ANALAYIS II Series Convergence Tests

<u>Corollary</u>. (Comparison Test) Suppose that <u>eventually</u> $0 \le a_n \le b_n$, then

- if $\sum_{n=1}^{\infty} b_n$ converges, so does $\sum_{n=1}^{\infty} a_n$.
- if $\sum_{n=1}^{\infty} a_n$ diverges, so does $\sum_{n=1}^{\infty} b_n$.

Proof. Let t_n be the n-th partial sums of $\sum_{n=1}^{\infty} b_n$ and s_n be the n-th partial sums of $\sum_{n=1}^{\infty} a_n$. Then eventually $|s_n - s_m| \le |t_n - t_m|$.

Defn. A series $\sum_{n=1}^{\infty} x_n$ in a normed linear space X is said to *converge absolutely* if $\sum_{n=1}^{\infty} ||x_n||_X$ converges. Of course, the real and complex number systems are special cases.

<u>Theorem</u>. (Absolute Convergence Test) If a series converges absolutely, then it converges.

Proof. Let s_n be the sequence of partial sums of $\{x_n\}$ and $\{t_n\}$ be that for $\{||x_n||\}$, then for m > n the triangle inequality implies $||s_n - s_m|| = ||\sum_{k=n+1}^m x_n|| \le \sum_{k=n+1}^m ||x_n|| = t_m - t_n$.

<u>**Theorem.</u>** (Limit Comparison Test) Suppose we have two nonnegative sequences which satisfy $\lim_{n\to\infty} a_n/b_n = \alpha$ with $0 < \alpha < \infty$. Then $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ converge and diverge together.</u>

Proof. Without loss of generality, we can assume that all terms are nonnegative. By the hypothesis we see that eventually $r a_n < b_n < R a_n$ where $r = \alpha/2$ and $R = 2 \alpha$.

Theorem. (Alternating Series Test) Suppose that a_n decreases to 0, then the series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converges (to s say). Furthermore, the error estimate holds:

$$|\sum_{k=1}^{n} (-1)^{k+1} a_k - s| \le a_{n+1}$$

Proof. Consider the sequence of partial sums $\{s_{2n}\}$, then these are monotone since $0 \le a_{2k-1}-a_{2k}$ and $s_{2n} =$

 $s_{2n-2}+(a_{2n-1}-a_{2n})$. This sequence is also bounded since we can rewrite and estimate it as $s_{2n} = a_1 - a_{2n} - \sum_{k=1}^{n-1} (a_{2k}-a_{2k+1}) \le a_1$. Hence the sequence of s_{2n} 's converge. Since the odd terms of the sequence of partial sums satisfy $s_{2n+1} = s_{2n} + a_{2n+1}$ and $a_{2n+1} \rightarrow 0$, we see that the sequence s_n also converges to s. For the error estimate, we may estimate the difference of partial sums by

$$| s_n - s_{n+2k+1} | = | a_{n+1} - \sum_{j=1}^{k} (a_{n+2j} - a_{n+2j+1}) | \le |a_{n+1}|.$$

Since the absolute value function is continuous and $s_{n+2k+1} \rightarrow s$ as $k \rightarrow \infty$, the error estimate follows in the limit. \Box

Example. $\Sigma_{n=1}^{\infty}$ (-1)ⁿ⁺¹ 1/n converges but does not converge absolutely.

Details: Convergence of the series follows directly from the alternating series test. To show the series is not absolutely convergent, consider the function f(x) = 1/x and the partition $P = \{1, 2, ..., n+1\}$ of [1, n+1], then $\log(n) \le \int_1^{n+1} f(x) dx \le U(P, f) = \sum_{k=1}^{n} 1/k$. But we know that $\log(n) \rightarrow \infty$, which shows that the series $\sum_{n=1}^{\infty} 1/n$ does not converge.

<u>**Theorem.</u>** (Integral Test) Suppose that f is nonnegative and monotone decreasing on $[1,\infty)$, then $\sum_{n=1}^{\infty} f(n)$ converges if and only if $\lim_{n\to\infty} \int_{1}^{n} f(x) dx$ is finite.</u>

Proof. Simply note that

$$\sum_{n=1}^{\infty} f(n) \sim \lim_{n \to \infty} \int_{1}^{n} f(x) dx.$$

by considering upper and lower Riemann sums.

Robert Sharpley March 23 1998