1. Prove that \(y^3 + x^2 y^2 + x^3 y + x \) is irreducible in \(\mathbb{Z}[x, y] \), where \(\mathbb{Z} \) is the ring of integers.

2. Let \(A \) and \(B \) be \(n \times n \) matrices over a field \(F \). Show that \(AB \) and \(BA \) have exactly the same characteristic values in \(F \).

3. a. Prove that if \(G \) and \(H \) are finite Abelian groups such that \(G \times G \cong H \times H \), then \(G \cong H \).

 b. Provide a counterexample to show that (a.) can be false if \(G \) and \(H \) can be chosen among arbitrary groups.

4. Let \(P \) and \(Q \) be real \(n \times n \) matrices so that \(P + Q = I \) and \(\text{rank}(P) + \text{rank}(Q) = n \). Prove that \(P \) and \(Q \) are projections. (Hint: Show if \(Px = Qy \) for some vectors \(x \) and \(y \), then \(Px = Qy = 0 \).)

5. Prove that if \(G \) is a group of order \(p^2 q \), where \(p \) and \(q \) are prime, then either a \(p \)-Sylow subgroup of \(G \) is normal or a \(q \)-Sylow subgroup of \(G \) is normal.

6. Suppose that \(A \) is an \(n \times n \) real, invertible matrix. Show that \(A^{-1} \) can be expressed as a polynomial in \(A \) with real coefficients and with degree at most \(n - 1 \).

7. Does there exist a polynomial \(f(x) \) in \(\mathbb{R}[x] \) fulfilling all of the following conditions:
 - \(f(x) - 1 \) is in the ideal of \(\mathbb{R}[x] \) generated by \(x^2 + 2x + 1 \), and
 - \(f(x) - 2 \) is in the ideal of \(\mathbb{R}[x] \) generated by \(x - 3 \), and
 - \(f(x) + 1 \) is in the ideal of \(\mathbb{R}[x] \) generated by \(x^2 - 16 \)?

8. Let

\[
A = \begin{bmatrix}
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{bmatrix}
\]

Determine the rational canonical form of \(A \) and the Jordan canonical form of \(A \).

9. A group \(G \) is said to be solvable provided there is a finite sequence of subgroups \(G = N_0 \supset N_1 \supset \ldots \supset N_m = \{e\} \) such that \(N_i \supset N_{i+1} \) and \(N_i/N_{i+1} \) is Abelian for all \(i < m \). Prove that if \(G \) is a group, \(A \) is a subgroup of \(G \), \(N \) is a normal subgroup of \(G \), and both \(A \) and \(N \) are solvable, then \(AN \) is also solvable.

10. a. Give an example of two \(4 \times 4 \) nilpotent matrices which have the same minimal polynomial but which are not similar.

 b. Explain why \(4 \) is the smallest value that can be chosen for the example in part (a.), i.e. if \(n \leq 3 \), any two nilpotent matrices with the same minimal polynomial are similar.