ANALAYIS II Ratio and n-th Root Tests (using lim sup and lim inf)

<u>Defn</u>. If $\{a_n\}$ is a sequence of real numbers, then define the *limit inferior* and *limit superior*, respectively, by

 $\lim \inf_{n \to \infty} \mathbf{a}_n := \sup_k (\inf_{n \ge k} \mathbf{a}_n)$ $\lim \sup_{n \to \infty} \mathbf{a}_n := \inf_k (\sup_{n \ge k} \mathbf{a}_n)$

Note. If we define $\alpha_k := \inf_{n \ge k} a_n$, then it is clear that the $\{\alpha_n\}$ form a nondecreasing sequence and will converge in the extended sense. Similarly, $\beta_k := \sup_{n \ge k} a_n$ form a nonincreasing sequence and will converge in the extended sense to its infimum.

<u>Proposition</u>. Suppose $\alpha = \lim \inf_{n \to \infty} a_n$, then for each $\varepsilon > 0$, eventually $\alpha - \varepsilon < a_n$ and infinitely often $a_n < \alpha + \varepsilon$. Similarly, if $\limsup_{n \to \infty} a_n = \beta$, then for each $\varepsilon > 0$ eventually $a_n < \beta + \varepsilon$ and infinitely often $\beta < a_n + \varepsilon$.

Proof. We prove the first statement and leave the other for the student. By the definition of the *limit inferior*, we see that if $\alpha_k := \inf_{n \ge k} a_n$, then for $\varepsilon > 0$ there is an n such that $\alpha - \varepsilon < \alpha_k \le \alpha$. The statement of the theorem follows directly from the definition of infimum applied to α_k .

<u>Corollary</u>. If $\liminf_{n\to\infty} a_n > a$, then eventually $a_n > a$. Similarly, if $\limsup_{n\to\infty} a_n < b$, then eventually $a_n < b$.

Proof. For the first statement, let α : = lim inf_{n→∞} a_n , set $\varepsilon = \alpha$ -a, and apply the previous proposition. For the second, set $\varepsilon = b$ - β .

<u>Corollary</u>. A sequence $\{a_n\}$ converges if and only if $\liminf_{n\to\infty} a_n = \limsup_{n\to\infty} a_n$. The common value is the limit of the sequence.

Proof. Apply the previous proposition. \Box

<u>Theorem</u>. (Ratio Test) For a sequence of nonnegative numbers, define

$$R := \lim \sup_{n \to \infty} a_{n+1}/a_n$$
$$r := \lim \inf_{n \to \infty} a_{n+1}/a_n$$

then for the series $\sum_{n=1}^{\infty} a_n$

- R < 1 implies convergence,
- r > 1 implies divergence,
- R = 1, r = 1 the test is inconclusive.

Proof. To prove the first statement is true, we observe as shown above that R < 1 implies that eventually $a_{n+1}/a_n \le T$ where T is strictly between R and 1. So there exists N such that $0 \le a_{n+1} \le T a_n$ for all $N \le n$. By induction we then see that eventually (i.e. for $N \le n$), we have $a_n \le C T^n$ where $C := a_N/T^N$. Applying the comparison test and the fact that 0 < T < 1, we see that the series converges. On the other hand, if r > 1, then a similiar argument shows that eventually $a_n > C t^n > C$, where r > t > 1 and $C = a_N / t^N$ for some N. Hence by the n-th term test, the series must diverge. The last statement of the theorem follows since $\sum_{n=1}^{\infty} 1/n$ diverges, $\sum_{n=1}^{\infty} 1/n^2$ converges, but R = r = 1 for both series.

<u>Note</u>. The special limit $\lim_{n\to\infty} n^{1/n} = 1$ will be useful in what follows.

Details: By taking logarithms and using the continuity of the log function at x=0, we see that it will suffice to show that $\lim_{n\to\infty} \log(n)/n = 0$. This follows however by an application of L'Hospital's rule.

Theorem. (n-th Root Test) For a sequence of nonnegative numbers, define

$$R := \lim \sup_{n \to \infty} (a_n)^{1/n}$$

then for the series $\sum_{n=1}^{\infty} a_n$

- R < 1 implies convergence,
- R > 1 implies divergence,
- R = 1 implies the test is inconclusive.

Proof. To prove the first statement is true, we observe as shown above that R < 1 implies that eventually $(a_n)^{1/n} \le T$ where T is strictly between R and 1. So there exists N such that $0 \le a_n \le T^n$ for all $N \le n$. Applying the comparison test and the fact that 0 < T < 1, we see that the series converges. On the other hand, if R > 1, then infinitely often $a_n > ((R+1)/2)^n > 1$, so by the n-th term test, the series must diverge. The third part of the theorem follows since $\sum_{n=1}^{\infty} 1/n$ diverges, $\sum_{n=1}^{\infty} 1/n^2$ converges, but $\lim_{n\to\infty} n^{1/n} = 1$ and so R = 1 for both series. Robert Sharpley March 25 1998