ANALYSIS II Riemann-Stieltjes Integration: Properties

Theorem. Suppose that α_1 , α_2 are non-decreasing, and that f, g are Riemann-Stieltjes integrable with respect to both α_1 and α_2 . If c is a nonnegative real number, then

- 1. $\int_a^b c f d\alpha = c \int_a^b f d\alpha = \int_a^b f d(c \alpha)$
- 2. $\int_a^b f + g d\alpha = \int_a^b f d\alpha + \int_a^b g d\alpha$
- 3. $\int_a^b f d(\alpha + \beta) = \int_a^b f d\alpha + \int_a^b f d\beta$
- 4. $g \le f$ implies $\int_a^b g \, d\alpha \le \int_a^b f \, d\alpha$.
- 5. $\left|\int_{a}^{b} f d\alpha\right| \leq \int_{a}^{b} |f| d\alpha \leq \left\|f\right\|_{\infty} (\alpha(b) \alpha(a))$
- 6. $\int_a^b f \, d\alpha = f(s)$ if f is continuous at s between a and b, and $\alpha(x) = I(x-s)$ where I(x) = 1 for positive x and vanishes otherwise.
- 7. $\int_{a}^{b} f d\alpha = \sum_{n=1}^{N} c_{n} f(s_{n})$ if $\alpha(x) = \sum_{n=1}^{N} c_{n} I(x-s_{n})$, f is continuous at each of the s_{n} 's (all of which are assumed to lie in the interval (a,b)), and the c_{n} 's are nonnegative.

Proofs:

<u>Property 1</u>: We observe that $c \ge 0$ implies $c \alpha$ is nondecreasing, $M_i(c f) = c M_i(f)$ and $m_i(c f) = c m_i(f)$. Hence $U(P;cf,\alpha) = cU(P;f,\alpha) = U(P;f,c\alpha)$. A similar statement holds for lower sums.

<u>Property 2</u>: We notice that $M_i(f+g) \le M_i(f) + M_i(g)$ and $m_i(f) + m_i(g) \le m_i(f+g)$. Hence,

$$L(P;f,\alpha) + L(P;g,\alpha) \le L(P;f+g,\alpha) \le U(P;f+g,\alpha) \le U(P;f,\alpha) + U(P;g,\alpha).$$

Let $\varepsilon > 0$, then since f and g are Riemann-Stieltjes integrable, there exist partitions P_1, P_2 such that

$$U(P_1;f,\alpha)-L(P_1;f,\alpha) < \epsilon/2, \quad U(P_2;g,\alpha)-L(P_2;g,\alpha) < \epsilon/2$$

If we let P be a common refinement of P_1 and P_2 , then by combining inequalities (1) and (2), we see that

$$\begin{array}{lll} U(P;\,f+g,\alpha)-L(P;\,f+g,\alpha) & \leq & U(P;f,\alpha)-L(P;f,\alpha) \, + \, U(P;g,\alpha)-L(P;g,\alpha) \\ \\ \leq & U(P_1;f,\alpha)-L(P_1;f,\alpha) \, + \, U(P_2;g,\alpha)-L(P_2;g,\alpha) \\ \\ \leq & \epsilon/2 \, + \, \epsilon/2 = \epsilon. \end{array}$$

<u>Property 3</u>: Set $\gamma = \alpha + \beta$ and use condition (*) together with the fact that $\Delta \gamma_i = \Delta \alpha_i + \Delta \beta_i$.

<u>Property 4</u>: This follows directly from the definition of the upper and lower integrals using, for example, the inequality $M_i(g) \le M_i(f)$.

Property 5: This is proved by applying property 4.) to the inequality

$$-|\mathbf{f}| \le \mathbf{f} \le |\mathbf{f}|,$$

from which it follows that

 $-\int_{a}^{b} |f| d\alpha \leq \int_{a}^{b} f d\alpha \leq \int_{a}^{b} |f| d\alpha.$

<u>Properties 6-7</u>: Use the properties above together with our earlier example.

[]

Theorem. If f is Riemann-Stieltjes integrable with respect to α on [a,b], then it is Riemann integrable on each subinterval [c,d] \subseteq [a,b]. Moreover, if c \in [a,b], then

$$\int_{a}^{b} f d\alpha = \int_{a}^{c} f d\alpha + \int_{c}^{b} f d\alpha.$$

Proof. We set $\alpha_1(x) = \alpha(x)$ on the interval [a,c] and equal to the constant value $\alpha(c)$ on [c,b]. Similarly, we set $\alpha_2(x) = \alpha(x) - \alpha(c)$ if $c \le x \le b$ and define it to vanish on [a,c]. Then the α_j are non-decreasing and $\alpha = \alpha_1 + \alpha_2$. Note that $\int_a^b f \, d\alpha_1 = \int_a^c f \, d\alpha$ and $\int_a^b f \, d\alpha_2 = \int_c^b f \, d\alpha$.

Robert Sharpley March 2 1998