PH.D. QUALIFYING EXAMINATION
ALGEBRA PORTION
AUGUST 1991

1. Let R be a ring and $\text{Aut}(R)$ be the group of ring automorphisms of R.
 (a) Show that $\text{Aut}(R) = \{1\}$.
 (b) Find $\text{Aut}(R[x])$. (Hint: It is isomorphic to a subgroup of $\text{GL}(2, \mathbb{R})$.)

2. For each field F given below, factor $x^{31} - 1 \in F[x]$ into a product of irreducible polynomials and justify your answer.
 (a) F is the field of complex numbers.
 (b) F is the field of rational numbers.
 (c) F is the field of 31 elements.
 (d) F is the field of 32 elements.

3. Let A and B be $n \times n$ matrices with entries from \mathbb{R}. Suppose that A and B are similar over \mathbb{C}. Prove that they are similar over \mathbb{R}.

4. Let A be an $n \times n$ matrix with entries in a field F. Suppose that $A^2 = A$. Prove that the rank of A is equal to the trace of A.

5. Let D be a commutative domain and F be its field of fractions. The domain D is said to be neat if whenever $f(x)$ and $g(x)$ are monic polynomials in $F[x]$ with $f(x)g(x) \in D[x]$, then both $f(x)$ and $g(x)$ are in $D[x]$.
 (a) Prove that if D is a UFD, then D is neat.
 (b) Give an example of a domain D which is not neat.