The field of complex numbers is denoted by \mathbb{C} and the field of rational numbers by \mathbb{Q}. The ring of integers is denoted by \mathbb{Z}.

1. Let R be a commutative integral domain that satisfies the descending chain condition. Show R is a field.

2. Prove that there are no simple groups of order 231.

3. Let R be the quotient ring $R = \mathbb{Q}[x]/(x^2 + 2x + 2)$, let $\pi : \mathbb{Q}[x] \to R$ be the quotient map, and let $\overline{x} = \pi(x)$ be the image of x under the quotient map.
 (a) Show that R is a field.
 (b) Find the dimension of R as a vector space over \mathbb{Q}.
 (c) Express $1/(x^2 - \overline{x}^2 + 4)$ as a polynomial of degree ≤ 1 in \overline{x}.

4. Let G be a finite Abelian group whose order is not divisible by k^2 for all integers $k \geq 2$. Prove that G is cyclic.

5. Let $M_{n \times n}$ be the vector space of all $n \times n$ real matrices.
 (a) Show that every $A \in M_{n \times n}$ is similar to its transpose A^t.
 (b) Is there a single invertible $S \in M_{n \times n}$ so that $SAS^{-1} = A^t$ for all $A \in M_{n \times n}$?

6. Let G be an Abelian group and let H be a subgroup of G so that the quotient G/H is isomorphic to the additive group of the integers. Then show that there is a subgroup K of G so that $H \cap K = \{1\}$ and $HK = G$.

7. Let A be a 3×3 matrix over the real numbers and assume that $f(A) = 0$ where $f(x) = x^2(x - 1)^2(x - 2)$. Then give a complete list of the possible values for $\det(A)$.

8. Show that for every polynomial $p(x) \in \mathbb{C}[x]$ of degree n there is polynomial $q(x)$ of degree $\leq n$ so that

\[(x + 1)^n q \left(\frac{x - 1}{x + 1} \right) = p(x).
\]

HINT: Let P_n be the vector space of polynomials of degree $\leq n$ and for $f(x) \in P_n$ define $(Sf)(x) := (x + 1)^n f \left(\frac{(x - 1)(x + 1)}{x + 1} \right)$. Show that S maps $P_n \to P_n$ and is linear. What is the null space of S?

9. Let $f(x) \in \mathbb{Z}[x]$ be a polynomial of degree $n \geq 2$ with integer coefficients. Assume that there are $2n + 1$ distinct integers $k_1, k_2, \ldots, k_{2n+1}$ so that each $f(k_i)$ is a prime number. Show $f(x)$ is irreducible over the rational numbers.

10. Let q be an odd number and let G be a finite group of order $2q$. Let $\text{Sym}(G)$ be the permutation group on the set of all elements of G (so that $\text{Sym}(G)$ has order $(2q)!$). Define the right regular representation $\phi : G \to \text{Sym}(G)$ by $\phi(g)\xi = g\xi$.
 (a) Show that ϕ is an injective homomorphism from G into $\text{Sym}(G)$. Thus we can view G as a subgroup of $\text{Sym}(G)$.
 (b) Show that G has an element b of order two. Describe how the permutation $\phi(b)$ splits into cycles. Is $\phi(b)$ an even permutation?
 (c) Show that G has a normal subgroup of order q.

- ξ