More on Compactness
 Handout \#7, part B

Defn 1. A function f is called Lipschitz if there is an $M>0$ such that

$$
\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq M\left|x_{1}-x_{2}\right|, \quad \text { for all } x_{1}, x_{2} \in \operatorname{dom}(f)
$$

If $M<1$, then f is called a contraction.
Theorem 1. Each Lipschitz function is uniformly continuous.
Theorem 2. Suppose that K is compact and $f: K \rightarrow K$ is a contraction, then f has a fixed point in K.
Proof Let x_{0} be an arbitrary point in K. Define inductively,

$$
x_{n+1}=f\left(x_{n}\right), \quad n=0,1,2, \ldots
$$

We claim that the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ is convergent to some $\alpha \in K$. First note that for each $n \in \mathbb{N}$

$$
\left|x_{n+1}-x_{n}\right|=\left|f\left(x_{n}\right)-f\left(x_{n-1}\right)\right| \leq M\left|x_{n}-x_{n-1}\right| .
$$

Hence, by induction, for each $n \in I N$

$$
\left|x_{n+1}-x_{n}\right| \leq M^{n}\left|x_{1}-x_{0}\right| .
$$

We then see that if $m>n$, then $m=n+k$ where $k \in I N$ and

$$
\begin{aligned}
\left|x_{n+k}-x_{n}\right| & \leq\left|x_{n+k}-x_{n+k-1}\right|+\left|x_{n+k-1}-x_{n+k-2}\right|+\ldots+\left|x_{n+1}-x_{n}\right| \\
& \leq\left(M^{n+k-1}+M^{n+k-2}+\ldots+M^{n}\right)\left|x_{1}-x_{0}\right| \\
& =M^{n}\left(1+M+\ldots+M^{k-1}\right)\left|x_{1}-x_{0}\right| \\
& \leq \frac{\left|x_{1}-x_{0}\right|}{1-M} M^{n}
\end{aligned}
$$

and so $\left\{x_{n}\right\}_{n=1}^{\infty}$ is Cauchy. It must converge to some limit α which will belong to K since K is closed. But f is continuous, so $x_{n+1}=f\left(x_{n}\right) \rightarrow f(\alpha)$. Notice also that $x_{n+1} \rightarrow \alpha$, so α is our fixed point.

Theorem 3. Suppose that $f:[a, b] \rightarrow K$ is one-to-one, onto and continuous, then f^{-1} is continuous.
$\operatorname{Proof}(\# 1)$ Suppose that $g:=f^{-1}$ and $y_{n} \rightarrow y_{0} \in K$. There exists unique $x_{n} \in[a, b]$ such that $f\left(x_{n}\right)=y_{n}$, or equivalently, $x_{n}=g\left(y_{n}\right)$. If $x_{n} \nrightarrow x_{0}$, then there exists $\epsilon_{0}>0$ and a subsequence $x_{n_{k}}$ such that $\left|x_{n_{k}}-x_{0}\right| \geq \epsilon_{0}$. This sequence in turn has
a subsequence which converges in K to some $z \in K$. We may as well assume that the subsequence is the sequence $\left\{x_{n_{k}}\right\} . f$ is continuous so $y_{n_{k}}=f\left(x_{n_{k}}\right) \rightarrow f(z)$. But then $f(z)=y_{0}=f\left(x_{0}\right)$. f is one-to-one, so $z=x_{0}$, which is a contradiction, since $\left|x_{n_{k}}-x_{0}\right| \geq \epsilon_{0}$.
$\operatorname{Proof}(\# 2)$ Let $\mathcal{O} \subseteq[a, b]$ be relatively open, then $\left(f^{-1}\right)^{-1}(\mathcal{O})=f(\mathcal{O})$. Let C be the complement in $[a, b]$ of \mathcal{O}, then C is closed and hence compact. Therefore $f(C)$ is compact in K and consequently it is closed. Its complement in K must then be open. That complement however is $f(\mathcal{O})$.

