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Defn 1. A function f is called Lipschitz if there is an M > 0 such that

|f(x1) − f(x2)| ≤ M |x1 − x2|, for all x1, x2 ∈ dom(f).

If M < 1, then f is called a contraction.

Theorem 1. Each Lipschitz function is uniformly continuous.

Theorem 2. Suppose that K is compact and f : K → K is a contraction, then f

has a fixed point in K.
Proof Let x0 be an arbitrary point in K. Define inductively,

xn+1 = f(xn), n = 0, 1, 2, . . .

We claim that the sequence {xn}
∞
n=1 is convergent to some α ∈ K. First note that

for each n ∈ IN

|xn+1 − xn| = |f(xn) − f(xn−1)| ≤ M |xn − xn−1|.

Hence, by induction, for each n ∈ IN

|xn+1 − xn| ≤ Mn |x1 − x0|.

We then see that if m > n, then m = n + k where k ∈ IN and

|xn+k − xn| ≤ |xn+k − xn+k−1| + |xn+k−1 − xn+k−2| + . . . + |xn+1 − xn|

≤
(

Mn+k−1 + Mn+k−2 + . . . + Mn
)

|x1 − x0|

= Mn (1 + M + . . . + Mk−1)|x1 − x0|

≤ |x1−x0|
1−M

Mn

and so {xn}
∞
n=1 is Cauchy. It must converge to some limit α which will belong to

K since K is closed. But f is continuous, so xn+1 = f(xn) → f(α). Notice also
that xn+1 → α, so α is our fixed point. 2

Theorem 3. Suppose that f : [a, b] → K is one-to-one, onto and continuous, then

f−1 is continuous.
Proof (#1) Suppose that g := f−1 and yn → y0 ∈ K. There exists unique xn ∈ [a, b]

such that f(xn) = yn, or equivalently, xn = g(yn). If xn 6→ x0, then there exists
ǫ0 > 0 and a subsequence xnk

such that |xnk
− x0| ≥ ǫ0. This sequence in turn has



a subsequence which converges in K to some z ∈ K. We may as well assume that
the subsequence is the sequence {xnk

}. f is continuous so ynk
= f(xnk

) → f(z).

But then f(z) = y0 = f(x0). f is one-to-one, so z = x0, which is a contradiction,
since |xnk

− x0| ≥ ǫ0. 2

Proof (#2) Let O ⊆ [a, b] be relatively open, then (f−1)−1(O) = f(O). Let C be
the complement in [a, b] of O, then C is closed and hence compact. Therefore f(C)
is compact in K and consequently it is closed. Its complement in K must then be

open. That complement however is f(O). 2


