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Lecture Note Set # 4 - Sequences and Series

Example. The following two results follow from the Principle of Induction and
will useful in our study of convergence of sequences and series of real numbers.

1.

n∑

j=0

rj =
1 − rn+1

1 − r
, if r 6= 1.

2. 1 + na ≤ (1 + a)n, if a > 0 & n ∈ IN . (Bernoulli’s inequality)

Defn. Consider a sequence of points {an} from a metric space (X, d). The following
definitions are used throughout the course:

1. A sequence {pn} in a metric space (X, d) is convergent to p, denoted by
lim
n→∞

pn = p, means each ǫ-nbhd of p contains all but a finite number of terms

of the sequence. We also use the shorter notation pn → p when there is no

ambiguity on the indices, or the metric d.
2. {pn} is bounded means there is some element p ∈ X and some real number M

for this sequence so that d(p, pn) ≤ M , for all n ∈ IN .

3. {pn} is called Cauchy if for each ǫ > 0 there is an N ∈ IN so that d(pm, pn) < ǫ
whenever m, n ≥ N .

Example. The following are examples of sequences of real numbers:

1. 1/2, 1/3, 1/4, · · ·

2. 1, r, r2, r3, · · ·
3. 1, 1 + r, 1 + r + r2, 1 + r + r2 + r3, · · ·

Lemma. lim
n→∞

pn = p if and only if

for every ǫ > 0, there exists N ∈ INso that if n ≥ IN, then d(pn, p) < ǫ.

In short hand this reads ‘∀ǫ > 0, ∃N = N(ǫ) ∈ IN ∋ n ≥ IN(ǫ) =⇒ d(pn, p) < ǫ.’

Proof. Notice that if a statement is true except for at most a finite number of terms, then there is

a largest integer for which it is not true. Take N to be that integer’s successor. �

Theorem. If lim
n→∞

pn exists, then it is unique.

Proof. Suppose that lim
n→∞

pn = P1 and lim
n→∞

pn = P2 and that P1 6= P2. Set ǫ := 1

2
d(P1, P2). Now

ǫ > 0 so there exists N1, such that if n ≥ N1 then d(pn, P1) < ǫ. Since the sequence converges to



P2, we also have that there exists N2, such that if n ≥ N2 then d(pn, P2) < ǫ. Let N := N1 + N2,
then N is larger than both N1 and N2 and so

d(P1, P2) ≤ d(P1, pN) + d(pN , P2) < 2ǫ = d(P1, P2),

which gives a contradiction. �

Theorem. Each convergent sequence is bounded.
Proof. Suppose that lim

n→∞
pn = p. Let ǫ := 1, then there is an integer N such that pn ∈ Nǫ(p) if

n ≥ N . Set M := max{1, d(p1, p), d(p2, p) . . . , d(pN−1, p)}, then the sequence is contained in the

neighborhood NM (p). �

Note. i) In the real numbers a set S is bounded if and only if there exists M > 0

so that |a| ≤ M for all a ∈ S.

ii) Not every bounded sequence is convergent. For example, the sequence an :=

(−1)n is bounded, but it is not convergent (take ǫ = 1).

Theorem. Each convergent sequence is Cauchy.

Special Properties of Sequences and Series for R

Examples. The following are important special cases of convergent sequences and

series in the metric space R with the standard metric.

1. lim
n→∞

1

n
= 0.

Proof. Use the Archimedean Principle.

2. lim
n→∞

3n2 − 1

n2 + n + 25
= 3.

(Hint: Directly - for a given ǫ > 0, use N := max{76, 4N1} where N1 is the ‘cutoff’ for

Example 1, i.e. any integer larger than 1/ǫ.)

3. If |r| < 1, then rn → 0 .

Proof. If r = 0, then the conclusion follows straight away. Suppose that 0 < |r| < 1, then
if b := 1/|r| − 1 we see that b > 0 and |r| = 1/(1 + b). By Bernoulli’s inequality, |rn|−1 =
(1 + b)n ≥ 1 + nb. Inverting this inequality gives |rn − 0| ≤ 1/(1 + nb). By example 1, pick
N so that 1/n < bǫ if n ≥ N . Hence,

|rn − 0| ≤
1

1 + nb
<

1

nb
< ǫ, if n ≥ N. �



4. lim
n→∞

sn = 1/(1 − r), if sn := 1 + r + r2 + · · · + rn and |r| < 1.

(Note: sn :=

n∑

j=0

rj, the sequence of partial sums of the geometric series.)

Proof. If r = 0, the conclusion follows immediately. We may suppose then that 0 < |r| < 1.
In this case, we use the identity above, i.e.

sn :=
n∑

j=0

rn =
1 − rn+1

1 − r

to see that
sn − s = −rn+1/(1 − r)

where s := 1/(1−r). Now, given ǫ > 0, by example 3 there is an N0 such that n ≥ N0 implies

|rn| < (1−|r|
|r|

)ǫ. Combined with the displayed equation, this gives |sn − s| < ǫ if n ≥ N0. �

Theorem. (Properties of Limits) Suppose that lim
n→∞

an = a and lim
n→∞

bn = b,

then

1. lim
n→∞

an + bn = a + b

2. lim
n→∞

anbn = ab

3. If b 6= 0, then lim
n→∞

an

bn

=
a

b
.

Theorem. Suppose that lim
n→∞

an = a, then prove that lim
n→∞

|an| = |a|.

Defn. A sequence {an} is called monotone increasing if am ≤ an whenever m ≤ n.
A sequence {an} is called monotone decreasing if an ≤ am whenever m ≤ n.

Theorem. Monotone sequences, which are also bounded, converge.

Theorem. Suppose that lim
n→∞

an = a and lim
n→∞

bn = a. If an ≤ cn ≤ bn for all

n ∈ IN , then lim
n→∞

cn exists and equals a.

Theorem. In R, each Cauchy sequence is convergent.

(General metric spaces which have this property are called complete metric spaces.)


