1. Suppose that $T: V \rightarrow W$ is an injective linear transformation of vector spaces over a field F. Prove that $T^*: W^* \rightarrow V^*$ is surjective. (Recall that $V^* = L(V, F)$ is the vector space of linear transformations from V to F, and $T^*(f) = f \circ T$ for all $f \in W^*$.)

2. Let R be the ring of 2×2 matrices over the field of complex numbers. Find two left ideals I_1 and I_2 of R such that
 (a) I_1 and I_2 are isomorphic as left $R-$ modules, and
 (b) $I_1 \neq I_2$.
 Prove that I_1 and I_2 satisfy (a) and (b).

3. If M is the $n \times n$ matrix
 \[
 M = \begin{bmatrix}
 x & a & a & \cdots & a \\
 a & x & a & \cdots & a \\
 & & & & \\
 a & a & \cdots & a & x
 \end{bmatrix},
 \]
 then prove that $\det M = (x + (n-1)a)(x - a)^{n-1}$.

4. Let F be a field and let G be a finite subgroup of the multiplicative group $F \setminus \{0\}$. Prove that G is a cyclic group.
5. If G is a group of order p^n for some prime integer p, and H is a subgroup of G with $H \neq G$, then prove that there exists a subgroup N of G such that $H \subseteq N$, $H \neq N$, but H is normal in N. (You are expected to write a complete proof. The answer “this is a well known theorem” is not acceptable.) (W.1)

6. Suppose that T is a linear operator on a finite-dimensional vector space V over a field F. Prove that T has a cyclic vector if and only if

$$\{U \in L(V, V) : TU = UT\} = \{f(T) : f \in F[x]\}.$$

7. Let I be an ideal in a commutative ring R and let \mathcal{S} be the set of ideals of R defined by the property that $J \in \mathcal{S}$ if and only if there exists an element a of R such that $a \notin I$ and $J = \{r \in R | ra \in I\}$. Prove that every maximal element of \mathcal{S} is a prime ideal in R.

8. Let F be a field. Let f_1, \ldots, f_r be polynomials in the polynomial ring $F[x]$.

(a) Fill in the blank. The natural map

$$F[x] \to \frac{F[x]}{(f_1)} \oplus \cdots \oplus \frac{F[x]}{(f_r)}$$

is onto if and only if

(b) Prove your answer to (a). (You are expected to write a complete proof. The answer “this is a well known theorem” is not acceptable.)
Let $T: \mathbb{R}^4 \to \mathbb{R}^4$ be given by

$$T(x_1, x_2, x_3, x_4) = (x_1 - x_4, x_1, -2x_2 - x_3 - 4x_4, 4x_2 + x_3).$$

\(\checkmark\) (a) Compute the characteristic polynomial of T.
\(\checkmark\) (b) Compute the minimal polynomial of T.
\(\checkmark\) (c) The vector space \mathbb{R}^4 is the direct sum of two proper T-invariant subspaces. Exhibit a basis for one of these subspaces.