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Abstract In this work we develop highly geometric Hardy spaces, for the full range
0 < p < 1. These spaces are constructed over multi-level ellipsoid covers of R" that
are highly anisotropic in the sense that the ellipsoids can change shape rapidly from
point to point and from level to level. This generalizes previous work on anisotropic
Hardy spaces where the geometry of the space was ‘fixed’ over R” and extends Hardy
spaces over spaces of homogeneous type, where the theory holds for p values that are
‘close’ to 1.

Keywords Anisotropic function space - Spaces of homogeneous type - Atomic
decomposition
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1 Introduction

Anisotropic phenomena appear in various contexts in mathematical analysis and its
applications. The formation of shocks results in jump discontinuities of solutions of
hyperbolic conservation laws across lower dimensional manifolds and sharp edges
often separate areas of little detail in digital images, to name just two examples.
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In Sect. 2 we review a general anisotropic framework on R” using the multi-level
ellipsoid covers introduced in [8]. Whereas in previous work the anisotropy is fixed
and global over R”, in our settings only mild ‘local’ conditions are imposed on the
ellipsoids which allow them to rapidly change from point to point and in depth, from
level to level. The ellipsoid covers induce anisotropic quasi-distances on R” and to-
gether with the usual Lebesgue measure, form spaces of homogeneous type.

The theory of function spaces defined over spaces of homogeneous type has been
extensively studied from the 70s [6, 7, 13] (see [10] for an excellent survey). In this
context, the theory of real Hardy spaces in more ‘geometric’ settings has also received
much attention. Coifman and Weiss pioneered this field in the 70s [6, 7]. Then, Fol-
land and Stein in the 80s studied Hardy spaces over homogeneous groups [11]. How-
ever, in general settings, such as the setting of spaces of homogeneous type, the Hardy
Spaces with p ‘close’ to zero do not have sufficient structure. Bownik [3] (see also
[4,5, 12, 13]) investigated a special form of Hardy spaces defined over R", where the
Euclidian balls are replaced by images of the unit ball by powers of a fixed expan-
sion matrix. In this setup, Bownik was able to construct and fully analyze anisotropic
Hardy spaces for the full range 0 < p <1.

In this work we generalize Bownik’s spaces, by constructing Hardy spaces
H?(®), 0 < p <1, over ellipsoid multi-level covers ®, where the anisotropy may
change rapidly from point to point. In Sect. 3 we define the Hardy spaces using
anisotropic maximal functions. In Sect. 4 we introduce the atomic Hardy spaces and
prove the equivalence between the two definitions. This section is rather technical
but the general framework generalizes Sects. 4—6 in [3]. