MATH 554 – DIFFERENTIATION Handout #8

Defn. A function f is said to be *differentiable at* x_0 if

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

exists. In this case the limit is called the *derivative* of f at x_0 and is denoted $f'(x_0)$.

Note. 1. This definition is equivalent to the requirement that the following limit exist:

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0).$$

2. This, in turn, is equivalent to the following statement about how fast f(x) converges to $f(x_0)$ as $x \to x_0$:

there exists a function η such that $\lim_{x\to x_0} \eta(x) = 0$ and

(*)
$$f(x) - f(x_0) = (x - x_0) \left(f'(x_0) + \eta(x) \right).$$

Note that if we define $\eta(x_0) = 0$, then without loss of generality we can assume that η is continuous at x_0 .

Examples: 1. If f(x) := x², then f'(x) = 2x.
2. If g(x) := |x|, then g'(0) does not exist.
3. If h(x) := x|x|, then h'(x) exists and equals 2|x|.

Theorem. If f is differentiable at x_0 , then f is continuous at x_0 . *Proof.* Use (*) and let $x \to x_0$. \Box

Theorem. (Basic rules of differentiation: sums, products, quotients) Suppose that f and g are differentiable at x_0 , then

1.
$$(f+g)'(x_0) = f'(x_0) + g'(x_0).$$

2. $(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0).$
3. $(f/g)'(x_0) = (g(x_0)f'(x_0) - f(x_0)g'(x_0))/g(x_0)^2, \text{ if } g(x_0) \neq 0.$

Theorem. (Chain rule) If f is differentiable at x_0 and g is differentiable at $y_0 := f(x_0)$, then $h := g \circ f$ is differentiable at x_0 and

$$h'(x_0) = g'(f(x_0)) f'(x_0)$$

Proof. Use (*) for f at x_0 and for g at $y_0 := f(x_0)$:

$$\frac{h(x) - h(x_0)}{x - x_0} = \frac{g(y) - g(y_0)}{x - x_0} = \frac{y - y_0}{x - x_0} (g'(y_0) + \eta_2(y))$$
$$= \frac{f(x) - f(x_0)}{x - x_0} (g'(y_0) + \eta_2(y))$$
$$= (f'(x_0) + \eta_1(x))(g'(y_0) + \eta_2(y))$$

where y := f(x). The proof is completed by using this equation, letting $x_n \to x_0$, and noticing that $y_n \to y_0$ where $y_n := f(x_n)$. \Box

Theorem. (Rolle's Theorem) Suppose that ϕ is differentiable on (a, b), is continuous on [a, b], and vanishes at the endpoints, then there exists x_0 strictly between a and b such that $\phi'(x_0) = 0$. *Proof.* If ϕ is constant, then any point can be selected for x_0 . Otherwise, we may assume WLOG that ϕ has positive values. By the Extreme Value Theorem, let x_0 be such that $\phi(x) \leq \phi(x_0)$ for all $a \leq x \leq b$. First, let $x_n \downarrow x_0$, then since x_0 gives a max, we have

$$0 \ge \frac{\phi(x_n) - \phi(x_0)}{x_n - x_0} \to \phi'(x_0)$$

and so, by the Squeeze Theorem, $\phi'(x_0) \leq 0$. Similarly, $\phi'(x_0) \geq 0$. \Box

Note. Within the proof we actually established the critical point procedure of calculus: local max and min can only occur at critical points.

Corollary. Suppose that f is a differentiable function on (a, b) and is continuous on [a, b]. Then f' vanishes identically if and only if f is a constant function.

Corollary. (Mean Value Theorem) Suppose that f is differentiable on (a, b) and is continuous on [a, b], then there exists x_0 strictly between a and b such that

$$f'(x_0) = \frac{f(b) - f(a)}{b - a}$$

Proof. Let

$$\phi(x) := f(x) - \left[\frac{f(b) - f(a)}{b - a}(x - a) + f(a)\right]$$

and apply Rolle's theorem. \Box

Defn. F is called an *anti-derivative* of f if F is differentiable and F'(x) = f(x)

Corollary. If both F and G are anti-derivatives of f, then they differ by a constant, i.e. there exists a constant c such that F(x) - G(x) = c, for all $x \in dom(f)$.