1. Prove that there is no group G so that $G/Z(G) \cong \mathbb{Z}$, where $Z(G)$ is the center of G and \mathbb{Z} is the group of integers under addition.

2. i. Prove that if A and B are 3×3 matrices over a field F, a necessary and sufficient condition that A and B be similar over F is that they have the same characteristic polynomial and the same minimal polynomial.

ii. Give an example to show that (i) is false for 4×4 matrices.

3. Let G be any group and let H be any subgroup of G. Prove that $\text{Aut}(H)$ has a subgroup isomorphic to $N_G(H)/C_G(H)$, where $N_G(H)$ denotes the normalizer of H in G, $C_G(H)$ denotes the centralizer of H in G, and $\text{Aut}(H)$ denotes the automorphism group of H.

4. Let V be the vector space of $n \times n$ matrices over a field F. Assume f is a linear functional on V so that $f(AB) = f(BA)$ for all $A, B \in V$, and $f(I) = n$. Prove that f is the trace functional.

5. Let R be a commutative ring. Suppose that I is an ideal of R which is contained in a prime ideal P. Prove that the collection of prime ideals containing I and contained in P has a minimal member.

6. Describe, up to isomorphism, all the groups of order 1225.

7. Suppose N is a 4×4 nilpotent matrix over F with minimal polynomial x^2. What are the possible rational canonical forms for N?

8. Prove that $y^4 + x^2y + 4xy + x + 4y + 2$ is irreducible in $\mathbb{Q}[x, y]$. Here \mathbb{Q} denotes the field of rational numbers.

9. Let R be a commutative ring with unit. Let I be a prime ideal of R such that R/I satisfies the descending chain condition on ideals. Prove that R/I is a field. [Hint: It is an easier but informative task to prove that every finite integral domain is a field.]

10. Let A and B be $n \times n$ matrices over a field F. Prove that AB and BA have the same characteristic polynomial.

11. Suppose that V is an n-dimensional vector space over F, and T is a linear operator on V which has n distinct characteristic values. Prove that if S is a linear operator on V which commutes with T, then S is a polynomial in T.