Analayis II
 Ratio and n-th Root Tests (using lim sup and lim inf)

Defn. If $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ is a sequence of real numbers, then define the limit inferior and limit superior, respectively, by

$$
\begin{aligned}
& \liminf _{n \rightarrow \infty} a_{n}:=\sup _{k}\left(\inf _{n \geq k} a_{n}\right) \\
& \limsup _{n \rightarrow \infty} a_{n}:=\inf _{k}\left(\sup _{n \geq k} a_{n}\right)
\end{aligned}
$$

Note. If we define $\alpha_{k}:=\inf _{n \geq k} a_{n}$, then it is clear that the $\left\{\alpha_{n}\right\}$ form a nondecreasing sequence and will converge in the extended sense. Similarly, $\beta_{k}:=\sup _{n \geq k} a_{n}$ form a nonincreasing sequence and will converge in the extended sense to its infimum.

Proposition. Suppose $\alpha=\lim \inf _{n \rightarrow \infty} a_{n}$, then for each $\varepsilon>0$, eventually $\alpha-\varepsilon<a_{n}$ and infinitely often $a_{n}<\alpha+\varepsilon$. Similarly, if $\lim \sup _{n \rightarrow \infty} a_{n}=\beta$, then for each $\varepsilon>0$ eventually $a_{n}<\beta+$ ε and infinitely often $\beta<a_{n}+\varepsilon$.

Proof. We prove the first statement and leave the other for the student. By the definition of the limit inferior, we see that if $\alpha_{k}:=\inf _{n \geq k} a_{n}$, then for $\varepsilon>0$ there is an n such that $\alpha-\varepsilon<\alpha_{k} \leq \alpha$. The statement of the theorem follows directly from the definition of infimum applied to α_{k}.

Corollary. If $\lim \inf _{n \rightarrow \infty} a_{n}>a$, then eventually $a_{n}>a$. Similarly, if $\lim \sup _{n \rightarrow \infty} a_{n}<b$, then eventually $\mathrm{a}_{\mathrm{n}}<\mathrm{b}$.

Proof. For the first statement, let $\alpha:=\lim _{\inf }^{n \rightarrow \infty} a_{n}$, set $\varepsilon=\alpha-a$, and apply the previous proposition. For the second, $\operatorname{set} \varepsilon=b-\beta$.

Corollary. A sequence $\left\{a_{n}\right\}$ converges if and only if $\lim \inf _{n \rightarrow \infty} a_{n}=\lim _{\sup }^{n \rightarrow \infty}{ }_{n} a_{n}$. The common value is the limit of the sequence.

Proof. Apply the previous proposition.
Theorem. (Ratio Test) For a sequence of nonnegative numbers, define

$$
\begin{aligned}
\mathrm{R} & :={\lim \sup _{\mathrm{n} \rightarrow \infty} \mathrm{a}_{\mathrm{n}+1} / \mathrm{a}_{\mathrm{n}}}_{\mathrm{r}}:={\lim \inf _{\mathrm{n} \rightarrow \infty} a_{\mathrm{n}+1} / a_{n}}^{\text {ren }}
\end{aligned}
$$

then for the series $\Sigma_{\mathrm{n}}=1{ }^{\infty} \mathrm{a}_{\mathrm{n}}$

- $\mathrm{R}<1$ implies convergence,
- $\mathrm{r}>1$ implies divergence,
- $\mathrm{R}=1, \mathrm{r}=1$ the test is inconclusive.

Proof. To prove the first statement is true, we observe as shown above that $\mathrm{R}<1$ implies that eventually $a_{n+1} / a_{n} \leq T$ where T is strictly between R and 1 . So there exists N such that $0 \leq a_{n+1} \leq T a_{n}$ for all $N \leq n$. By induction we then see that eventually (i.e. for $\mathrm{N} \leq \mathrm{n}$), we have $\mathrm{a}_{\mathrm{n}} \leq \mathrm{C} \mathrm{T}^{\mathrm{n}}$ where $\mathrm{C}:=\mathrm{a}_{\mathrm{N}} / \mathrm{T}^{\mathrm{N}}$. Applying the comparison test and the fact that $0<T<1$, we see that the series converges. On the other hand, if $\mathrm{r}>$ 1 , then a similiar argument shows that eventually $\mathrm{a}_{\mathrm{n}}>\mathrm{Ct} \mathrm{t}^{\mathrm{n}}>\mathrm{C}$, where $\mathrm{r}>\mathrm{t}>1$ and $\mathrm{C}=\mathrm{a}_{\mathrm{N}} / \mathrm{t}^{\mathrm{N}}$ for some N . Hence by the n -th term test, the series must diverge. The last statement of the theorem follows since $\Sigma_{\mathrm{n}}=$ ${ }^{1 \infty} 1 / \mathrm{n}$ diverges, $\sum_{\mathrm{n}=1}^{\infty} 1 / \mathrm{n}^{2}$ converges, but $\mathrm{R}=\mathrm{r}=1$ for both series.

Note. The special limit $\lim _{n \rightarrow \infty} n^{1 / n}=1$ will be useful in what follows.
Details: By taking logarithms and using the continuity of the \log function at $\mathrm{x}=0$, we see that it will suffice to show that $\lim _{\mathrm{n} \rightarrow \infty} \log (\mathrm{n}) / \mathrm{n}=0$. This follows however by an application of L'Hospital's rule.

Theorem. (n-th Root Test) For a sequence of nonnegative numbers, define

$$
\mathrm{R}:=\lim \sup _{\mathrm{n} \rightarrow \infty}\left(\mathrm{a}_{\mathrm{n}}\right)^{1 / \mathrm{n}}
$$

then for the series $\sum_{\mathrm{n}=1}{ }^{\infty} \mathrm{a}_{\mathrm{n}}$

- $\mathrm{R}<1$ implies convergence,
- $\mathrm{R}>1$ implies divergence,
- $\mathrm{R}=1$ implies the test is inconclusive.

Proof. To prove the first statement is true, we observe as shown above that $\mathrm{R}<1$ implies that eventually $\left(a_{n}\right)^{1 / n} \leq T$ where T is strictly between R and 1 . So there exists N such that $0 \leq a_{n} \leq T^{n}$ for all $N \leq n$. Applying the comparison test and the fact that $0<\mathrm{T}<1$, we see that the series converges. On the other hand, if $\mathrm{R}>1$, then infinitely often $\mathrm{a}_{\mathrm{n}}>((\mathrm{R}+1) / 2)^{\mathrm{n}}>1$, so by the n -th term test, the series must diverge. The third part of the theorem follows since $\sum_{n=1}^{\infty} 1 / n$ diverges, $\Sigma_{n=1}^{\infty} 1 / n^{2}$ converges, but $\lim _{n \rightarrow \infty} n^{1 / n}$ $=1$ and so $\mathrm{R}=1$ for both series.

