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Abstract Harmonic Besov and Triebel–Lizorkin spaces on the unit ball in R
d with

full range of parameters are introduced and studied. It is shown that these spaces can
be identified with respective Besov and Triebel–Lizorkin spaces of distributions on
the sphere. Frames consisting of harmonic functions are also developed and frame
characterization of the harmonic Besov and Triebel–Lizorkin spaces is established.
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Lizorkin spaces · Needlets
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1 Introduction

The theory of Besov and Triebel–Lizorkin spaces Bsq
p and Fsq

p in the classical setting
onRd has been developed mainly by J. Peetre, H. Triebel, M. Frazier, and B. Jawerth,
see [5–7,19,24,25]. Besov and Triebel–Lizorkin spaces have also been developed in
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various other settings such as on the sphere [17], on the ball [13] and in the general
framework of Dirichlet spaces [12].

The purpose of this article is to introduce and study the Besov and Triebel–Lizorkin
spaces Bsq

p (H ), Fsq
p (H ) (with full range of parameters) consisting of harmonic

functions on the unit ball Bd inRd , d > 1. The primarymotivation for this undertaking
is to fill up the existing void in the theory of spaces of harmonic functions and create
a framework for future development.

The gist of our approach to spaces of harmonic functions U on Bd is the represen-
tation of U in terms of solid spherical harmonics:

U (x) =
∞∑

k=0

N (k,d)∑

ν=1

bkν(U )|x |kYkν

( x

|x |
)
, |x | < 1, (1.1)

where {Ykν} is an orthonormal basis for spherical harmonics on the unit sphere Sd−1

and {bkν(U )} are the coefficients of U . Identity (1.1) and the likes in the sequel are
extended by continuity for x = (0, . . . , 0). The harmonic Besov and Triebel–Lizorkin
spaces Bsq

p (H ) and Fsq
p (H ) are defined by means of the multiplier operator

JβU (x) :=
∞∑

k=0

|x |k(k + 1)−β

N (k,d)∑

ν=1

bkν(U )Ykν

( x

|x |
)
, β ∈ R. (1.2)

For example, Bsq
p (H ), q < ∞, is defined by the norm

‖U‖Bsq
p (H ) :=

(∫ 1

0
(1 − r)(β−s)q‖J−βU (r ·)‖q

L p(Sd−1)

dr

1 − r

)1/q

, β > s.

Asimilar idea has been used in [18] for the development ofBesov andTriebel–Lizorkin
spaces of analytic functions in the unit disc in the complex plane.

The Besov spaces Bsq
p (H ) for s ∈ R and 1 ≤ p, q ≤ ∞ have been introduced in

[9,10] for distributions f on the unit sphere Sd−1 inRd with (our notation)U being the
Poisson integral of f under the name “Lipschitz spaces of distributions on the sphere”
and some of their properties have been established. We consider them as spaces of
harmonic function on Bd instead.

Our basic tool is well localized kernels consisting of band limited functions on the
sphere, that are readily available from [16,17] and also from [11].

The first step in developing the harmonic Besov and Triebel–Lizorkin spaces on Bd

is to show that the growth of the coefficients {bkν(U )} of any function U ∈ Bsq
p (H )

or U ∈ Fsq
p (H ) is at most polynomial. The main result in this article asserts that the

harmonic Besov and Triebel–Lizorkin spaces Bsq
p (H ) and Fsq

p (H ) can be identified
with theBesov andTriebel–Lizorkin spacesBsq

p (Sd−1) andF sq
p (Sd−1) of distributions

on S
d−1, developed in [17]. This allows to mitigate between spaces of harmonic

functions on Bd and distributions/functions on S
d−1. In particular, this enables us to

develop frames consisting of harmonic functions on Bd by harmonic extension of
the existing spherical frame elements (needlets) from [17]. We use these frames to
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characterize the harmonic Besov and Triebel–Lizorkin spaces Bsq
p (H ) and Fsq

p (H )

by respective sequence spaces.
The analogue of our identification of harmonic Besov and Triebel–Lizorkin spaces

on Bd with respective spaces of distributions on Sd−1 in the setting of Rd+1+ is essen-
tially obtained by Triebel, see [25, Sect. 1.8.3] and the references therein.

The layout of the rest of this article is as follows. Section 2 contains some back-
ground material and basic facts that are used later in the paper. In Sect. 3 we consider
harmonic functions on Bd and distributions on S

d−1 and their frame decomposition.
Harmonic Besov and Triebel–Lizorkin spaces on Bd are introduced in Sect. 4 and
some of their basic properties are established. Also, the Besov and Triebel–Lizorkin
spaces of distributions on S

d−1 are recalled. The identification of harmonic Besov
and Triebel–Lizorkin spaces on Bd with Besov and Triebel–Lizorkin spaces of dis-
tributions on S

d−1 is established in Sect. 5. The frame characterization of harmonic
Besov and Triebel–Lizorkin spaces on Bd is given in Sect. 6. In Sect. 7 we briefly
discuss the identification of the harmonic Hardy spaceH p on Bd with the harmonic
Triebel–Lizorkin space F02

p (H ). In Sect. 8 we show how the results for harmonic

spaces on Bd can be transferred to harmonic spaces onRd \ Bd bymeans of the Kelvin
transform. There is an appendix, where we place the proof of Peetre’s inequality for
band limited functions on S

d−1.

2 Background

Here we introduce some notation and collect well known technical results that will be
used in the sequel.

2.1 Notation

In this article we use standard notation. Thus Rd , d > 1, stands for the d-dimensional
Euclidean space. The inner product of x, y ∈ R

d is denoted by x · y and the Euclidean
norm of x by |x | := √

x · x . We denote B(y, r) := {x : |x − y| < r}. Then Bd =
B(0, 1). The unit sphere in Rd is Sd−1 := {x : |x | = 1} and ρ(x, y) will stand for the
geodesic distance between x, y ∈ S

d−1, that is, ρ(x, y) := arccos(x · y).
The Lebesgue measure on S

d−1 is denoted by σ and |E | := σ(E) stands for the
Lebesgue measurable of E ⊂ S

d−1. In particular, ωd := σ(Sd−1) = 2πd/2/�(d/2)
is the measure of Sd−1.

All functions we consider are complex-valued if it is not specified otherwise. The
inner product of f, g ∈ L2(Sd−1) is given by

〈 f, g〉 :=
∫

Sd−1
f (y)g(y) dσ(y) (2.1)

and the nonstandard convolution of functions F ∈ L∞[−1, 1] and g ∈ L1(Sd−1) is
defined by

F ∗ g(x) := 〈F(x · •), g〉 =
∫

Sd−1
F(x · y)g(y)dσ(y). (2.2)
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We shall use the abbreviated notation ‖ · ‖p := ‖ · ‖L p(Sd−1) for the L p-norm on Sd−1.
We shall denote by G(x, δ) the spherical cap (ball on S

d−1) centered at x ∈ S
d−1

of radius δ, that is,

G(x, δ) := {y ∈ S
d−1 : ρ(x, y) < δ}. (2.3)

Positive constants will be denoted by c, c1, c′, . . . and will be allowed to vary at
every occurrence. The notation a ∼ b will stand for c1 ≤ a/b ≤ c2. The constants
will usually depend on some parameters that may or may not be indicated explicitly.

2.2 Spherical Harmonics

The solid spherical harmonics will be our main vehicle in dealing with harmonic
functions on the unit ball Bd in Rd .

Denote byHk the space of all spherical harmonics of degree k on Sd−1. As is well
known the dimension of Hk is N (k, d) = 2k+d−2

k

(k+d−3
k−1

) ∼ kd−1. Furthermore, the
spaces Hk , k = 0, 1, . . . , are orthogonal and L2(Sd−1) = ⊕

k≥0 Hk .
Let {Ykν : ν = 1, . . . , N (k, d)} be a real-valued orthonormal basis for Hk . Then

the kernel of the orthogonal projector ontoHk is given by

Zk(x · y) =
N (k,d)∑

ν=1

Ykν(x)Ykν(y). (2.4)

As is well known

Zk(x · y) = k + μ

μωd
Cμ

k (x · y), μ := d − 2

2
, d > 2. (2.5)

Here Cμ
k is the Gegenbauer (ultraspherical) polynomial of degree k normalized by

Cμ
k (1) = (k+2μ−1

k

)
; the polynomials Cμ

k , k ≥ 0, are orthogonal on [−1, 1] with
weight w(t) := (1− t2)μ−1/2, see [23, p. 80, (4.7.1)]. In the case d = 2 the kernel of
the orthogonal projector onto Hk takes the form

Z0(x · y) = 1

2π
, Zk(x · y) = 1

π
Tk(x · y), k ≥ 1,

where Tk is the kth degree Chebyshev polynomial of the first kind.
The set of all band-limited functions (i.e. spherical polynomials) on Sd−1 of degree

≤ N will be denoted by 
N , i.e. 
N := ⊕N
k=0 Hk .

The Poisson kernel on the unit ball Bd is given by

P(y, x) :=
∑

k≥0

|x |k Zk

( x

|x | · y
)

= 1

ωd

1 − |x |2
|x − y|d , |x | < 1, y ∈ S

d−1. (2.6)
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We refer the reader to [15,22] for the basics of spherical harmonics.
Kernels of the form

�N (x · y) :=
∞∑

k=0

λ(k/N )Zk(x · y), x, y ∈ S
d−1, N ≥ 1, (2.7)

where λ ∈ C∞(R+) is compactly supported (R+ := [0,∞)), will play a key role in
this article. Observe that in this case

�N (u) :=
∞∑

k=0

λ(k/N )Zk(u), u ∈ [−1, 1], (2.8)

is simply an algebraic polynomial kernel. We shall utilize kernels of this sort, where
λ is an admissible C∞ function.

Definition 2.1 We say that a function λ ∈ C∞(R+) is admissible of type (a) or (b) if
λ satisfies the conditions:

(a) supp λ ⊂ [0, 2] and λ(u) = 1 for u ∈ [0, 1] or
(b) supp λ ⊂ [1/4, 4].
Theorem 2.2 Let λ be admissible and ‖λ(m)‖∞ ≤ A for 0 ≤ m ≤ K . Then for any
N ≥ 1 the kernel �N from (2.7)–(2.8) obeys

|�(ν)
N (cos θ)| ≤ cAN d−1+2ν(1 + N |θ |)−K , |θ | ≤ π, ν ≥ 0, (2.9)

and hence

|�(ν)
N (x · y)| ≤ cAN d−1+2ν(1 + Nρ(x, y))−K , x, y ∈ S

d−1. (2.10)

Here the constant c > 0 depends only on K , ν, d. Furthermore, for x, y, z ∈ S
d−1

|�N (x · z) − �N (y · z)| ≤ cA
ρ(x, y)N d

(1 + Nρ(x, z))K
, if ρ(x, y) ≤ N−1. (2.11)

For a proof, see [16, Theorem 3.5] and [17, Lemma 2.6], also [11, Theorem 5.1].

