (Note that by definition \(\int h \, dx = \int h^+ \, dx - \int h^- \, dx \) as long as at least one of the two integrals on the right is finite.)

2. Let \(E, f \) and \(g \) be nondecreasing functions on \([a, b]\) such that \(f + g = F \) and \(F(a) = f(a) = g(a) = 0 \). Prove that \(f \) is absolutely continuous whenever \(F \) is absolutely continuous.

3. Let \(E \subset \mathbb{R} \) be such that there exist \(a \in \mathbb{R} \) and \(\delta > 0 \) such that for all \(|t| < \delta \) we have that \(a - t \in E \) or \(t - a \in E \). Prove that \(m^*(E) \geq \delta \).

4. Let \(f : \mathbb{R} \to \mathbb{R} \) be a continuous function such that there exists a \(c > 0 \) with \(|f(x) - f(y)| \geq c|x - y| \) for all \(x, y \in \mathbb{R} \).
 a. Show that \(f(\mathbb{R}) \) is closed in \(\mathbb{R} \).
 b. Show that \(f \) is onto.

5. Let \(f \in L_2([0, 1]) \). Let \(g(x, y) = f(x)f(y) \).
 a. Prove that \(g \) is measurable with respect to the product Lebesgue measure.
 b. Prove that \(g \in L_2([0, 1] \times [0, 1]) \) and \(\|g\|_2 = \int |f(x)|^2 \, dx \).

6. Let \(f \) be a measurable function on \(\mathbb{R} \) with \(f \geq 0 \). Prove that there exist measurable sets \(E_n \) and \(\alpha_n \geq 0 \) such that
 \[
 f = \sum_{1}^{\infty} \alpha_n X_{E_n}.
 \]

7. Let \(G \subset \mathbb{C} \) be an open set containing the closed disk \(\overline{D_r(a)} = \{z : |z - a| \leq r\} \). Let \(\langle f_n \rangle \) be a sequence of analytic functions on \(G \) such that \(f_n(z) \to 0 \) uniformly on \(\{z : |z - a| = r\} \). Prove that \(f_n(z) \to 0 \) for all \(z \) in the open disk \(D_r(a) \).

8. Let \(f \) be an analytic function on \(G \), where \(G \) contains the closed unit disk \(\{z : |z| \leq 1\} \) and assume that \(|f(z)| > 2 \) on \(\{z : |z| = 1\} \) and \(f(0) = 1 \). Does \(f \) have to have a zero in the open unit disk?