1. Let $G = G(n, F)$ be the multiplicative group of $n \times n$ invertible matrices over the field F, and let $S = \{A \in G \mid \det A = 1\}$. Prove that S is a normal subgroup of G and that G/S is isomorphic to F^\times, the multiplicative group of nonzero elements of F.

2. Let V and W be finite-dimensional vector spaces and let $T : V \to W$ be a linear transformation. Prove that there exists a basis A of V and a basis B of W such that the matrix $[T]_{A,B}$ has the block form \[
\begin{bmatrix}
I & 0 \\
0 & 0
\end{bmatrix}
\].

3. Show that every finite group with more than two elements has a nontrivial automorphism. (Hint: consider the abelian and non-abelian cases separately.)

4. Prove that there is no simple group of order 56.

5. Let V be a finite-dimensional vector space and let T be a diagonalizable linear operator on V. Prove that if W is a T-invariant subspace of V then the restriction of T to W is diagonalizable.

6. Let $R = Z[X]$. Give three prime ideals in R that contain the ideal $(6, 2X)$, and prove that your ideals are prime.

7. Let T be a linear operator on a finite-dimensional vector space V. Show that if T has no cyclic vector, then there exists an operator U that commutes with T but is not a polynomial in T.

8. Let $f(x) = x^4 + 2x^3 + 10x^2 + 16x + 16$ and $g(x) = x^4 + 2x^3 + 3x^2 + 2x + 2$ in the ring $C[x]$.
 a) Compute the greatest common divisor of f and g, i.e. the monic generator of the ideal (f, g).
 b) If f is the characteristic polynomial of a certain complex matrix A, decide whether or not $g(A)$ is singular.

9. Let R be a commutative ring with identity and let I and J be ideals of R. Define IJ to be the ideal generated by all products xy with $x \in I$ and $y \in J$; that is, IJ is the set of all finite sums of such products.
 a) Prove that $IJ \subseteq I \cap J$.
 b) Prove that $IJ = I \cap J$ if R is a principal ideal domain and $I + J = R$.
 c) We say that R has the descending chain condition (DCC) if given any chain of ideals $I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$ there is an integer k such that $I_k = I_{k+1} = I_{k+2} = \cdots$. If R has DCC, prove that R has only finitely many maximal ideals. (Hint: If M_1, M_2, \ldots are distinct maximal ideals, consider the ideals $I_j = M_1 \cap \cdots \cap M_j$.)