2.3 Maximal Inequality

Let Mt be the maximal operator, defined by

Mt f (x) := sup
G�x

( 1

|G|
∫

G
| f (y)|tdσ(y)

)1/t
, t > 0, (2.12)

where the sup is over all spherical caps G = G(z, δ) containing x (see (2.3)).
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We shall use the Fefferman-Stein vector-valued maximal inequality (see [3,21]):
If 0 < p < ∞, 0 < q ≤ ∞, and 0 < t < min{p, q}, then for any sequence of
measurable functions f1, f2, . . . on Sd−1

∥∥∥
( ∞∑

j=1

[Mt f j (·)
]q

)1/q∥∥∥
L p

≤ c
∥∥∥
( ∞∑

j=1

| f j (·)|q
)1/q∥∥∥

L p
. (2.13)

This inequality is usually stated for t = 1 under the condition p, q > 1. Then the
above version of the maximal inequality follows readily. A proof of (2.13) for t = 1 is
also given in [8, Theorem 1.2] from where it follows that the constant c > 0 in (2.13)
can be written the form c = (c1(d)max{p/t, (p/t − 1)−1}max{1, (q/t − 1)−1})1/t .

We shall also need the following integral version of the maximal inequality: Let
p, q, t be as above. Then for any continuous function F : [a, b)×S

d−1 → C one has

∥∥∥
( ∫ b

a

[
Mt (F(r, ·))(·)

]q
dr

)1/q∥∥∥
L p

≤ c
∥∥∥
( ∫ b

a
|F(r, ·)|qdr

)1/q∥∥∥
L p

, (2.14)

with the same constant c > 0 as in (2.13). This inequality is an immediate consequence
of (2.13) by discretization using Riemann sums and a limiting process.

The next lemma contains an analogue of Peetre’s inequality which involves the
maximal operator Mt from (2.12).

Lemma 2.3 Let t > 0 and N ∈ N. Then there exists a constant c > 0 depending only
on t and d such that for any g ∈ 
N

sup
y∈Sd−1

|g(y)|
(1 + Nρ(x, y))(d−1)/t

≤ cMt g(x), ∀x ∈ S
d−1. (2.15)

Here Mt is the maximal operator from (2.12).

To streamline our presentation we place the proof of this lemma in the appendix.
We shall need the following simple

Lemma 2.4 For any g ∈ L1(Sd−1) and M > d − 1

∫

Sd−1

N d−1|g(y)|
(1 + Nρ(x, y))M

dσ(y) ≤ cM1g(x), ∀x ∈ S
d−1,∀N ∈ N, (2.16)

where M1 is the maximal operator from (2.12) with t = 1 and c depends only on d
and M.

The proof of this lemma is straightforward and we omit it (for the idea see e.g. [21,
(16) in Chapter II, Sect. 2.1]).
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The following obvious inequality will also be needed: If M > d − 1, then

∫

Sd−1

N d−1

(1 + Nρ(x, y))M
dσ(y) ≤ c, ∀x ∈ S

d−1, ∀N ≥ 1, (2.17)

where c depends only on d and M .

2.4 Useful inequalities

The following Nikolski-type inequality (see e.g. [2, Theorem 5.5.1]) will be used.

Lemma 2.5 If 0 < q ≤ p ≤ ∞, then for any g ∈ 
N , N ≥ 1,

‖g‖L p(Sd−1) ≤ cN (d−1)(1/q−1/p)‖g‖Lq (Sd−1), (2.18)

where c = c(d, p, q).

Two simple inequalities will be needed.

Lemma 2.6 (a) If γ, K > 0, then

∫ 1

0
(1 − r)γ−1r K dr ≤ cK −γ , c = c(γ ). (2.19)

(b) If α, γ > 0 and 0 < r < 1, then

∞∑

�=0

rα2�

2�γ ≤ c(1 − r)−γ , c = c(α, γ ). (2.20)

Proof (a) Substituting r = 1 − u/K in the integral in (2.19) we get

∫ 1

0
(1 − r)γ−1r K dr = K −γ

∫ K

0
uγ−1

(
1 − u

K

)K
du ≤ K −γ

∫ ∞

0
uγ−1e−udu,

implying (2.19) with c = �(γ ), � being the �-function. Here for the last inequality
we used the following obvious inequality (1− u/K )K ≤ e−u , whenever 0 ≤ u ≤ K .
(b) It is readily seen that

∞∑

�=0

rα2�

2�γ ≤ c
∫ ∞

1/2
rαuuγ−1du = c

( r

1 − r

)γ
∫ ∞

1−r
2r

(
r

r
1−r

)αv

vγ−1dv,

where we applied the substitution u = rv
1−r . Evidently, r

r
1−r ≤ 1/2 whenever 1/2 ≤

r < 1 and (2.20) follows. In the case when 0 < r < 1/2 inequality (2.20) follows
trivially from the case r = 1/2. ��
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3 Harmonic Functions on Bd and Distributions on S
d−1

The purpose of this article is to study harmonic functions on Bd , which are intimately
related to their boundary values. The boundary values of harmonic functions are in
general distributions. In this section, we clarify the relationship between harmonic
functions on Bd and their boundary value distributions on S

d−1.

3.1 Harmonic Functions on Bd

Denote by H (Bd) the set of all harmonic functions on the unit ball in R
d . The

properties of spherical harmonics readily imply the following representation of any
function U ∈ H (Bd):

U (x) =
∞∑

k=0

|x |k
ak

∫

Sd−1
U (aη)Zk

( x

|x | · η
)
dσ(η), |x | < a, 0 < a < 1. (3.1)

Using the spherical harmonic basis functions (see (2.4)) this takes the form

U (x) =
∞∑

k=0

|x |k
N (k,d)∑

ν=1

1

ak

∫

Sd−1
U (aη)Ykν(η)dσ(η)Ykν

( x

|x |
)

(3.2)

=
∞∑

k=0

|x |k
N (k,d)∑

ν=1

bkν(U )Ykν

( x

|x |
)
, |x | < a.

Above the series converge absolutely and uniformly on every compact subset of
B(0, a). It is an important observation that the coefficients

bkν(U ) := 1

ak

∫

Sd−1
U (aη)Ykν(η)dσ(η) (3.3)

are independent of a for all 0 < a < 1. This implies the representation

U (x) =
∞∑

k=0

|x |k
N (k,d)∑

ν=1

bkν(U )Ykν

( x

|x |
)
, |x | < 1, (3.4)

where the coefficients bkν(U ) are from (3.3) and the convergence is absolute and
uniform on every compact subset of Bd . In certain cases, it is convenient to write this
representation in the form

U (rξ) =
∞∑

k=0

rk
N (k,d)∑

ν=1

bkν(U )Ykν(ξ), 0 ≤ r < 1, ξ ∈ S
d−1. (3.5)
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Applying the Cauchy–Schwarz inequality, it follows by (3.3) that for any 0 < a < 1

|bkν(U )| ≤ a−k‖U (a·)‖L2(Sd−1), ν = 1, . . . , N (k, d), k = 0, 1, . . . , (3.6)

The topology on H (Bd) is naturally induced by the uniform convergence on all
compact subsets of Bd . Clearly, H (Bd) is complete with respect to this topology.

We are interested in harmonic functions U ∈ H (Bd) with coefficients of at most
polynomial growth:

|bkν(U )| ≤ c(k + 1)γ , ν = 1, . . . , N (k, d), k = 0, 1, . . . , (3.7)

for some constants γ, c > 0. As will be shown in Proposition 4.2 below the functions
in the harmonic Besov and Triebel–Lizorkin spaces of interest to us will have this
property.

The following basic lemma on harmonic functions will play an important role in
what follows (see [4], Lemma 2, page 172):

Lemma 3.1 Suppose B is a ball in R
d with center x ∈ R

d . Let U be a harmonic
function on B that is continuous on the closure of B. Then for any p > 0

|U (x)|p ≤ c(p, d)
1

|B|
∫

B
|U (y)|pdy. (3.8)

3.2 Distributions on S
d−1

To define distributions on Sd−1 we shall use as test functions the classS := C∞(Sd−1)

consisting of all functions φ on Sd−1 such that

‖Zk ∗ φ‖2 ≤ c(φ, m)(1 + k)−m, ∀k, m ≥ 0.

Recall that the convolution Zk ∗ φ is defined in (2.2). It will be convenient to define
the topology on S by the sequence of norms

Pm(φ) :=
∑

k≥0

(k + 1)m‖Zk ∗ φ‖2 =
∑

k≥0

(k + 1)m
( N (k,d)∑

ν=1

|〈φ, Ykν〉|2
)1/2

. (3.9)

Evidently, the topology on S can be equivalently defined by the seminorms

P∗
m(φ) := ‖�m

0 φ‖∞, m = 0, 1, . . . ,

where �0 is the Laplace–Beltrami operator on S
d−1. Furthermore, it can be defined

by the seminorms

P∗∗
m (φ) :=

∑

|α|=m

‖∂αφ̃‖∞, m = 0, 1, . . . ,
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where φ̃(x) := φ(x/|x |), see e.g. [20]. It is easy to see that S is complete in the
topology of S defined above.

Observe that all Ykν ∈ S and hence by (2.4) Zk(x · y) ∈ S as a function of x for
every fixed y and as function of y for every fixed x .

The space S ′ := S ′(Sd−1) of distributions on S
d−1 is defined as the space of all

continuous linear functionals on S. The pairing of f ∈ S ′ and φ ∈ S will be denoted
by 〈 f, φ〉 := f (φ), which is consistent with the inner product on L2(Sd−1), see (2.1).
More precisely, S ′ consists of all linear functionals f on S for which there exist
constants c > 0 and m ∈ N0 such that

|〈 f, φ〉| ≤ cPm(φ), ∀φ ∈ S. (3.10)

For any f ∈ S ′ we define Zk ∗ f by

Zk ∗ f (x) := 〈 f, Zk(x · •)〉 = 〈 f, Zk(x · •)〉, (3.11)

where on the right f is acting on Zk(x · y) = Zk(x · y) as a function of y (Zk is
real-valued). From (3.9) and (3.10) it follows that

|〈 f, Ykν〉| ≤ c(k + 1)m, ∀k ≥ 0, ∀ν = 1, . . . , N (k, d), (3.12)

with c and m as in (3.10). Furthermore, Zk ∗ f ∈ Hk and

‖Zk ∗ f ‖2 ≤ c(k + 1)m+(d−1)/2, ∀k ≥ 0, (3.13)

in light of (3.12) and (2.4). For more information about distributions on S
d−1, see

[17].

