Analayis II
 Series Convergence Tests

Corollary. (Comparison Test) Suppose that eventually $0 \leq \mathrm{a}_{\mathrm{n}} \leq \mathrm{b}_{\mathrm{n}}$, then

- if $\Sigma_{\mathrm{n}=1}{ }^{\infty} \mathrm{b}_{\mathrm{n}}$ converges, so does $\Sigma_{\mathrm{n}=1}{ }^{\infty} \mathrm{a}_{\mathrm{n}}$.
- if $\Sigma_{\mathrm{n}=1}{ }^{\infty} \mathrm{a}_{\mathrm{n}}$ diverges, so does $\Sigma_{\mathrm{n}}=1^{\infty} \mathrm{b}_{\mathrm{n}}$.

Proof. Let t_{n} be the n -th partial sums of $\Sigma_{\mathrm{n}=1}{ }^{\infty} \mathrm{b}_{\mathrm{n}}$ and s_{n} be the n -th partial sums of $\Sigma_{\mathrm{n}=1}{ }^{\infty} \mathrm{a}_{\mathrm{n}}$. Then eventually $\left|\mathrm{s}_{\mathrm{n}}-\mathrm{s}_{\mathrm{m}}\right| \leq\left|\mathrm{t}_{\mathrm{n}}-\mathrm{t}_{\mathrm{m}}\right|$.

Defn. A series $\Sigma_{n=1}{ }^{\infty} \mathrm{x}_{\mathrm{n}}$ in a normed linear space X is said to converge absolutely if $\sum_{\mathrm{n}=1}^{\infty}$ $\left\|x_{n}\right\|_{X}$ converges. Of course, the real and complex number systems are special cases.

Theorem. (Absolute Convergence Test) If a series converges absolutely, then it converges.
Proof. Let s_{n} be the sequence of partial sums of $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ and $\left\{\mathrm{t}_{\mathrm{n}}\right\}$ be that for $\left\{\left\|\mathrm{x}_{\mathrm{n}}\right\|\right\}$, then for $\mathrm{m}>\mathrm{n}$ the triangle inequality implies $\left\|\mathrm{s}_{\mathrm{n}} \mathrm{s}_{\mathrm{m}}\right\|=\left\|\Sigma_{\mathrm{k}=\mathrm{n}+1}{ }^{\mathrm{m}} \mathrm{x}_{\mathrm{n}}\right\| \leq \sum_{\mathrm{k}=\mathrm{n}+1}{ }^{\mathrm{m}}\left\|\mathrm{x}_{\mathrm{n}}\right\|=\mathrm{t}_{\mathrm{m}} \mathrm{t}_{\mathrm{n}}$.

Theorem. (Limit Comparison Test) Suppose we have two nonnegative sequences which satisfy $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{a}_{\mathrm{n}} / \mathrm{b}_{\mathrm{n}}=\alpha$ with $0<\alpha<\infty$. Then $\sum_{\mathrm{n}=1}^{\infty} \mathrm{a}_{\mathrm{n}}$ and $\sum_{\mathrm{n}=1}^{\infty} \mathrm{b}_{\mathrm{n}}$ converge and diverge together.

Proof. Without loss of generality, we can assume that all terms are nonnegative. By the hypothesis we see that eventually $\mathrm{ra}_{\mathrm{n}}<\mathrm{b}_{\mathrm{n}}<\mathrm{R} \mathrm{a}_{\mathrm{n}}$ where $\mathrm{r}=\alpha / 2$ and $\mathrm{R}=2 \alpha$.

Theorem. (Alternating Series Test) Suppose that a_{n} decreases to 0 , then the series $\sum_{\mathrm{n}=1}{ }^{\infty}$ $(-1)^{\mathrm{n}+1} \mathrm{a}_{\mathrm{n}}$ converges (to s say). Furthermore, the error estimate holds:

$$
\left|\sum_{k=1}^{n}(-1)^{k+1} a_{k}-s\right| \leq a_{n+1}
$$

Proof. Consider the sequence of partial sums $\left\{\mathrm{s}_{2 \mathrm{n}}\right\}$, then these are monotone since $0 \leq \mathrm{a}_{2 \mathrm{k}-1}-\mathrm{a}_{2 \mathrm{k}}$ and $\mathrm{s}_{2 \mathrm{n}}=$
$s_{2 n-2}+\left(a_{2 n-1}-a_{2 n}\right)$. This sequence is also bounded since we can rewrite and estimate it as $s_{2 n}=a_{1}-a_{2 n}-\sum_{k}$ $=1 n-1\left(a_{2 k}-a_{2 k+1}\right) \leq a_{1}$. Hence the sequence of $s_{2 n}$'s converge. Since the odd terms of the sequence of partial sums satisfy $\mathrm{s}_{2 \mathrm{n}+1}=\mathrm{s}_{2 \mathrm{n}}+\mathrm{a}_{2 \mathrm{n}+1}$ and $\mathrm{a}_{2 \mathrm{n}+1} \rightarrow 0$, we see that the sequence s_{n} also converges to s . For the error estimate, we may estimate the difference of partial sums by

$$
\left|s_{n}-s_{n+2 k+1}\right|=\left|a_{n+1}-\sum_{j=1}^{k}\left(a_{n+2 j}-a_{n+2 j+1}\right)\right| \leq\left|a_{n+1}\right| .
$$

Since the absolute value function is continuous and $\mathrm{s}_{\mathrm{n}+2 \mathrm{k}+1} \rightarrow \mathrm{~s}$ as $\mathrm{k} \rightarrow \infty$, the error estimate follows in the limit.

Example. $\Sigma_{\mathrm{n}=1}^{\infty}(-1)^{\mathrm{n}+1} 1 / \mathrm{n}$ converges but does not converge absolutely.

Details: Convergence of the series follows directly from the alternating series test. To show the series is not absolutely convergent, consider the function $\mathrm{f}(\mathrm{x})=1 / \mathrm{x}$ and the partition $\mathrm{P}=\{1,2, \ldots, \mathrm{n}+1\}$ of $[1, \mathrm{n}+1]$, then $\log (\mathrm{n}) \leq \int_{1}{ }^{\mathrm{n}+1} \mathrm{f}(\mathrm{x}) \mathrm{dx} \leq \mathrm{U}(\mathrm{P}, \mathrm{f})=\sum_{\mathrm{k}=1}{ }_{1}{ }^{\mathrm{n}} 1 / \mathrm{k}$. But we know that $\log (\mathrm{n}) \rightarrow \infty$, which shows that the series $\sum_{\mathrm{n}}=1{ }^{\infty} 1 / \mathrm{n}$ does not converge.

Theorem. (Integral Test) Suppose that f is nonnegative and monotone decreasing on $[1, \infty)$, then $\Sigma_{n=1}^{\infty} f(n)$ converges if and only if $\lim _{n \rightarrow \infty} \int_{1}^{n} f(x) d x$ is finite.

Proof. Simply note that

$$
\sum_{\mathrm{n}=1}^{\infty} \mathrm{f}(\mathrm{n}) \sim \lim _{\mathrm{n} \rightarrow \infty} \int_{1}^{\mathrm{n}} \mathrm{f}(\mathrm{x}) \mathrm{dx}
$$

by considering upper and lower Riemann sums.

