MORE ON COMPACTNESS Handout #7, part B

Defn 1. A function f is called *Lipschitz* if there is an M > 0 such that

$$|f(x_1) - f(x_2)| \le M|x_1 - x_2|$$
, for all $x_1, x_2 \in dom(f)$.

If M < 1, then f is called a *contraction*.

Theorem 1. Each Lipschitz function is uniformly continuous.

Theorem 2. Suppose that K is compact and $f: K \to K$ is a contraction, then f has a fixed point in K.

Proof Let x_0 be an arbitrary point in K. Define inductively,

$$x_{n+1} = f(x_n), \quad n = 0, 1, 2, \dots$$

We claim that the sequence $\{x_n\}_{n=1}^{\infty}$ is convergent to some $\alpha \in K$. First note that for each $n \in \mathbb{N}$

$$|x_{n+1} - x_n| = |f(x_n) - f(x_{n-1})| \le M |x_n - x_{n-1}|.$$

Hence, by induction, for each $n \in \mathbb{N}$

$$|x_{n+1} - x_n| \le M^n |x_1 - x_0|.$$

We then see that if m > n, then m = n + k where $k \in \mathbb{N}$ and

$$\begin{aligned} |x_{n+k} - x_n| &\leq |x_{n+k} - x_{n+k-1}| + |x_{n+k-1} - x_{n+k-2}| + \dots + |x_{n+1} - x_n| \\ &\leq (M^{n+k-1} + M^{n+k-2} + \dots + M^n) |x_1 - x_0| \\ &= M^n (1 + M + \dots + M^{k-1}) |x_1 - x_0| \\ &\leq \frac{|x_1 - x_0|}{1 - M} M^n \end{aligned}$$

and so $\{x_n\}_{n=1}^{\infty}$ is Cauchy. It must converge to some limit α which will belong to K since K is closed. But f is continuous, so $x_{n+1} = f(x_n) \to f(\alpha)$. Notice also that $x_{n+1} \to \alpha$, so α is our fixed point. \Box

Theorem 3. Suppose that $f : [a, b] \to K$ is one-to-one, onto and continuous, then f^{-1} is continuous.

Proof(#1) Suppose that $g := f^{-1}$ and $y_n \to y_0 \in K$. There exists unique $x_n \in [a, b]$ such that $f(x_n) = y_n$, or equivalently, $x_n = g(y_n)$. If $x_n \not\to x_0$, then there exists $\epsilon_0 > 0$ and a subsequence x_{n_k} such that $|x_{n_k} - x_0| \ge \epsilon_0$. This sequence in turn has

a subsequence which converges in K to some $z \in K$. We may as well assume that the subsequence is the sequence $\{x_{n_k}\}$. f is continuous so $y_{n_k} = f(x_{n_k}) \to f(z)$. But then $f(z) = y_0 = f(x_0)$. f is one-to-one, so $z = x_0$, which is a contradiction, since $|x_{n_k} - x_0| \ge \epsilon_0$. \Box *Proof* (#2) Let $\mathcal{O} \subseteq [a, b]$ be relatively open, then $(f^{-1})^{-1}(\mathcal{O}) = f(\mathcal{O})$. Let C be the complement in [a, b] of \mathcal{O} , then C is closed and hence compact. Therefore f(C)

is compact in K and consequently it is closed. Its complement in K must then be open. That complement however is $f(\mathcal{O})$. \Box