Convergence

We shall frequently use that

f =
∑

k≥0

Zk ∗ f, ∀ f ∈ S ′ (3.14)

with convergence in distributional sense. This follows readily by duality from the fact
that φ = ∑

k≥0 Zk ∗ φ for every φ ∈ S with convergence in the topology of S.
By the same token, if λ ∈ C∞(R+) is an admissible cutoff function of type (a)

in the sense of Definition 2.1 and �N is the kernel from (2.7), then we have f =
limN→∞ �N ∗ f in S ′. This yields the following Littlewood-Paley decomposition
of distributions: Let ϕ ∈ C∞(R+) be an admissible function of type (b) such that
suppϕ ⊂ [1/2, 2] and

∞∑

j=1

ϕ
(
21− j u

) = 1 for u ∈ [1,∞). (3.15)
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For the existence of such functions, see e.g. [17]. Set

�0 := Z0 = ω−1
d and � j :=

∞∑

k=0

ϕ
( k

2 j−1

)
Zk, j = 1, 2, . . . . (3.16)

Then

f =
∑

j≥0

� j ∗ f for all f ∈ S ′(convergence in S ′), (3.17)

see [17, Lemma 2.1].
The relationship between harmonic functions on Bd and distributions on S

d−1 is
clarified by the following

Proposition 3.2 (a) To any U ∈ H (Bd) represented by (3.4) (or (3.5)) with coef-
ficients satisfying (3.7) there corresponds a distribution f ∈ S ′, f = fU , (the
boundary value function/distribution of U ) defined by

f :=
∑

k≥0

N (k,d)∑

ν=1

bkν(U )Ykν (convergence in S ′) (3.18)

with coefficients bkν(U ) = 〈 f, Ykν〉.
(b) To any distribution f ∈ S ′ with coefficients bkν( f ) := 〈 f, Ykν〉 there corresponds

a harmonic function U ∈ H (Bd), U = U f , (the harmonic extension of f to Bd)

defined by

U (x) =
∞∑

k=0

|x |k
N (k,d)∑

ν=1

bkν( f )Ykν

( x

|x |
)
, |x | < 1, (3.19)

with coefficients bkν(U ) = bkν( f ) obeying (3.7), where the series converges uni-
formly on every compact subset of Bd .

(c) For every U ∈ H (Bd) we have U fU = U and for every f ∈ S ′ we have fU f = f .

Proof (a) From the fact that the coefficients bkν(U ) obey (3.7) it readily follows
that the series in (3.18) converges in S ′. This and the orthogonality of {Ykν} lead to
〈 f, Ykν〉 = bkν(U ).

(b) If f ∈ S ′, then by (3.12) we have |bkν( f )| ≤ c(k + 1)m for some constants
c, m > 0, implying that the series in (3.19) converges uniformly on every compact
subset of Bd and bkν(U ) = bkν( f ).

Claim (c) reflects the fact that in either case bkν(U ) = bkν( f ). ��
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3.3 Frame Decomposition of Distributions on S
d−1

Here we recall the construction of a frame (needlets) on S
d−1 whose elements are

bandlimited functions. Note that the situation is more favorable in dimension d = 2,
where Meyer’s periodic wavelets (see [14]) form a basis with the desired properties.

The construction of needlets on S
d−1, d > 2, starts with the selection of a real-

valued function λ ∈ C∞(R+) with the properties: supp λ ⊂ [1/2, 2], λ ≥ 0, λ(u) ≥
c > 0 for u ∈ [3/5, 5/3], and ∑∞

ν=0 λ2(2−νu) = 1 for u ∈ [1,∞). Define

�0 := Z0, and � j :=
∞∑

ν=0

λ
( ν

2 j−1

)
Zν, j ≥ 1. (3.20)

It is easy to see that f = ∑∞
j=0 � j ∗ � j ∗ f for every f ∈ S ′ (convergence in S ′).

The next step is to discretize � j ∗ � j for j ≥ 1 by a cubature formula on S
d−1.

One constructs a cubature on Sd−1 with nodes inX j ⊂ S
d−1 consisting of≤ c2 j (d−1)

almost uniformly distributed points on Sd−1 and positive coefficients {wξ }ξ∈X j of size

wξ ∼ 2− j (d−1) such that

∫

Sd−1
f (x)dσ(x) =

∑

ξ∈X j

wξ f (ξ) (3.21)

for all spherical harmonics of degree ≤ 2 j+1, see [17]. In fact, X j can be selected
as a maximal δ j -net on S

d−1 with δ j = γ 2− j , where γ > 0 is a sufficiently small
constant. Then it readily follows that there exists a disjoint partition {Aξ }ξ∈X j of S

d−1

consisting of measurable sets such that G(ξ, δ j/2) ⊂ Aξ ⊂ G(ξ, δ j ), ξ ∈ X j . In
addition, set X0 := {e1} with e1 := (1, 0, . . . , 0), and we1 := ω−1

d . From (3.21) it
follows that

� j ∗ � j (x · y) =
∫

Sd−1
� j (x · η)� j (η · y)dσ(y) =

∑

ξ∈X j

wξ� j (ξ · x)� j (ξ · y),

which allows to discretize f = ∑∞
j=0 � j ∗ � j ∗ f and obtain

f =
∞∑

j=0

∑

ξ∈X j

〈 f, ψξ 〉ψξ , ∀ f ∈ S ′ (convergence in S ′). (3.22)

Here ψξ := w
1/2
ξ Z0, ξ ∈ X0, and

ψξ (x) := w
1/2
ξ � j (ξ · x), ξ ∈ X j , j ≥ 1. (3.23)

We set X := ∪ j≥0X j assuming that equal points from different sets X j are distinct
points in X so that X can be used as an index set. This completes the construction of
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the system {ψξ }ξ∈X . From above it readily follows that {ψξ }ξ∈X is a tight frame for
L2(Sd−1).

Observe that the frame elements {ψξ } are not only band limited, but also have
excellent localization on S

d−1. From the properties of λ and Theorem 2.2 it follows
that (see also [16,17]) for any M > 0 there exists a constant c > 0 such that

|ψξ (x)| ≤ c2 j (d−1)/2(1 + 2 jρ(x, ξ))−M , x ∈ S
d−1, ξ ∈ X j , j ≥ 0. (3.24)

Moreover, as shown in [11, Theorem 5.1] the localization of ψξ can be improved to
sub-exponential: For any ε > 0 the cutoff function λ above can be selected so that

|ψξ (x)| ≤ c12
j (d−1)/2 exp

{ − c2
(
2 jρ(x, ξ)

)1−ε}
, x ∈ S

d−1, ξ ∈ X j , j ≥ 0,

(3.25)

where c1, c2 > 0 are constants depending on ε.
Note that formoreflexibility it is possible to construct a pair of dual frames {ψξ }ξ∈X ,

{ψ̃ξ }ξ∈X on Sd−1, where each ψξ is defined as above with λ being an arbitrary admis-
sible complex-valued cutoff function of type (b), while ψ̃ξ is defined as above with λ̃

instead of λ such that
∑

ν≥0 λ(2−νu)λ̃(2−νu) = 1 on [1,∞).
For more details and proofs, see [11,17].

3.4 Frame Decomposition of Harmonic Functions on Bd

By harmonic extension of the needlets from Sect. 3.3 we next construct a decomposi-
tion system for harmonic functions inH (Bd).We define�ξ(x) := w

1/2
ξ Z0 = ω

−1/2
d ,

ξ ∈ X0, and for all ξ ∈ X j , j ≥ 1, we set

�ξ(x) := w
1/2
ξ

2 j∑

ν=0

λ
( ν

2 j−1

)
|x |ν Zν

( x

|x | · ξ
)
, x ∈ R

d , (3.26)

where λ is from the definition of needlets in (3.20). Observe that �ξ(x)
∣∣|x |=1 is just

the function ψξ from (3.23) and �ξ ∈ H (Bd), i.e. �ξ is the harmonic extension of
ψξ on Bd . We also define a natural dual to {�ξ }ξ∈X by �̃ξ := �ξ for ξ ∈ X0, and

�̃ξ (x) := w
1/2
ξ

2 j∑

ν=0

λ
( ν

2 j−1

)
|x |−ν Zν

( x

|x | · ξ
)
, |x | > 0, ξ ∈ X j , j ≥ 1.

(3.27)

Note that �̃ξ |Sd−1 = �ξ |Sd−1 = ψξ and �ξ , �̃ξ are real-valued.
Observe that if more flexibility is needed the cutoff functions λ and λ̃ mentioned

in Sect. 3.3 can be used in the construction of �ξ , �̃ξ .
We next record some basic properties of the system {�ξ }ξ∈X , {�̃ξ }ξ∈X .
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Proposition 3.3 (a) Each function �ξ , ξ ∈ X , from (3.26) is harmonic on R
d and

for each �̃ξ from (3.27) the function |x |2−d�̃ξ (x) is harmonic on R
d \ {0}.

(b) Any U ∈ H (Bd) with coefficients obeying (3.7) is represented as

U =
∑

ξ∈X
< U, �̃ξ > �ξ , (3.28)

where the convergence is uniform on every compact subset of Bd and the coefficients

< U, �̃ξ >:= 〈U (r ·), �̃ξ (r ·)〉 =
∫

Sd−1
U (rη)�̃ξ (rη)dσ(η), r ∈ (0, 1), (3.29)

do not depend on r. Furthermore, < U, �̃ξ >= 〈 fU , ψξ 〉 with fU being the
boundary value distribution of U, defined in (3.18).

Proof The validity of (a) is immediate from the theory of spherical harmonics as
|x |2−d�̃ξ (x) is the Kelvin transform of �ξ .

To prove (b) we observe that by (3.22)

fU =
∑

ξ∈X
〈 fU , ψξ 〉ψξ ,

where the convergence is in S ′(Sd−1). Hence, by harmonic extension

U (rη) =
∑

ξ∈X
〈 fU , ψξ 〉�ξ(rη).

