ANALYSIS II Introduction to Riemann-Stieltjes Integration

<u>Defn.</u> A collection of n+1 distinct points of the interval [a,b]

 $P: = \{x_0 : = a < x_1 < \dots < x_{i-1} < x_i < \dots < b = : x_n\}$

is called a *partition* of the interval. In this case, we define the *norm* of the partition by

$$\|\mathbf{P}\| := \max_{1 \le i \le n} \Delta x_i.$$

where $\Delta x_i := x_i - x_{i-1}$ is the *length* of the i-th subinterval $[x_{i-1}, x_i]$. For a non-decreasing function α on [a,b], define

 $\Delta \alpha_{i} := \alpha(x_{i}) - \alpha(x_{i-1}).$

<u>Defn.</u> Suppose that f is a bounded function on [a,b] and α is nondecreasing. For a given partition P, we define the *Riemann-Stieltjes upper sum of a function f with respect to \alpha* by

$$\mathbf{U}(\mathbf{P};\mathbf{f},\boldsymbol{\alpha}) := \sum_{i=1}^{n} M_{i} \Delta \alpha_{i}$$

where M_i denotes the supremum of f over each of the subintervals $[x_{i-1}, x_i]$. Similarly, we define the *Riemann-Stieltjes lower sum* by

$$\mathbf{L}(\mathbf{P};\mathbf{f},\boldsymbol{\alpha}) := \sum_{i=1}^{n} m_{i} \Delta \alpha_{i}$$

where here \mathbf{m}_i denotes the infimum of f over each of the subintervals $[x_{i-1}, x_i]$. Since $\mathbf{m}_i \leq \mathbf{M}_i$ and $\Delta \alpha_i$ is nonnegative, we observe that

$$L(P;f,\alpha) \leq U(P;f,\alpha).$$

for any partition P.

<u>Defn.</u> Suppose P_1 , P_2 are both partitions of [a,b], then P_2 is called a *refinement* of P_1 (denoted by $P_1 \le P_2$) if as sets $P_1 \subseteq P_2$.

Note. If $P_1 \le P_2$, it follows that $||P_2|| \le ||P_1||$ since each of the subintervals formed by P_2 is contained in a subinterval which arises from P_1 .

<u>Lemma.</u> If $P_1 \le P_2$, then

 $L(P_1; f, \alpha) \leq L(P_2; f, \alpha).$

and

 $U(P_2; f, \alpha) \le U(P_1; f, \alpha).$

<u>Pf.</u> Suppose first that P_1 is a partition of [a,b] and that P_2 is the partition obtained from P_1 by adding an additional point z. The general case follows by induction, adding one point at a time. In particular, we let

$$P_1 := \{x_0 := a < x_1 < \dots < x_{i-1} < x_i < \dots < b = : x_n\}$$

and

$$P_2 := \{x_0 := a < x_1 < \dots < x_{i-1} < z < x_i < \dots < b = : x_n\}$$

for some fixed i. We focus on the upper sum for these two partitions, noting that the inequality for the lower sums follows similarly. Observe that

$$U(P_1; f, \alpha) := \sum_{j=1}^{n} M_j \Delta \alpha_j$$

and

$$U(P_2; f, \alpha) := \sum_{j=1}^{i-1} M_j \Delta \alpha_j + M (\alpha(z) - \alpha(x_{i-1})) + \widetilde{M} (\alpha(x_i) - \alpha(z)) + \sum_{j=i+1}^n M_j \Delta \alpha_j$$

where $M := \sup \{ f(x) | x_{i-1} \le x \le z \}$ and $M^{\sim} := \sup \{ f(x) | z \le x \le x_i \}$. It then follows that $U(P_2; f, \alpha) \le U(P_1; f, \alpha)$ since

$$M, M \leq M_{i}. \square$$

<u>Defn.</u> If P_1 and P_2 are arbitrary partitions of [a,b], then the *common refinement* of P_1 and P_2 is the formal union of the two.

<u>Corollary</u>. Suppose P_1 and P_2 are arbitrary partitions of [a,b], then

$$L(P_1; f, \alpha) \le U(P_2; f, \alpha).$$

<u>Pf.</u> Let P be the common refinement of P_1 and P_2 , then

$$L(P_1; f, \alpha) \le L(P; f, \alpha) \le U(P; f, \alpha) \le U(P_2; f, \alpha).$$

<u>Defn.</u> The *lower Riemann-Stieltjes integral of f with respect to* α over [a,b] is defined to be

(L)-
$$\int_{a}^{b} f(x) d\alpha := \sup_{\text{all partitions P of [a,b]}} L(P;f,\alpha).$$

Similarly, the *upper Riemann-Stieltjes integral of f with respect to \alpha over [a,b] is defined to be*

(U)-
$$\int_{a}^{b} f(x) d\alpha(x) := \inf_{\substack{\text{all partitions of [a,b]}}} U(P;f,\alpha)$$
.

By the definitions of least upper bound and greatest lower bound, it is evident that for any function f there holds

$$(L) \text{-} \int \begin{array}{c} b \\ a \end{array} f(x) \ \text{d} \ \alpha(x) \ \leq \ (U) \text{-} \int \begin{array}{c} b \\ a \end{array} f(x) \ \text{d} \ \alpha(x)$$

Defn. A function f is *Riemann-Stieltjes integrable* over [a,b] if the upper and lower Riemann-Stieltjes integrals coincide. We denote this common value by $\int_a^b f(x) d\alpha(x)$.

Examples:

- 1. Obviously, if $\alpha(x) := x$, then the Riemann-Stieltjes integral reduces to the Riemann integral of f.
- 2. $\int_a^b f(x) d\alpha(x) = f(x_0)$, if f is continuous at x_0 and α is defined to be the step function which is one for x larger than x_0 and zero otherwise.

Robert Sharpley Feb 23 1998