MATH 554/703 I - FALL 08 Lecture Note Set # 4 - Sequences and Series

Example. The following two results follow from the Principle of Induction and will useful in our study of convergence of sequences and series of real numbers.

1.
$$\sum_{j=0}^{n} r^{j} = \frac{1 - r^{n+1}}{1 - r}$$
, if $r \neq 1$.

2.
$$1 + na \le (1 + a)^n$$
, if $a > 0 \& n \in \mathbb{N}$. (Bernoulli's inequality)

Defn. Consider a sequence of points $\{a_n\}$ from a metric space (X, d). The following definitions are used throughout the course:

- 1. A sequence $\{p_n\}$ in a metric space (X, d) is convergent to p, denoted by $\lim_{n \to \infty} p_n = p$, means each ϵ -nbhd of p contains all but a finite number of terms of the sequence. We also use the shorter notation $p_n \to p$ when there is no ambiguity on the indices, or the metric d.
- 2. $\{p_n\}$ is *bounded* means there is some element $p \in X$ and some real number M for this sequence so that $d(p, p_n) \leq M$, for all $n \in \mathbb{N}$.
- 3. $\{p_n\}$ is called *Cauchy* if for each $\epsilon > 0$ there is an $N \in \mathbb{N}$ so that $d(p_m, p_n) < \epsilon$ whenever $m, n \ge N$.

Example. The following are examples of sequences of real numbers:

- 1. $1/2, 1/3, 1/4, \cdots$
- 2. $1, r, r^2, r^3, \cdots$
- 3. 1, 1+r, $1+r+r^2$, $1+r+r^2+r^3$, ...

Lemma. $\lim_{n\to\infty} p_n = p$ if and only if

for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ so that if $n \ge \mathbb{N}$, then $d(p_n, p) < \epsilon$.

In short hand this reads $\forall \epsilon > 0, \exists N = N(\epsilon) \in \mathbb{N} \ni n \ge \mathbb{N}(\epsilon) \implies d(p_n, p) < \epsilon$.

Proof. Notice that if a statement is true except for at most a finite number of terms, then there is a largest integer for which it is not true. Take N to be that integer's successor. \Box

Theorem. If $\lim_{n \to \infty} p_n$ exists, then it is unique.

Proof. Suppose that $\lim_{n \to \infty} p_n = P_1$ and $\lim_{n \to \infty} p_n = P_2$ and that $P_1 \neq P_2$. Set $\epsilon := \frac{1}{2}d(P_1, P_2)$. Now $\epsilon > 0$ so there exists N_1 , such that if $n \ge N_1$ then $d(p_n, P_1) < \epsilon$. Since the sequence converges to

 P_2 , we also have that there exists N_2 , such that if $n \ge N_2$ then $d(p_n, P_2) < \epsilon$. Let $N := N_1 + N_2$, then N is larger than both N_1 and N_2 and so

$$d(P_1, P_2) \le d(P_1, p_N) + d(p_N, P_2) < 2\epsilon = d(P_1, P_2),$$

which gives a contradiction. \Box

Theorem. Each convergent sequence is bounded.

Proof. Suppose that $\lim_{n\to\infty} p_n = p$. Let $\epsilon := 1$, then there is an integer N such that $p_n \in N_{\epsilon}(p)$ if $n \geq N$. Set $M := \max\{1, d(p_1, p), d(p_2, p) \dots, d(p_{N-1}, p)\}$, then the sequence is contained in the neighborhood $N_M(p)$. \Box

Note. i) In the real numbers a set S is bounded if and only if there exists M > 0 so that $|a| \leq M$ for all $a \in S$.

ii) Not every bounded sequence is convergent. For example, the sequence $a_n := (-1)^n$ is bounded, but it is not convergent (take $\epsilon = 1$).

Theorem. Each convergent sequence is Cauchy.

Special Properties of Sequences and Series for \mathbb{R}

Examples. The following are important special cases of convergent sequences and series in the metric space \mathbb{R} with the standard metric.

1.
$$\lim_{n \to \infty} \frac{1}{n} = 0.$$

Proof. Use the Archimedean Principle.

2. $\lim_{n \to \infty} \frac{3n^2 - 1}{n^2 + n + 25} = 3.$

(Hint: Directly - for a given $\epsilon > 0$, use $N := \max\{76, 4N_1\}$ where N_1 is the 'cutoff' for Example 1, i.e. any integer larger than $1/\epsilon$.)

3. If |r| < 1, then $r^n \to 0$.

Proof. If r = 0, then the conclusion follows straight away. Suppose that 0 < |r| < 1, then if b := 1/|r| - 1 we see that b > 0 and |r| = 1/(1 + b). By Bernoulli's inequality, $|r^n|^{-1} = (1 + b)^n \ge 1 + nb$. Inverting this inequality gives $|r^n - 0| \le 1/(1 + nb)$. By example 1, pick N so that $1/n < b\epsilon$ if $n \ge N$. Hence,

$$|r^n - 0| \le \frac{1}{1+nb} < \frac{1}{nb} < \epsilon, \quad \text{if } n \ge N. \quad \Box$$

4. $\lim_{n \to \infty} s_n = 1/(1-r)$, if $s_n := 1 + r + r^2 + \dots + r^n$ and |r| < 1.

(Note: $s_n := \sum_{j=0}^{n} r^j$, the sequence of partial sums of the geometric series.)

Proof. If r = 0, the conclusion follows immediately. We may suppose then that 0 < |r| < 1. In this case, we use the identity above, i.e.

$$s_n := \sum_{j=0}^n r^n = \frac{1 - r^{n+1}}{1 - r}$$

to see that

$$s_n - s = -r^{n+1}/(1-r)$$

where s := 1/(1-r). Now, given $\epsilon > 0$, by example 3 there is an N_0 such that $n \ge N_0$ implies $|r^n| < (\frac{1-|r|}{|r|})\epsilon$. Combined with the displayed equation, this gives $|s_n - s| < \epsilon$ if $n \ge N_0$. \Box

Theorem. (Properties of Limits) Suppose that $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} b_n = b$, then

- 1. $\lim_{n \to \infty} a_n + b_n = a + b$
- 2. $\lim_{n \to \infty} a_n b_n = ab$
- 3. If $b \neq 0$, then $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}$.

Theorem. Suppose that $\lim_{n \to \infty} a_n = a$, then prove that $\lim_{n \to \infty} |a_n| = |a|$.

Defn. A sequence $\{a_n\}$ is called *monotone increasing* if $a_m \leq a_n$ whenever $m \leq n$. A sequence $\{a_n\}$ is called *monotone decreasing* if $a_n \leq a_m$ whenever $m \leq n$.

Theorem. Monotone sequences, which are also bounded, converge.

Theorem. Suppose that $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} b_n = a$. If $a_n \leq c_n \leq b_n$ for all $n \in \mathbb{N}$, then $\lim_{n\to\infty} c_n$ exists and equals a.

Theorem. In \mathbb{R} , each Cauchy sequence is convergent.

(General metric spaces which have this property are called *complete metric spaces*.)