On the other hand, by the properties of {Zk} it readily follows that

〈U (r ·), �̃ξ (r ·)〉 = 〈 fU , ψξ 〉

and this completes the proof. ��

4 Besov and Triebel–Lizorkin Spaces

We now center on Besov spaces Bsq
p (H ) and Triebel–Lizorkin spaces Fsq

p (H ) con-
sisting of harmonic functions on the unit ball Bd . As will be shown these spaces can
be identified with the Besov Bsq

p and Triebel–Lizorkin F sq
p spaces of distributions on

the unit sphere Sd−1.
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4.1 Harmonic Besov and Triebel–Lizorkin Spaces on Bd

For U ∈ H (Bd) and β ∈ R we define

JβU (rξ) :=
∞∑

k=0

rk(k + 1)−β

N (k,d)∑

ν=1

bkν(U )Ykν(ξ), 0 ≤ r < 1, ξ ∈ S
d−1. (4.1)

By (3.6) it follows that the above series converges absolutely and uniformly on every
compact subset of Bd and hence JβU is a well defined harmonic function on Bd .

Observe that if, for example, f ∈ S(Sd−1), U (rξ) := ∫
Sd−1 P(y, rξ) f (y)dσ(y) is

the Poisson integral of f , and T U (rξ) := d
dr (rU (rξ)), then J−mU (rξ) = T mU (rξ),

m ∈ N.

Definition 4.1 Let s ∈ R, 0 < q ≤ ∞, and β := s + 1.

(a) The harmonic Besov space Bsq
p (H ), 0 < p ≤ ∞, is defined as the set of all

U ∈ H (Bd) such that

‖U‖Bsq
p (H )

:=
( ∫ 1

0
(1 − r)(β−s)q‖J−βU (r ·)‖q

L p(Sd−1)

dr

1 − r

)1/q
< ∞ if q �= ∞

and

‖U‖Bs∞
p (H ) := sup

0<r<1
(1 − r)β−s‖J−βU (r ·)‖L p(Sd−1) < ∞.

(b) The harmonic Triebel–Lizorkin space Fsq
p (H ), 0 < p < ∞, is defined as the

set of all U ∈ H (Bd) such that

‖U‖Fsq
p (H ) :=

∥∥∥
( ∫ 1

0
(1 − r)(β−s)q |J−βU (r ·)|q dr

1 − r

)1/q∥∥∥
L p(Sd−1)

< ∞,

if q �= ∞, and

‖U‖Fs∞
p (H ) :=

∥∥∥ sup
0<r<1

(1 − r)β−s |J−βU (r ·)|
∥∥∥

L p(Sd−1)
< ∞.

Aswill be shown, choosing an arbitrary β > s above will result in equivalent quasi-
norms for Bsq

p (H ) and Fsq
p (H ), respectively. The choice β = s + 1 suppresses the

dependence of the quasi-norm on β and simplifies the notation.
Some other basic properties of the harmonic Besov and Triebel–Lizorkin spaces

Bsq
p (H ) and Fsq

p (H ) are given in Proposition 4.4 below.
We next show that the harmonic functions U from Bsq

p (H ) and Fsq
p (H ) have

coefficients of at most polynomial growth (see (3.7)).

Proposition 4.2 Let s ∈ R, 0 < p, q ≤ ∞. Then there exist constants γ, c > 0 such
that for any U ∈ Bsq

p (H )
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|bkν(U )| ≤ c(k + 1)γ ‖U‖Bsq
p

, ν = 1, . . . , N (k, d), k = 0, 1, . . . . (4.2)

The same estimate holds for any U ∈ Fsq
p (H ), 0 < p < ∞, with ‖U‖Fsq

p
in place of

‖U‖Bsq
p

on the right.

This proposition will follow from the next lemma that will play an important role
in the sequel.

Lemma 4.3 Let U ∈ H (Bd) and formally denote

f :=
∑

k≥0

N (k,d)∑

ν=1

bkν(U )Ykν, (4.3)

which simply means that bkν( f ) := bkν(U ). Also, let the function ϕ ∈ C∞(R+) and
suppϕ ⊂ [1/2, 2]. Write

�0 ∗ f := Z0 ∗ f, � j ∗ f :=
2 j∑

k=0

ϕ
( k

2 j−1

)
Zk ∗ f for j ≥ 1, (4.4)

where Zk ∗ f := ∑N (k,d)
ν=1 bkν(U )Ykν and set

I j := [1 − 2− j , 1 − 2− j−1], j ≥ 0. (4.5)

Then for any β ∈ R, 0 < t < 1, and j ≥ 0 we have

|� j ∗ f (x)| ≤ c2− jβ
(
M1

( ∫

I j

[Mt (J−βU (r ·))(·)]t dr

1 − r

)
(x)

)1/t
, ∀x ∈ S

d−1,

(4.6)

where M1 and Mt are two versions of the maximal operator defined in (2.12) and
c > 0 is a constant depending only on ϕ, d, β, t . Moreover,

‖� j ∗ f ‖p ≤ c2− jβ
∥∥∥
( ∫

I j

|J−βU (r ·)|t dr

1 − r

)1/t∥∥∥
p

if t < p < ∞, (4.7)

‖� j ∗ f ‖p ≤ c2− jβ
( ∫

I j

‖J−βU (r ·)‖t
p

dr

1 − r

)1/t
if t < p ≤ ∞, (4.8)

with constants c depending only on p, ϕ, d, β, t .

Proof Observe first that � j ∗ f and Zk ∗ f are well defined on S
d−1 because their

definitions involve finite linear combinations of spherical harmonics.
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Let first j ≥ 1. From (4.4) we have for any 0 < r < 1 and β ∈ R

� j ∗ f =
∑

k≥0

[
ϕ
( k

2 j−1

)
r−k(k + 1)−β

]
rk(k + 1)β Zk ∗ f. (4.9)

Denote

Q jr (x · y) :=
∑

k≥0

ϕ
( k

2 j−1

)
r−k(k + 1)−β Zk(x · y), j ≥ 1. (4.10)

Set N := 2 j−1 and consider the function λ(u) := N−βϕ(u)r−Nu(u + 1/N )−β .
Clearly, Q jr (x · y) := ∑

k≥0 λ(k/N )Zk(x · y) and supp λ ⊂ [1/2, 2]. It is easy to see
that

‖λ(m)‖∞ ≤ cr−3N N−β for m ≥ 0, c = c(m, ϕ, β).

We now invoke Theorem 2.2 to conclude that for any M > 0

|Q jr (x · y)| ≤ c
2 j (d−1)r−2 j+1

2− jβ

(
1 + 2 jρ(x, y)

)M
, x, y ∈ S

d−1, c = c(M, ϕ, β, d). (4.11)

From (4.1) and (4.4) it follows that J−βU (rξ) = ∑
k≥0 rk(k + 1)β Zk ∗ f (ξ) and

using (4.9) and (4.10) we get

� j ∗ f = Q jr ∗ J−βU (r ·), ∀r ∈ (0, 1). (4.12)

Let Y j be a maximal δ-net on S
d−1 with δ = 2− j , and assume that {Aξ }ξ∈Y j

is a companion disjoint partition of Sd−1 consisting of measurable sets such that
G(ξ, 2− j−1) ⊂ Aξ ⊂ G(ξ, 2− j ), ξ ∈ Y j (see (2.3)).

Let 0 < t < 1 and set r j := 1 − 3 · 2− j−2. Then

I j := [
1 − 2− j , 1 − 2− j−1] = [

r j − 2− j−2, r j + 2− j−2].

By (4.12) with r = r j and the fact that 0 < t < 1 it follows that

|� j ∗ f (x)|t =
∣∣∣
∫

Sd−1
Q jr j (x · y)J−βU (r j y)dσ(y)

∣∣∣
t

(4.13)

≤ c

2 j (d−1)t

∑

ξ∈Y j

sup
y∈Aξ

|Q jr j (x · y)|t sup
y∈Aξ

|J−βU (r j y)|t .

Applying Lemma 3.1 with B = B(y, sin 2− j−2) ⊂ I j × G(y, 2− j−2) to the
harmonic on Bd function J−βU we get

|J−βU (r j y)|t ≤ c2 jd
∫

I j

∫

G(y,2− j−2)

|J−βU (rη)|tdσ(η)dr, ∀y ∈ Aξ , ξ ∈ Y j .

(4.14)
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Therefore, for all ϑ ∈ Aξ and y ∈ Aξ

|J−βU (r j y)|t ≤ c
∫

I j

1

|G(ϑ, 2− j+1)|
∫

G(ϑ,2− j+1)

|J−βU (rη)|tdσ(η)
dr

1 − r

≤ c
∫

I j

[Mt (J−βU (r ·))(ϑ)
]t dr

1 − r
, (4.15)

whereMt is the maximal operator defined in (2.12). From (4.13), (4.11) with r = r j ,

r−2 j+1

j ∼ 1, and (4.15) we infer

|� j ∗ f (x)|t

≤ c
∑

ξ∈Y j

2− jβt

(1 + 2 jρ(x, ξ))Mt

1

|Aξ |
∫

Aξ

∫

I j

[Mt (J−βU (r ·))(ϑ)
]t dr

1 − r
dσ(ϑ)

≤ c2− jβt2 j (d−1)
∫

Sd−1

∫
I j

[Mt (J−βU (r ·))(ϑ)
]t dr

1−r

(1 + 2 jρ(x, ϑ))Mt
dσ(ϑ). (4.16)

Recall that estimate (4.11) hold for any M > 0. We choose M so that Mt ≥ d.
Now, we apply Lemma 2.4 to (4.16) to obtain (4.6) in the case j ≥ 1.

The case j = 0 is simpler. Indeed, using Lemma 3.1 and bounding the Jacobian
rd−1 of the spherical change of variables from above by 1 we get

|�0 ∗ f (x)|t = |U (0)|t = |J−βU (0)|t ≤ c

|B(0, 2−1)|
∫

B(0,2−1)

|J−βU (y)|tdy

≤ c
∫ 1/2

0

1

|G(ϑ, π)|
∫

G(ϑ,π)

|J−βU (rη)|tdσ(η)
dr

1 − r

≤ c
∫

I0

[Mt (J−βU (r ·))(ϑ)
]t dr

1 − r

for all ϑ ∈ S
d−1. From the fact that the above inequalities are valid for all ϑ ∈ S

d−1

it follows that (4.6) holds in the case j = 0.
In order to prove (4.7) we choose t� ∈ (0, t) and then apply (4.6) with t� in the

place of t , the maximal inequality (2.13) for a single function with 1 and p/t� in the
place of t and p and Hölder’s inequality (t/t� > 1) to obtain

‖� j ∗ f ‖p ≤ c2− jβ
∥∥∥
[
M1

( ∫

I j

[Mt� (J−βU (r ·))(·)]t� dr

1 − r

)
(·)

]1/t�∥∥∥
p

≤ c2− jβ
∥∥∥
( ∫

I j

[Mt� (J−βU (r ·))(·)]t� dr

1 − r

)1/t�∥∥∥
p

(4.17)

≤ c2− jβ
∥∥∥
( ∫

I j

[Mt� (J−βU (r ·))(·)]t dr

1 − r

)1/t∥∥∥
p
.
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Now applying the maximal inequality (2.14) with t� and t in the place of t and q we
obtain (4.7).

