
ANALAYIS II
Ratio and n-th Root Tests 

(using  lim sup  and  lim inf) 

Defn. If {an} is a sequence of real numbers, then define the limit inferior and limit superior,

respectively, by 

lim infn→∞→∞→∞→∞ an : = sup k (infn ≥ k an)

lim supn→∞→∞→∞→∞ an : = inf k (supn ≥ k an) 

Note. If we define αk : = infn ≥ k an, then it is clear that the {αn} form a nondecreasing

sequence and will converge in the extended sense. Similarly, βk : = supn ≥ k an form a

nonincreasing sequence and will converge in the extended sense to its infimum. 

Proposition.  Suppose α = lim infn→∞ an, then for each ε > 0, eventually α-ε < an and

infinitely often an < α+ε. Similarly, if lim supn→∞ an = β, then for each ε > 0 eventually an < β+

ε and infinitely often β < an + ε. 

Proof. We prove the first statement and leave the other for the student. By the definition of the limit
inferior, we see that if αk : = infn ≥ k an, then for ε > 0 there is an n such that α-ε < αk ≤ α. The statement

of the theorem follows directly from the definition of infimum applied to αk.   [¯] 

Corollary.  If lim infn→∞ an > a, then eventually an > a. Similarly, if lim supn→∞ an < b,

then eventually an < b. 

Proof. For the first statement, let α: = lim infn→∞ an, set ε = α-a, and apply the previous proposition. For

the second, set ε = b-β.   [¯] 

Corollary.  A sequence {an} converges if and only if lim infn→∞ an = lim supn→∞ an . The

common value is the limit of the sequence. 

Proof. Apply the previous proposition.   [¯] 

Theorem.  (Ratio Test) For a sequence of nonnegative numbers, define 
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R := lim supn→∞  an+1/an
r := lim infn→∞  an+1/an 

then for the series ∑n = 1
∞ an 

R < 1 implies convergence, 
r > 1 implies divergence, 
R = 1, r = 1 the test is inconclusive. 

Proof. To prove the first statement is true, we observe as shown above that R < 1 implies that eventually
an+1/an ≤ T where T is strictly between R and 1. So there exists N such that 0 ≤ an+1 ≤ T an for all N ≤ n.

By induction we then see that eventually (i.e. for N ≤ n), we have an ≤ C Tn where C: = aN/TN. Applying

the comparison test and the fact that 0 < T < 1, we see that the series converges. On the other hand, if r >
1, then a similiar argument shows that eventually an > C tn> C, where r>t>1 and C = aN /tN for some N.

Hence by the n-th term test, the series must diverge. The last statement of the theorem follows since ∑n =
1∞ 1/n diverges, ∑n = 1

∞ 1/n2 converges, but R = r = 1 for both series.   [¯] 

Note. The special limit limn→∞  n1/n  =  1 will be useful in what follows. 

Details:  By taking logarithms and using the continuity of the log function at x=0, we see that it will
suffice to show that limn→∞ log(n)/n = 0. This follows however by an application of L'Hospital's rule.   [¯]

Theorem. (n-th Root Test) For a sequence of nonnegative numbers, define 

R := lim supn→∞  (an)1/n

then for the series ∑n = 1
∞ an 

R < 1 implies convergence, 
R > 1 implies divergence, 
R = 1 implies the test is inconclusive. 

Proof. To prove the first statement is true, we observe as shown above that R < 1 implies that eventually

(an)1/n ≤ T where T is strictly between R and 1. So there exists N such that 0 ≤ an ≤ Tn for all N ≤ n.

Applying the comparison test and the fact that 0 < T < 1, we see that the series converges. On the other

hand, if R > 1, then infinitely often an > ((R+1)/2)n > 1, so by the n-th term test, the series must diverge.

The third part of the theorem follows since ∑n = 1
∞ 1/n diverges, ∑n = 1

∞ 1/n2 converges, but limn→∞ n1/n

= 1 and so R = 1 for both series.   [¯] 
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