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Overview
There are three objectives in this lab:

• understand the mathematical reasoning associated with a real-world example,

• learn to define a piecewise-defined function in Maple, and

• learn to set up and solve a system of equations in Maple.

Maple Essentials
Important Maple commands introduced in this lab are:

Command Description
piecewise define a piecewise-defined function

The general syntax to represent


f1, cond1
f2, cond2
...

...
fn, condn

is:

piecewise( cond1, f1, cond2, f2, ..., condn, fn );

where each condi is an inequality and each fi is an expression.
diff diff(f(x), x); finds the derivative of f(x) with respect to x.
solve solve an equation or system of equations

solve( eqn, var ); solves an equation, eqn, for one variable, var.
solve( {eqn1, eqn2}, {var1, var2} ); solves a system of two
equations for two variables.

assign assign(values); assigns a set of values

Maple does not recognize double inequalities, so if your condition is a ≤ x < b you would write x>=a and x<b.

Preparation
§2.8 and §4.1 of Stewart. Review properties of the graph of the first derivative.

Assignment
This week’s assignment is to design a larger roller coaster that meets given specifications and prepare a neat
and complete project report. Project 1 will be due at the beginning of the next lab.

The Problem: Design a Roller Coaster
Suppose we are asked to design a simple ascent and drop roller coaster with an overall horizontal displacement
of 200 feet. By studying pictures of our favorite roller coasters, we decide to create our roller coaster using a
line, a parabola and a cubic. We begin the ascent along a line y = f1(x) of slope 4

3
for the first 20ft horizontally.

We continue the ascent and begin the drop along a parabola y = f2(x) = ax2 + bx + c for the next 100ft hori-
zontally. Finally, we begin a soft landing at 40ft above the ground along a cubic y = f3(x) = dx3 +ex2 +fx+g
for the last 80ft.

Here are our tasks:

1. Find a system of 7 equations with the 7 unknowns ({a,b,c,d,e,f,g}) that will ensure that the track is
smooth at transition points.

2. Solve the equations in (1) to find our functions. (We should get a unique solution as we have the same
number of equations and unknowns.)

3. Plot the graph to see the design.

4. Find the maximum height of the roller coaster.
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Solving the Problem
1. Start your Maple session with

> restart;

This clears the internal memory so that Maple acts (almost) as if just started and is very helpful if you
make a mistake and want to start over.

2. We begin by defining our functions in Maple. If we choose the origin as our starting point, our first
function y = f1(x) is a line of slope 4

3
that passes through (0,0), and we have:

> f1:=x-> 4/3*x;

> f2:=x-> a*x∧2+b*x+c;

> f3:=x-> d*x∧3+e*x∧2+f*x+g;

3. We will also need the first derivatives of our functions. (If you do not see why, you will soon.) To find and
assign the derivatives, right-click over the function and choose differentiate. Then right-click over the
derivative function and choose assign to a name. Name the derivatives df1, df2, and df3, respectively.

4. Since our roller coaster consists of three curves, it can be set up mathematically as a piecewise-defined
function:

F (x) =


f1(x), 0 ≤ x ≤ 20
f2(x), 20 < x < 120
f3(x), 120 ≤ x ≤ 200

We assign F as a function in Maple as follows:
> F:= x -> piecewise(x<=20, f1(x), x>20 and x<120, f2(x), x>=120 and x<=200, f3(x));

Note: You can verify your piecewise-defined function by typing F(x);

5. Obviously, we want F (x) to be continuous (so our passengers do not perish). This means that our
functions should be equal at transition points. So we get the following equations:
> eq1:=f1(20)=f2(20);

> eq2:=f2(120)=f3(120);

6. If we are to have a smooth track, we cannot have abrupt changes in direction, so the first derivative F ′(x)
should also be continuous. That is, the first derivatives of our functions should also be equal at transition
points. So we get:
> eq3:=df1(20)=df2(20);

> eq4:=df2(120)=df3(120);

7. To start our landing at 40ft above the ground for the last 80ft, we would have:
> eq5:=f3(120)=40;

8. Finally, in order to have a soft landing, the track should be tangent to the ground at the end:
> eq6:=f3(200)=0;

> eq7:=df3(200)=0;

9. We now have a system of 7 equations and 7 unknowns. We solve using the solve command and assign
the solutions as follows:
> values:=solve({eq1,eq2,eq3,eq4,eq5,eq6,eq7} , {a,b,c,d,e,f,g});
> assign(values);

10. You can view your completed piecewise-defined function by typing
> F(x);

Note: If I were preparing a project report about this roller coaster, I would definitely include this function.

11. We can see what our coaster looks like with the following plot command:
> plot(F(x), x=0..200, scaling=constrained);

Note: The option scaling=constrained scales the x and y dimensions equally.

12. To find the maximum height, we need to find where the graph has a horizontal tangent line (where
F ′(x) = 0) and evaluate F (x) at each point. The largest is the maximum height of the coaster.
> diff(F(x),x); Note: You can get this by right-clicking over F (x) above also.
> dF:= x -> label;

> solve(dF(x)=0, x);

Note: We know that F ′(x) = 0 when we have a horizontal tangent line (a slope of 0). This occurs at
both local maximums and minimums.
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