In turn (4.7) implies (4.8) for p < ∞ by applying theMinkowski inequality (t < p).
Finally, (4.8) for p = ∞ follows immediately from (4.6) and the obvious property of
the maximal operator Mt g(x) ≤ ‖g‖∞. ��

Proof of Proposition 4.2 (i) LetU ∈ Fsq
p (H ) and denote by {bkν(U )} the coefficients

of U , defined in (3.3). Let the function ϕ ∈ C∞(R+) be such that suppϕ ⊂ [1/2, 2]
and ϕ(u) = 1 for u ∈ [2−1/2, 21/2]. Just as in (4.4) write

�0 ∗ f := Z0 ∗ f, � j ∗ f :=
2 j∑

k=0

ϕ
( k

2 j−1

)
Zk ∗ f for j ≥ 1, (4.18)

where Zk ∗ f := ∑N (k,d)
ν=1 bkν(U )Ykν .

Let β > s and 0 < t < min{1, p, q}. With these notations we use Lemma 4.3 to
conclude that (4.7) is valid. Applying Hölder’s inequality (q/t > 1) to (4.7) leads us
to

‖� j ∗ f ‖p ≤ c2− jβ
∥∥∥
( ∫

I j

|J−βU (r ·)|q dr

1 − r

)1/q∥∥∥
p

≤ c2− js
∥∥∥
( ∫

I j

(1 − r)(β−s)q |J−βU (r ·)|q dr

1 − r

)1/q∥∥∥
p

≤ c2− js‖U‖Fsq
p

. (4.19)

Here we used that 1 − r ∼ 2− j whenever r ∈ I j .
Using Lemma 2.5 and (4.19) we obtain, for each j ≥ 1 and 0 < q ≤ ∞,

‖� j ∗ f ‖2 ≤ c2 j (d−1)|1/p−1/2|‖� j ∗ f ‖p ≤ c2 j[(d−1)|1/p−1/2|−s]‖U‖Fsq
p

and

‖� j ∗ f ‖22 =
2 j∑

k=0

ϕ
( k

2 j−1

)2 N (k,d)∑

ν=1

|bkν(U )|2 ≥
∑

2 j−3/2≤k≤2 j−1/2

N (k,d)∑

ν=1

|bkν(U )|2.

The above and the fact that N ⊂ ∪ j≥1[2 j−3/2, 2 j−1/2] imply (4.2) for k ≥ 1 with
‖U‖Bsq

p (H ) replaced by ‖U‖Fsq
p (H ). Also (4.2) for k = 0 follows immediately from

(4.19) with j = 0. This proves Proposition 4.2 for Triebel–Lizorkin spaces.

(ii) We next prove (4.2) in the case when U ∈ Bsq
p . This proof will follow in the

footsteps of the above proof. We shall borrow from above. Denote by {bkν(U )} the
coefficients of U , defined in (3.3). We define � j ∗ f just as in (4.18).
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Let β > s and 0 < t < min{1, p, q}. With these notations we use Lemma 4.3 to
conclude that (4.8) is valid. Applying Hölder’s inequality (q/t > 1) to (4.8) leads us
to

‖� j ∗ f ‖p ≤ c2− jβ
( ∫

I j

‖J−βU (r ·)‖q
p

dr

1 − r

)1/q

≤ c2− js
( ∫

I j

(1 − r)(β−s)q‖J−βU (r ·)‖q
p

dr

1 − r

)1/q ≤ c2− js‖U‖Bsq
p

.

Here we used that 1 − r ∼ 2− j whenever r ∈ I j .
Further, we proceed just as in the proof of (4.2) in part (i). ��
In the next proposition we collect some basic properties of the harmonic Besov and

Triebel–Lizorkin spaces.

Proposition 4.4 (a) The harmonic Besov and Triebel–Lizorkin spaces Bsq
p (H ) and

Fsq
p (H ) introduced by Definition 4.1 are independent of the selection of the para-

meter β > s.
(b) The harmonic Besov and Triebel–Lizorkin spaces Bsq

p (H ) and Fsq
p (H ) are con-

tinuously embedded into H (Bd), that is, for any admissible parameters s, p, q
and any compact K ⊂ Bd there exists a constant c > 0 such that

‖U‖L∞(K ) ≤ c‖U‖Bsq
p

, ∀U ∈ Bsq
p (H ) (4.20)

and similarly for U ∈ Fsq
p (H ).

(c) The spaces Bsq
p (H ) and Fsq

p (H ) are complete and hence they are quasi-Banach
spaces (Banach spaces if p, q ≥ 1 ).

Proof Part (a) will follow from the identification of Bsq
p (H ) and Fsq

p (H )with Besov
and Triebel–Lizorkin spaces of distributions on Sd−1, see Remark 5.3. Part (b) follows
readily by Proposition 4.2. The completeness of the harmonic Besov and Triebel–
Lizorkin spaces Bsq

p (H ) and Fsq
p (H ) follows by (b) and a standard argument using

Fatou’s lemma. It also follows by the identification of Bsq
p (H ) and Fsq

p (H ) with
Besov and Triebel–Lizorkin spaces on Sd−1 and the completeness of the latter spaces.

��
4.2 Besov and Triebel–Lizorkin Spaces on S

d−1

To define Besov and Triebel–Lizorkin spaces on S
d−1 we employ functions of the

form (3.16).

Definition 4.5 Let s ∈ R, 0 < q ≤ ∞ and ϕ satisfy the conditions: ϕ ∈ C∞(R+),
suppϕ ⊂ [1/2, 2], and |ϕ(u)| ≥ c > 0 for u ∈ [3/5, 5/3]. For a distribution f ∈ S ′
set

�0 ∗ f = Z0 ∗ f, � j ∗ f =
∑

k≥0

ϕ
( k

2 j−1

)
Zk ∗ f, j ≥ 1, (4.21)

where Zk ∗ f is defined in (3.11).



J Fourier Anal Appl

(a) The Besov space Bsq
p := Bsq

p (Sd−1), 0 < p ≤ ∞, is defined as the set of all
distributions f ∈ S ′ such that

‖ f ‖Bsq
p

:=
( ∞∑

j=0

(
2s j‖� j ∗ f ‖L p(Sd−1)

)q)1/q
< ∞, (4.22)

where the �q -norm is replaced by the sup-norm if q = ∞.
(b) The Triebel–Lizorkin space F sq

p := F sq
p (Sd−1), 0 < p < ∞, is defined as the

set of all distributions f ∈ S ′ such that

‖ f ‖F sq
p

:=
∥∥∥
( ∞∑

j=0

(
2s j |� j ∗ f (·)|)q

)1/q∥∥∥
L p(Sd−1)

< ∞, (4.23)

where the �q -norm is replaced by the sup-norm if q = ∞.

Several remarks are in order:

(a) The definitions of the Besov and Triebel–Lizorkin spaces above are independent
of the particular selection of the function ϕ with the required properties. Different
ϕ’s produce equivalent quasi-norms and one may impose additional conditions
on ϕ if necessary.

(b) The class S is continuously embedded in each of the spaces Bsq
p and F sq

p , that is,
there exist constants m ≥ 0 and c > 0 depending only on s, p, q such that

‖φ‖Bsq
p

≤ cPm(φ), ∀φ ∈ S, (4.24)

and the same inequality holds with Bsq
p replaced by F sq

p .
(c) The spaces Bsq

p and F sq
p are continuously embedded in S ′, which means that for

any s ∈ R and 0 < p, q ≤ ∞ there exist constants c > 0 and m ∈ N0 such that

|〈 f, φ〉| ≤ c‖ f ‖Bsq
p

Pm(φ), ∀ f ∈ Bsq
p , ∀φ ∈ S, (4.25)

and similarly for the Triebel–Lizorkin spaces F sq
p .

(d) The above readily implies that Bsq
p and F sq

p are complete and hence they are
quasi-Banach spaces (Banach spaces if p, q ≥ 1).

For details and proofs, see [17].

5 Identification of harmonic Besov and Triebel–Lizorkin spaces

We now come to the main assertions in this article.

Theorem 5.1 Let s ∈ R, 0 < p < ∞, 0 < q ≤ ∞. A harmonic function U ∈
Fsq

p (H ) if and only if its boundary value distribution f = fU defined by (3.18)
belongs to F sq

p (Sd−1), moreover ‖U‖Fsq
p

∼ ‖ f ‖F sq
p

.
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Theorem 5.2 Let s ∈ R, 0 < p, q ≤ ∞. A harmonic function U ∈ Bsq
p (H ) if

and only if its boundary value distribution f = fU belongs to Bsq
p (Sd−1), moreover

‖U‖Bsq
p

∼ ‖ f ‖Bsq
p

.

We start with the proof of Theorem 5.1, which is somewhat more involved than the
proof of Theorem 5.2.

5.1 Proof of Theorem 5.1

(i) We first show that if f = fU ∈ F sq
p (Sd−1) is the boundary distribution of a

harmonic function U ∈ H (Bd) with fU defined in (3.18), then U ∈ Fsq
p (H ) and

‖U‖Fsq
p

≤ c‖ f ‖F sq
q
.

Let ϕ ∈ C∞(R+) be such that suppϕ ⊂ [1/2, 2] and ϕ satisfy (3.15). Define
the kernels � j , j = 0, 1, . . . , just as in (3.16). Also, choose ϕ̃ ∈ C∞(R+) so that
supp ϕ̃ ⊂ [1/4, 4] and ϕ̃(u) = 1 for u ∈ [1/2, 2]. Set

Q̃ jr (x · y) :=
∑

k≥0

ϕ̃
( k

2 j−1

)
rk(k + 1)β Zk(x · y), j ≥ 1, 0 < r < 1. (5.1)

Denote briefly N := 2 j−1 and let g(u) := Nβϕ̃(u)r Nu(u + 1/N )β . Clearly, we have
Q̃ jr (x · y) = ∑

k≥0 g(k/N )Zk(x · y) and supp g ⊂ [1/4, 4]. It is readily seen that

‖g(m)‖∞ ≤ cr N/8Nβ for m ≥ 0, c = c(m, ϕ̃, β).

Then applying Theorem 2.2 we conclude that for any M > 0

|Q̃ jr (x · y)| ≤ c
2 j (d−1)r2

j−4
2 jβ

(
1 + 2 jρ(x, y)

)M
, ∀x, y ∈ S

d−1, c = c(M, ϕ̃, β, d). (5.2)

From (3.15) and the fact that ϕ̃(u) = 1 for u ∈ suppϕ we get for all ξ ∈ S
d−1

J−βU (rξ) =
∑

k≥0

rk(k + 1)β Zk ∗ f (ξ)

= Z0 ∗ f (ξ) +
∑

j≥1

∑

k≥0

ϕ̃
( k

2 j−1

)
rk(k + 1)βϕ

( k

2 j−1

)
Zk ∗ f (ξ)

= Z0 ∗ f (ξ) +
∑

j≥1

Q̃ jr ∗ � j ∗ f (ξ). (5.3)
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Choose 0 < t < min{p, q}. Clearly � j ∗ f ∈ 
2 j+1 . Then by (5.2) with M =
(d − 1)/t + d and Lemma 2.3 it follows that

|Q̃ jr ∗ � j ∗ f (x)|

≤cr2
j−4

2 jβ
∫

Sd−1

2 j (d−1)|� j ∗ f (y)|
(
1 + 2 jρ(x, y)

)(d−1)/t+d
dσ(y)

≤cr2
j−4

2 jβ sup
y∈Sd−1

|� j ∗ f (y)|
(
1 + 2 j+1ρ(x, y)

) d−1
t

∫

Sd−1

2 j (d−1)

(
1 + 2 jρ(x, y)

)d
dσ(y)

(5.4)

≤cr2
j−4

2 jβMt (� j ∗ f )(x).

Here for the last inequality we used (2.17). Hence,

|J−βU (rξ)| ≤ |Z0 ∗ f (ξ)| + c
∑

j≥1

r2
j−4

2 jβMt (� j ∗ f )(ξ), ∀ξ ∈ S
d−1,

(5.5)

implying
‖U‖Fsq

p
≤ c(‖Z0 ∗ f ‖p + N ) ≤ c(‖ f ‖F sq

p
+ N )

with

N :=
∥∥∥
( ∫ 1

0
(1 − r)(β−s)q

( ∑

j≥1

r2
j−4

2 jβMt (� j ∗ f )(·)
)q dr

1 − r

)1/q∥∥∥
p
.

It remains to show that N ≤ c‖ f ‖F sq
p
. Three cases are to be considered here.

Case 1: 0 < q ≤ 1. We have

N ≤ c
∥∥∥
( ∫ 1

0
(1 − r)(β−s)q

∑

j≥1

r2
j−4q2 jβq[Mt (� j ∗ f )(·)]q dr

1 − r

)1/q∥∥∥
p

= c
∥∥∥
( ∑

j≥1

2 jβq[Mt (� j ∗ f )(·)]q
∫ 1

0
(1 − r)(β−s)q−1r2

j−4qdr
)1/q∥∥∥

p

and applying first inequality (2.19) and then the maximal inequality (2.13) we arrive
at

N ≤ c
∥∥∥
( ∑

j≥1

2 jsq[Mt (� j ∗ f )(·)]q
)1/q∥∥∥

p

≤ c
∥∥∥
( ∑

j≥1

2 jsq |� j ∗ f (·)|q
)1/q∥∥∥

p
= c‖ f ‖F sq

p
.



J Fourier Anal Appl

Case 2: 1 < q < ∞. We write

( ∑

j≥1

r2
j−4

2 jβMt (� j ∗ f )(·)
)q

=
( ∑

j≥1

(
r2

j−4
2 j (β−s)

)1−1/q(
r2

j−4
)1/q

2 j[s+(β−s)/q]Mt (� j ∗ f )(·)
)q

and applying Hölder’s inequality and (2.20) we get

( ∑

j≥1

r2
j−4

2 jβMt (� j ∗ f )(·)
)q

≤
( ∑

j≥1

r2
j−4

2 j[s+(β−s)/q]q[Mt (� j ∗ f )(·)]q
)( ∑

j≥1

r2
j−4

2 j (β−s)
)q−1

≤ c
∑

j≥1

r2
j−4

(1 − r)−(β−s)(q−1)2 j (sq+β−s)[Mt (� j ∗ f )(·)]q
.

Therefore, using the above, (2.19), and the maximal inequality (2.13) we obtain

N ≤ c
∥∥∥
( ∑

j≥1

2 j (sq+β−s)[Mt (� j ∗ f )(·)]q
∫ 1

0
r2

j−4
(1 − r)β−s−1dr

)1/q∥∥∥
p

≤ c
∥∥∥
( ∑

j≥1

2 jsq[Mt (� j ∗ f )(·)]q
)1/q∥∥∥

p

≤ c
∥∥∥
( ∑

j≥1

2 jsq |� j ∗ f (·)|q
)1/q∥∥∥

p
≤ c‖ f ‖F sq

p
.

Case 3: q = ∞. We have

N =
∥∥∥ sup
0<r<1

(1 − r)β−s
∑

j≥1

r2
j−4

2 jβMt (� j ∗ f )(·)
∥∥∥

p

≤
∥∥∥ sup

j≥1
2 jsMt (� j ∗ f )(·) sup

0<r<1
(1 − r)β−s

∑

j≥1

r2
j−4

2 j (β−s)
∥∥∥

p

≤ c
∥∥∥ sup

j≥1
2 jsMt (� j ∗ f )(·)

∥∥∥
p

≤ c
∥∥∥ sup

j≥1
2 js |� j ∗ f (·)|

∥∥∥
p

= c‖ f ‖F s∞
p

.

For the second inequality above we used (2.20) and for the third inequality we used
the maximal inequality (2.13). The proof of the first part of the theorem is complete.

(ii) In this part, we show that if U ∈ Fsq
p (H ), then the boundary distribution f ∈ S ′

associated to U belongs to F sq
p (Sd−1) and ‖ f ‖F sq

p
≤ c‖U‖Fsq

p
. This proof relies on

Lemma 4.3.
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Following Proposition 3.2 we write

f :=
∑

k≥0

N (k,d)∑

ν=1

bkν(U )Ykν =
∑

k≥0

Zk ∗ f, (convergence in S ′) (5.6)

where Zk ∗ f is defined in (3.11).
Let � j and ϕ be just as in the definition of Besov and Triebel–Lizorkin spaces on

S
d−1 (Definition 4.5 in Sect. 4.2), that is, � j is defined by (4.21) with ϕ ∈ C∞(R+),

|ϕ(u)| ≥ c > 0 for u ∈ [3/5, 5/3], and suppϕ ⊂ [1/2, 2].
Let β > s and 0 < t < min{1, p, q}. Lemma 4.3 yields for j ≥ 0

|� j ∗ f (x)| ≤ c2− jβ
(
M1

( ∫

I j

[Mt (J−βU (r ·))(·)]t dr

1 − r

)
(x)

)1/t
, ∀x ∈ S

d−1.

(5.7)

Now, we are prepared to estimate ‖ f ‖F sq
p
. We consider two cases depending on

whether q < ∞ or q = ∞.
Case 1: q < ∞. We obtain from (4.23) and (5.7)

‖ f ‖F sq
p

≤ c
∥∥∥
( ∑

j≥0

2− j (β−s)q
(
M1

( ∫

I j

[Mt (J−βU (r ·))(·)]t dr

1 − r

)
(·)

)q/t)1/q∥∥∥
L p

≤ c
∥∥∥
( ∑

j≥0

2− j (β−s)q
( ∫

I j

[Mt (J−βU (r ·))(·)]t dr

1 − r

)q/t)1/q∥∥∥
L p

.

Here we applied the maximal inequality (2.13) with 1, q/t and p/t in the place of t ,
q, p. Now, applying Hölder’s inequality (q/t > 1) to

∫
I j

· · · we get

‖ f ‖F sq
p

≤ c
∥∥∥
( ∑

j≥0

2− j (β−s)q
∫

I j

[Mt (J−βU (r ·))(·)]q dr

1 − r

)1/q∥∥∥
L p

≤ c
∥∥∥
( ∫ 1

0
(1 − r)(β−s)q[Mt (J−βU (r ·))(·)]q dr

1 − r

)1/q∥∥∥
L p

,

where we used that 1 − r ∼ 2− j for r ∈ I j . At this point we apply the maximal
inequality (2.14) and obtain

‖ f ‖F sq
p

≤ c
∥∥∥
( ∫ 1

0
(1 − r)(β−s)q |J−βU (r ·)|q dr

1 − r

)1/q∥∥∥
L p

= c‖U‖Fsq
p

.
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Case 2: q = ∞. Using (5.7) we have

‖ f ‖F s∞
p

= ‖ sup
j≥0

2 js |� j ∗ f (·)|‖p

≤ c
∥∥∥ sup

j≥0
2− j (β−s)

[
M1

( ∫

I j

[Mt (J−βU (r ·))(·)]t dr

1 − r

)
(·)

]1/t∥∥∥
p

≤ c
∥∥∥
[
M1

(
sup
j≥0

2− j (β−s)t
∫

I j

[Mt (J−βU (r ·))(·)]t dr

1 − r

)
(·)

]1/t∥∥∥
p
.

Since p/t > 1 we can apply the maximal inequality (2.13) for a single function to
obtain

‖ f ‖F s∞
p

≤ c
∥∥∥ sup

j≥0
2− j (β−s)

( ∫

I j

[Mt (J−βU (r ·))(·)]t dr

1 − r

)1/t∥∥∥
p
.

Applying Hölder’s inequality (1/t > 1) to
∫

I j
· · · we get

‖ f ‖F s∞
p

≤ c
∥∥∥ sup

j≥0
2− j (β−s)

∫

I j

Mt (J−βU (r ·))(·) dr

1 − r

∥∥∥
p

≤ c
∥∥∥ sup

j≥0
2− j (β−s) sup

r∈I j

Mt (J−βU (r ·))(·)
∥∥∥

p

≤ c
∥∥∥ sup
0<r<1

(1 − r)β−sMt (J−βU (r ·))(·)
∥∥∥

p

≤ c
∥∥∥Mt

(
sup

0<r<1
(1 − r)β−s |J−βU (r ·)|)(·)

∥∥∥
p
.

Applying again the maximal inequality (2.13) for a single function we arrive at

‖ f ‖F s∞
p

≤ c
∥∥∥ sup
0<r<1

(1 − r)β−s |J−βU (r ·)|
∥∥∥

p
= c‖U‖Fs∞

p
.

The proof of Theorem 5.1 is complete. ��

5.2 Proof of Theorem 5.2

This proof will follow in the footsteps of the one for the Triebel–Lizorkin spaces (Sect.
5.1). We shall adhere to the notation there and only indicated the necessary changes.

(i) We first show that if f ∈ Bsq
p (Sd−1) is the boundary distribution of a harmonic

extension U ∈ H (Bd), i.e. f = fU , then U ∈ Bsq
p (H ) and ‖U‖Bsq

p
≤ c‖ f ‖Bsq

q
.

Let ϕ ∈ C∞(R+) be such that suppϕ ⊂ [1/2, 2] and ϕ satisfy (3.15). Define the
kernels � j , j = 0, 1, . . . , as in (3.16). Just as in the case of Triebel–Lizorkin spaces
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we have the representation

J−βU (rξ) = Z0 ∗ f (ξ) +
∑

j≥1

Q̃ jr ∗ � j ∗ f (ξ), ∀ξ ∈ S
d−1,

with Q̃ jr from (5.1). Then by (5.4)

|Q̃ jr ∗ � j ∗ f (ξ)| ≤ cr2
j−4

2 jβMt (� j ∗ f )(ξ), j ≥ 1,

for any 0 < t < min{p, q}. Now, applying the maximal inequality (2.13) we infer for
p < ∞

‖Q̃ jr ∗ � j ∗ f ‖p ≤ cr2
j−4

2 jβ‖� j ∗ f ‖p.

For p = ∞ the above implication is immediate. Therefore, putting p� := min{1, p}
we have

‖J−βU (r ·)‖p�

p ≤ ‖Z0 ∗ f ‖p�

p + c
∑

j≥1

r2
j−4 p�

2 jβ p�‖� j ∗ f ‖p�

p . (5.8)

Assuming q < ∞, this yields

‖U‖Bsq
p

≤ c(‖ f ‖Bsq
p

+ N ),

N :=
( ∫ 1

0
(1 − r)(β−s)q

( ∑

j≥1

r2
j−4 p�

2 jβ p�‖� j ∗ f ‖p�

p

)q/p� dr

1 − r

)1/q
. (5.9)

Three cases present themselves here.
Case 1: 0 < q ≤ p�. Using that q/p� ≤ 1 we get

N q ≤ c
∫ 1

0
(1 − r)(β−s)q

∑

j≥1

r2
j−4q2 jβq‖� j ∗ f ‖q

p
dr

1 − r

= c
∑

j≥1

2 jβq‖� j ∗ f ‖q
p

∫ 1

0
(1 − r)(β−s)q−1r2

j−4qdr.

We now apply inequality (2.19) to obtain

N q ≤ c
∑

j≥1

2 jsq‖� j ∗ f ‖q
p ≤ c‖ f ‖q

Bsq
p

as desired.
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Case 2: p� < q < ∞. Write

⎛

⎝
∑

j≥1

r2
j−4 p�

2 jβ p�‖� j ∗ f ‖p�

p

⎞

⎠
q/p�

=
⎛

⎝
∑

j≥1

(
r2

j−4 p�

2 j (β−s)p�)1− p�

q
(
r2

j−4 p�) p�

q 2 j
[

s+(β−s) p�

q

]
p�‖� j ∗ f ‖p�

p

⎞

⎠
q/p�

.

Applying Hölder’s inequality (using that q/p� > 1) we get

⎛

⎝
∑

j≥1

r2
j−4 p�

2 jβ p�‖� j ∗ f ‖p�

p

⎞

⎠
q/p�

≤
⎛

⎝
∑

j≥1

r2
j−4 p�

2 j
[

s+(β−s) p�

q

]
q‖� j ∗ f ‖q

p

⎞

⎠

⎛

⎝
∑

j≥1

r2
j−4 p�

2 j (β−s)p�

⎞

⎠
q/p�−1

.

Using inequality (2.20) we obtain

⎛

⎝
∑

j≥1

r2
j−4 p�

2 j (β−s)p�

⎞

⎠
q/p�−1

≤ c(1 − r)−(β−s)(q−p�).

Putting the above two estimates in (5.9) we get

N q ≤ c
∑

j≥1

2 j[sq+(β−s)p�]‖� j ∗ f ‖q
p

×
∫ 1

0
(1 − r)(β−s)q−1(1 − r)−(β−s)(q−p�)r2

j−4 p�

dr

≤ c
∑

j≥1

2 j[sq+(β−s)p�]‖� j ∗ f ‖q
p

∫ 1

0
(1 − r)(β−s)p�−1r2

j−4 p�

dr.

We apply inequality (2.19) to the above integral to obtain

N q ≤ c
∑

j≥1

2 j[sq+(β−s)p�]2− j (β−s)p�‖� j ∗ f ‖q
p

= c
∑

j≥1

2 jsq‖� j ∗ f ‖q
p ≤ c‖ f ‖q

Bsq
p

as desired.
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Case 3: q = ∞. From (5.8) we obtain

‖U‖p�

Bs∞
p

≤ ‖Z0 ∗ f ‖p�

p + c sup
0<r<1

(1 − r)(β−s)p� ∑

j≥1

r2
j−4 p�

2 jβ p�‖� j ∗ f ‖p�

p

≤ ‖ f ‖p�

Bs∞
p

+ c

(
sup
j≥1

2s j‖� j ∗ f ‖p

)p�

sup
0<r<1

(1 − r)(β−s)p� ∑

j≥1

r2
j−4 p�

2 j (β−s)p�

≤ ‖ f ‖p�

Bs∞
p

+ c

(
sup
j≥1

2s j‖� j ∗ f ‖p

)p�

= c‖ f ‖p�

Bs∞
p

,

where for the last inequality we used (2.19). This completes the proof of the first part
of the theorem.

(ii) We next show that if U ∈ Bsq
p (H ), then the boundary distribution f = fU ∈ S ′

associated to U belongs to Bsq
p (Sd−1) and ‖ f ‖Bsq

p
≤ c‖U‖Bsq

p
.

Let � j , j = 0, 1, . . . , be just as in the definition of Besov and Triebel–Lizorkin
spaces on Sd−1 (Definition 4.5 in Sect. 4.2). Then inequality (4.8) holds for these� j ’s
and the function f from the hypothesis. This inequality coupled with the definition of
‖ f ‖Bsq

p
in (4.23) leads to

‖ f ‖Bsq
p

≤ c

⎛

⎝
∑

j≥0

2− j (β−s)q
( ∫

I j

‖J−βU (r ·)‖t
p

dr

1 − r

)q/t

⎞

⎠
1/q

≤ c

⎛

⎝
∑

j≥0

2− j (β−s)q
∫

I j

‖J−βU (r ·)‖q
p

dr

1 − r

⎞

⎠
1/q

≤ c

(∫ 1

0
(1 − r)(β−s)q‖J−βU (r ·)‖q

p
dr

1 − r

)1/q

= c‖U‖Bsq
p

.

Here for the second inequality we applied Hölder’s inequality (q/t > 1) to
∫

I j
· · · .

The proof of Theorem 5.2 is complete. ��
Remark 5.3 Theorems 5.1 and 5.2 readily yield that the harmonic Triebel–Lizorkin
and Besov space norms introduced in Definition 4.1 are equivalent for different β > s.

6 Frame Characterization of Harmonic Besov and Triebel–Lizorkin
Spaces on Bd

Theorems 5.1 and 5.2 allow easily to transfer results on Besov and Triebel–Lizorkin
spaces on Sd−1 to harmonic Besov and Triebel–Lizorkin spaces on Bd . Herewe record
the frame characterization of harmonic Besov and Triebel–Lizorkin spaces on Bd that
follows by the respective results on S

d−1 from [17].
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We assume that {�ξ }ξ∈X are the harmonic needlets and {�̃ξ }ξ∈X is its dual frame,
defined in (3.26)–(3.27). Recall thatX := ∪ j≥0X j contains the centers of localization
of the needlets on S

d−1 and {Aξ }ξ∈X j ( j ≥ 0) is a disjoint partition of Sd−1, defined
in Sect. 3.3.

Definition 6.1 Let s ∈ R, 0 < p, q ≤ ∞. The Besov sequence space bsq
p is defined

as the set of all sequences of complex numbers h = {hξ }ξ∈X such that

‖h‖bsq
p

:=
⎛

⎝
∞∑

j=0

[
2 j (s+(d−1)/2−(d−1)/p)

( ∑

ξ∈X j

|hξ |p
)1/p]q

⎞

⎠
1/q

< ∞ (6.1)

with the usual modification when p = ∞ or q = ∞.

We introduce the operators:
Analysis operator S�̃ : U �→ {< U, �̃ξ >}ξ∈X ,
Synthesis operator T� : {hξ }ξ∈X �→ ∑

ξ∈X hξ�ξ .

Theorem 6.2 Let s ∈ R and 0 < p, q ≤ ∞. Then the operators S�̃ : Bsq
p → b

sq
p

and T� : bsq
p → Bsq

p are bounded, T� ◦ S�̃ = Id in Bsq
p . Consequently, a harmonic

function U ∈ Bsq
p if and only if {< U, �̃ξ >} ∈ b

sq
p and

‖U‖Bsq
p

∼‖{< U, �̃ξ >}‖bsq
p

∼
⎛

⎝
∞∑

j=0

⎡

⎣2s j
( ∑

ξ∈X j

‖ < U, �̃ξ > ψξ‖p
L p(Sd−1)

)1/p

⎤

⎦
q⎞

⎠
1/q

,

where < U, �̃ξ > is defined in (3.29).

In the following we adhere to the notation from above.

Definition 6.3 Let s ∈ R, 0 < p < ∞, and 0 < q ≤ ∞. The Triebel–Lizorkin
sequence space f

sq
p is defined as the set of all sequences of complex numbers h =

{hξ }ξ∈X such that

‖h‖fsq
p

:=

∥∥∥∥∥∥∥

⎛

⎝
∑

ξ∈X

[
|Aξ |−s/(d−1)−1/2|hξ |1Aξ (·)

]q

⎞

⎠
1/q

∥∥∥∥∥∥∥
L p(Sd−1)

< ∞, (6.2)

where 1Aξ stands for the characteristic function of Aξ .

