Theorem. If a is a nonnegative real number, then there exists a unique positive real number α such that $\alpha^{2}=a$. We use the notation $\sqrt{a}:=\alpha$.

Lemma. Positive square roots are unique.
Proof. Suppose not. If $x<y$ and x, y are both positive square roots of $a>0$, then $x^{2}<x y<y^{2}$. But $x^{2}=a=y^{2}$. Contradiction. \diamond

Proof of the Theorem. First notice that we may assume without loss of generality that $0<a<1$. If $a=1$, then $\alpha=1$ is the unique square root of a. If $1<a$, then $b:=1 / a$ is less than 1 , and we denote its square root by β. We set $\alpha:=1 / \beta$, then $\alpha^{2}=1 / \beta^{2}=1 / b=a$. Also notice that in the case $0<a<1$, the Lemma and its proof imply that $0<\alpha<1$.

For $0<a<1$, we define the set

$$
A:=\left\{x>0 \mid x^{2} \leq a\right\} .
$$

Notice that A is nonempty $(a \in A)$ and bounded from above by 1 , so let $\alpha:=\operatorname{lub} A$. Suppose that $\alpha^{2} \neq a$.
Case 1. If $a<\alpha^{2}$, then we observe that $\epsilon:=\frac{\alpha^{2}-a}{2}$ is positive. We claim that $\beta=\alpha-\epsilon$ is an upper bound for A, which would contract the statement that α is the least upper bound. By the definition of ϵ we see that

$$
\beta^{2}>\alpha^{2}-2 \epsilon \alpha>\alpha^{2}-2 \epsilon=a \geq x^{2}
$$

for each $x \in A$. Hence β is greater than all $x \in A$.
Case 2. If $\alpha^{2}<a$, then set $x=\alpha+\epsilon$ where

$$
\epsilon=\min \left\{\frac{a-\alpha^{2}}{2 \alpha+1}, 1\right\} .
$$

We claim that $x \in A$ which would contradict that α is the least upper bound of A. Indeed, using the definition of ϵ, we see that

$$
x^{2}=\alpha^{2}+2 \epsilon \alpha+\epsilon^{2} \leq \alpha^{2}+(2 \alpha+1) \epsilon \leq a . \diamond
$$

