Math 554/703 I - Fall 08

Lecture Note Set \# 4-Sequences and Series

Example. The following two results follow from the Principle of Induction and will useful in our study of convergence of sequences and series of real numbers.

1. $\sum_{j=0}^{n} r^{j}=\frac{1-r^{n+1}}{1-r}$, if $r \neq 1$.
2. $1+n a \leq(1+a)^{n}$, if $a>0 \& n \in \mathbb{N}$. (Bernoulli's inequality)

Defn. Consider a sequence of points $\left\{a_{n}\right\}$ from a metric space (X, d). The following definitions are used throughout the course:

1. A sequence $\left\{p_{n}\right\}$ in a metric space (X, d) is convergent to p, denoted by $\lim _{n \rightarrow \infty} p_{n}=p$, means each ϵ-nbhd of p contains all but a finite number of terms of the sequence. We also use the shorter notation $p_{n} \rightarrow p$ when there is no ambiguity on the indices, or the metric d.
2. $\left\{p_{n}\right\}$ is bounded means there is some element $p \in X$ and some real number M for this sequence so that $d\left(p, p_{n}\right) \leq M$, for all $n \in \mathbb{N}$.
3. $\left\{p_{n}\right\}$ is called Cauchy if for each $\epsilon>0$ there is an $N \in \mathbb{N}$ so that $d\left(p_{m}, p_{n}\right)<\epsilon$ whenever $m, n \geq N$.

Example. The following are examples of sequences of real numbers:

1. $1 / 2,1 / 3,1 / 4, \cdots$
2. $1, r, r^{2}, r^{3}, \cdots$
3. $1,1+r, 1+r+r^{2}, 1+r+r^{2}+r^{3}, \cdots$

Lemma. $\lim _{n \rightarrow \infty} p_{n}=p$ if and only if
for every $\epsilon>0$, there exists $N \in \mathbb{N}$ so that if $n \geq \mathbb{N}$, then $d\left(p_{n}, p\right)<\epsilon$.
In short hand this reads ' $\forall \epsilon>0, \exists N=N(\epsilon) \in I N \ni n \geq I N(\epsilon) \Longrightarrow d\left(p_{n}, p\right)<\epsilon$.'
Proof. Notice that if a statement is true except for at most a finite number of terms, then there is a largest integer for which it is not true. Take N to be that integer's successor.

Theorem. If $\lim _{n \rightarrow \infty} p_{n}$ exists, then it is unique.
Proof. Suppose that $\lim _{n \rightarrow \infty} p_{n}=P_{1}$ and $\lim _{n \rightarrow \infty} p_{n}=P_{2}$ and that $P_{1} \neq P_{2}$. Set $\epsilon:=\frac{1}{2} d\left(P_{1}, P_{2}\right)$. Now $\epsilon>0$ so there exists N_{1}, such that if $n \geq N_{1}$ then $d\left(p_{n}, P_{1}\right)<\epsilon$. Since the sequence converges to
P_{2}, we also have that there exists N_{2}, such that if $n \geq N_{2}$ then $d\left(p_{n}, P_{2}\right)<\epsilon$. Let $N:=N_{1}+N_{2}$, then N is larger than both N_{1} and N_{2} and so

$$
d\left(P_{1}, P_{2}\right) \leq d\left(P_{1}, p_{N}\right)+d\left(p_{N}, P_{2}\right)<2 \epsilon=d\left(P_{1}, P_{2}\right)
$$

which gives a contradiction.
Theorem. Each convergent sequence is bounded.
Proof. Suppose that $\lim _{n \rightarrow \infty} p_{n}=p$. Let $\epsilon:=1$, then there is an integer N such that $p_{n} \in N_{\epsilon}(p)$ if $n \geq N$. Set $M:=\max \left\{1, d\left(p_{1}, p\right), d\left(p_{2}, p\right) \ldots, d\left(p_{N-1}, p\right)\right\}$, then the sequence is contained in the neighborhood $N_{M}(p)$.

Note. i) In the real numbers a set S is bounded if and only if there exists $M>0$ so that $|a| \leq M$ for all $a \in S$.
ii) Not every bounded sequence is convergent. For example, the sequence $a_{n}:=$ $(-1)^{n}$ is bounded, but it is not convergent (take $\epsilon=1$).

Theorem. Each convergent sequence is Cauchy.

Special Properties of Sequences and Series for \mathbb{R}

Examples. The following are important special cases of convergent sequences and series in the metric space \mathbb{R} with the standard metric.

1. $\lim _{n \rightarrow \infty} \frac{1}{n}=0$.

Proof. Use the Archimedean Principle.
2. $\lim _{n \rightarrow \infty} \frac{3 n^{2}-1}{n^{2}+n+25}=3$.
(Hint: Directly - for a given $\epsilon>0$, use $N:=\max \left\{76,4 N_{1}\right\}$ where N_{1} is the 'cutoff' for Example 1, i.e. any integer larger than $1 / \epsilon$.)
3. If $|r|<1$, then $r^{n} \rightarrow 0$.

Proof. If $r=0$, then the conclusion follows straight away. Suppose that $0<|r|<1$, then if $b:=1 /|r|-1$ we see that $b>0$ and $|r|=1 /(1+b)$. By Bernoulli's inequality, $\left|r^{n}\right|^{-1}=$ $(1+b)^{n} \geq 1+n b$. Inverting this inequality gives $\left|r^{n}-0\right| \leq 1 /(1+n b)$. By example 1 , pick N so that $1 / n<b \in$ if $n \geq N$. Hence,

$$
\left|r^{n}-0\right| \leq \frac{1}{1+n b}<\frac{1}{n b}<\epsilon, \quad \text { if } n \geq N \text {. }
$$

4. $\lim _{n \rightarrow \infty} s_{n}=1 /(1-r)$, if $s_{n}:=1+r+r^{2}+\cdots+r^{n}$ and $|r|<1$.
(Note: $s_{n}:=\sum_{j=0}^{n} r^{j}$, the sequence of partial sums of the geometric series.)
Proof. If $r=0$, the conclusion follows immediately. We may suppose then that $0<|r|<1$. In this case, we use the identity above, i.e.

$$
s_{n}:=\sum_{j=0}^{n} r^{n}=\frac{1-r^{n+1}}{1-r}
$$

to see that

$$
s_{n}-s=-r^{n+1} /(1-r)
$$

where $s:=1 /(1-r)$. Now, given $\epsilon>0$, by example 3 there is an N_{0} such that $n \geq N_{0}$ implies $\left|r^{n}\right|<\left(\frac{1-|r|}{|r|}\right) \epsilon$. Combined with the displayed equation, this gives $\left|s_{n}-s\right|<\epsilon$ if $n \geq N_{0}$.

Theorem. (Properties of Limits) Suppose that $\lim _{n \rightarrow \infty} a_{n}=a$ and $\lim _{n \rightarrow \infty} b_{n}=b$, then

1. $\lim _{n \rightarrow \infty} a_{n}+b_{n}=a+b$
2. $\lim _{n \rightarrow \infty} a_{n} b_{n}=a b$
3. If $b \neq 0$, then $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{a}{b}$.

Theorem. Suppose that $\lim _{n \rightarrow \infty} a_{n}=a$, then prove that $\lim _{n \rightarrow \infty}\left|a_{n}\right|=|a|$.
Defn. A sequence $\left\{a_{n}\right\}$ is called monotone increasing if $a_{m} \leq a_{n}$ whenever $m \leq n$. A sequence $\left\{a_{n}\right\}$ is called monotone decreasing if $a_{n} \leq a_{m}$ whenever $m \leq n$.

Theorem. Monotone sequences, which are also bounded, converge.
Theorem. Suppose that $\lim _{n \rightarrow \infty} a_{n}=a$ and $\lim _{n \rightarrow \infty} b_{n}=a$. If $a_{n} \leq c_{n} \leq b_{n}$ for all $n \in I N$, then $\lim _{n \rightarrow \infty} c_{n}$ exists and equals a.
Theorem. In \mathbb{R}, each Cauchy sequence is convergent.
(General metric spaces which have this property are called complete metric spaces.)