Theorem 6.4 Let s ∈ R and 0 < p < ∞, 0 < q ≤ ∞. Then the operators S�̃ :
Fsq

p → f
sq
p and T� : fsq

p → Fsq
p are bounded, T� ◦ S�̃ = Id in Fsq

p . Consequently, a
harmonic function U ∈ Fsq

p if and only if {< U, �̃ξ >} ∈ f
sq
p and

‖U‖Fsq
p

∼ ‖{< U, �̃ξ >}‖fsq
p

∼
∥∥∥
( ∞∑

j=0

2s jq
∑

ξ∈X j

| < U, �̃ξ > ψξ |q
)1/q∥∥∥

L p(Sd−1)
.
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Theorems 6.2 and 6.4 follow readily by Theorems 4.5 and 5.5 in [17] and Theo-
rems 5.2 and 5.1 above. We omit the details.

7 Harmonic Hardy Spaces

Here we consider the harmonic Hardy spaces H p(Bd) on the ball (usually denoted
by h p(Bd)), see e.g. [1, Chapter 6].

Definition 7.1 The space H p := H p(Bd), 1 ≤ p ≤ ∞, is defined as the set of all
harmonic functions U ∈ H (Bd) such that

‖U‖H p := sup
0≤r<1

‖U (r ·)‖L p(Sd−1) < ∞. (7.1)

Proposition 4.3 in [17] and Theorem 5.1 imply the following identification of har-
monic Hardy spaces:

Proposition 7.2 For 1 < p < ∞, we have

H p(Bd) ∼ L p(Sd−1) ∼ F02
p (Sd−1) ∼ F02

p (H ) with equivalent norms. (7.2)

More precisely, there exists a boundedly invertible linear map between any two of the
above spaces.

Proof Let

P f (rξ) :=
∫

Sd−1
P(y, rξ) f (y)dσ(y) for f ∈ L p(Sd−1), 1 < p < ∞,

where P(y, rξ) is the Poisson kernel, defined in (2.6). As is well known (see e.g.
[1, Theorem 6.13]) for any U ∈ H p(Bd), 1 < p < ∞, there exists a function
f = fU ∈ L p(Sd−1) such that U = P f . As P(y, rξ) is a summability kernel on
S

d−1, we have ‖ f (·) − P f (r ·)‖p → 0 as r → 1− and ‖P f (r ·)‖p ≤ ‖ f ‖p for
0 ≤ r < 1. Therefore, ‖U‖H p = ‖ f ‖L p .

On the other hand, from the properties of the Poisson kernel it readily follows that if
f ∈ L p(Sd−1), 1 < p < ∞, then P f ∈ H p(Bd) and fP f = f , using the notation
from above.

Therefore, P : L p(Sd−1) → H p(Bd), 1 < p < ∞, is a linear isometric isomor-
phism, leading to the identification H p(Bd) ∼ L p(Sd−1) in (7.2).

The identification L p(Sd−1) ∼ F02
p (Sd−1) is established in [17, Proposition 4.3]

and F02
p (Sd−1) ∼ F02

p (H ) follows by Theorem 5.1. ��

8 Harmonic Besov and Triebel–Lizorkin Spaces on R
d \ Bd

It is natural to consider the setH (Rd \ Bd) of all harmonic functions U on Rd \ Bd

such that lim|x |→∞ U (x) = 0 if d > 2 or lim|x |→∞ U (x) = const. if d = 2. As is
well known the Kelvin transform
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KU (x) := |x |2−dU (x/|x |2)

maps one-to-oneH (Bd) ontoH (Rd \ Bd) andH (Rd \ Bd) ontoH (Bd). Conse-
quently, every harmonic function U ∈ H (Rd \ Bd) has the representation

U (x) =
∞∑

k=0

1

|x |k+d−2

N (k,d)∑

ν=1

bkν(U )Ykν

( x

|x |
)
, |x | > 1,

where bkν(U ) := ak+d−2
∫
Sd−1 U (aη)Ykν(η)dσ(η), a > 1. Above the series con-

verges absolutely and uniformly on every closed subset of Rd \ Bd .
In this setting the operator Jβ (see (4.1)) is defined by

JβU (rξ) :=
∞∑

k=0

(k + 1)−β

rk+d−2

N (k,d)∑

ν=1

bkν(U )Ykν(ξ), r > 1, ξ ∈ S
d−1.

Then the harmonic Besov space Bsq
p (H ), s ∈ R, 0 < p, q ≤ ∞, on R

d \ Bd is
defined by the quasi-norm (β := s + 1)

‖U‖Bsq
p (H ) :=

( ∫ ∞

1
(1 − r−1)(β−s)q‖J−βU (r ·)‖q

L p(Sd−1)

dr

r(r − 1)

)1/q
if q �= ∞

and by the usual modification of this norm when q = ∞.
Similarly, the harmonic Triebel–Lizorkin space Fsq

p (H ), s ∈ R, 0 < p < ∞,

0 < q ≤ ∞, on Rd \ Bd is defined by the quasi-norm (β := s + 1)

‖U‖Fsq
p (H ) :=

∥∥∥
( ∫ ∞

1
(1−r−1)(β−s)q |J−βU (r ·)|q dr

r(r − 1)

)1/q∥∥∥
L p(Sd−1)

if q �= ∞

and with the obvious modification if q = ∞.
It is readily seen that the Kelvin transform is an isometric isomorphism between

the harmonic Besov spaces Bsq
p (H ) on Bd and on R

d \ Bd as well as between the

harmonic Triebel–Lizorkin spaces Fsq
p (H ) on Bd and on R

d \ Bd . Moreover, the
Kelvin transform retains unchanged the boundary distributions in both cases. There-
fore, the identifications established in Theorems 5.1 and 5.2 above are valid for the
respective harmonic Besov and Triebel–Lizorkin spaces on R

d \ Bd as well.
One also applies the Kelvin transform to the frames from Sect. 3.4 to construct

a pair of dual frames {�ξ }ξ∈X , {�̃ξ }ξ∈X , where each frame element �ξ is a harmonic

function onRd \ Bd . Then frame characterization of the harmonic Besov and Triebel–
Lizorkin spaces on R

d \ Bd follows easily by Theorems 6.2 and 6.4. We skip the
details.

In sum, by virtue of the Kelvin transform one obtains analogues of all results in
this article for harmonic functions on R

d \ Bd .
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Appendix

Proof of Lemma 2.3

Assume g ∈ 
N . Let λ ∈ C∞(R+) be an admissible function of type (a) in the sense
of Definition 2.1. Set

�N (x · y) :=
∑

k≥0

λ(k/N )Zk(x · y).

Clearly, �N ∗ g = g and by Theorem 2.2 for any M > 0 there exists a constant c > 0
such that for x, y, z ∈ S

d−1

|�N (x · z) − �N (y · z)| ≤ cρ(x, y)N d

(1 + Nρ(x, z))M
, if ρ(x, y) ≤ N−1. (9.1)

Fix 0 < ε < 1. For y ∈ S
d−1 we have

|g(y)| ≤ inf
u∈G(y,εN−1)

|g(u)| + sup
u∈G(y,εN−1)

|g(y) − g(u)|

and hence

H(x) := sup
y∈Sd−1

|g(y)|
(1 + Nρ(x, y))(d−1)/t

≤ sup
y∈Sd−1

infu∈G(y,εN−1) |g(u)|
(1 + Nρ(x, y))(d−1)/t

+ sup
y∈Sd−1

supu∈G(y,εN−1) |g(y) − g(u)|
(1 + Nρ(x, y))(d−1)/t

=: H1(x) + H2(x).

To estimate H1(x) we first note that

inf
u∈G(y,εN−1)

|g(u)| ≤
(

1

|G(y, εN−1)|
∫

G(y,εN−1)

|g(u)|tdσ(u)

)1/t

,

implying

H1(x) ≤
( |G(x, ρ(x, y) + εN−1)|

|G(y, εN−1)|(1 + Nρ(x, y))d−1

)1/t

×
(

1

|G(x, ρ(x, y) + εN−1)|
∫

G(y,εN−1)

|g(u)|tdσ(u)

)1/t

. (9.2)

Since G
(
x, ρ(x, y) + εN−1

) ⊂ G
(
y, 2ρ(x, y) + εN−1

)
, we have

∣∣G
(
x, ρ(x, y) + εN−1)∣∣ ≤ ∣∣G

(
y, 2ρ(x, y) + εN−1)∣∣

≤ (2/ε)d−1(1 + Nρ(x, y))d−1|G(y, εN−1)|.
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Weuse the above in (9.2) and enlarge the regionof integration in (9.2) from B(y, εN−1)

to G(x, ρ(x, y) + εN−1) to bound H1(x) by

cε(−d+1)/t sup
y∈Sd−1

(
1

|G(x, ρ(x, y) + εN−1)|
∫

G(x,ρ(x,y)+εN−1)

|g(u)|tdσ(u)

)1/t

≤ cε(−d+1)/tMt g(x).

Therefore,

H1(x) ≤ cε(−d+1)/tMt g(x). (9.3)

We now estimate H2(x). Using (9.1) we obtain

sup
u∈G(y,εN−1)

|g(y) − g(u)| ≤ sup
u∈G(y,εN−1)

∫

Sd−1
|�N (y · z) − �N (u · z)||g(z)|dσ(z)

≤ c sup
u∈G(y,εN−1)

∫

Sd−1

N dρ(y, u)|g(z)|
(1 + Nρ(y, z))M

dσ(z)

≤ cε
∫

Sd−1

N d−1|g(z)|
(1 + Nρ(y, z))M

dσ(z)

and choosing M := (d − 1)/t + d we get

H2(x) ≤ cε sup
y∈Sd−1

∫

Sd−1

N d−1|g(z)|
(1 + Nρ(y, x))

d−1
t (1 + Nρ(y, z))

d−1
t +d

dσ(z).

Clearly, 1 + Nρ(x, z) ≤ (1 + Nρ(y, x))(1 + Nρ(y, z)) and hence

H2(x) ≤ cε sup
y∈Sd−1

∫

Sd−1

N d−1|g(z)|
(1 + Nρ(x, z))

d−1
t (1 + Nρ(y, z))d

dσ(z)

≤ cε sup
z∈Sd−1

|g(z)|
(1 + Nρ(x, z))

d−1
t

sup
y∈Sd−1

∫

Sd−1

N d−1

(1 + Nρ(y, z))d
dσ(z)

≤ c′εH(x),

where for the last inequality we used (2.17). From this and (9.3) we infer

H(x) ≤ cε(−d+1)/tMt g(x) + c′εH(x).

Here the constants c and c′ are independent of ε. Consequently, choosing ε so that
c′ε = 1/2 and taking into account that H(x) < ∞ we obtain (2.15). ��
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