MATH 554- 703 I - ANALYSIS I EXISTENCE OF SQUARE ROOTS

Theorem. If a is a nonnegative real number, then there exists a unique positive real number α such that $\alpha^2 = a$. We use the notation $\sqrt{a} := \alpha$.

Lemma. Positive square roots are unique.

Proof. Suppose not. If x < y and x, y are both positive square roots of a > 0, then $x^2 < xy < y^2$. But $x^2 = a = y^2$. Contradiction. \diamond

Proof of the Theorem. First notice that we may assume without loss of generality that 0 < a < 1. If a = 1, then $\alpha = 1$ is the unique square root of a. If 1 < a, then b := 1/a is less than 1, and we denote its square root by β . We set $\alpha := 1/\beta$, then $\alpha^2 = 1/\beta^2 = 1/b = a$. Also notice that in the case 0 < a < 1, the Lemma and its proof imply that $0 < \alpha < 1$.

For 0 < a < 1, we define the set

$$A := \left\{ x > 0 | x^2 \le a \right\}.$$

Notice that A is nonempty $(a \in A)$ and bounded from above by 1, so let $\alpha := \text{lub } A$. Suppose that $\alpha^2 \neq a$.

<u>Case 1.</u> If $a < \alpha^2$, then we observe that $\epsilon := \frac{\alpha^2 - a}{2}$ is positive. We claim that $\beta = \alpha - \epsilon$ is an upper bound for A, which would contract the statement that α is the least upper bound. By the definition of ϵ we see that

$$\beta^2 > \alpha^2 - 2\epsilon\alpha > \alpha^2 - 2\epsilon = a \ge x^2$$

for each $x \in A$. Hence β is greater than all $x \in A$. <u>Case 2.</u> If $\alpha^2 < a$, then set $x = \alpha + \epsilon$ where

$$\epsilon = \min\left\{\frac{a-\alpha^2}{2\alpha+1}, 1\right\}.$$

We claim that $x \in A$ which would contradict that α is the least upper bound of A. Indeed, using the definition of ϵ , we see that

$$x^{2} = \alpha^{2} + 2\epsilon\alpha + \epsilon^{2} \le \alpha^{2} + (2\alpha + 1)\epsilon \le a. \quad \diamond$$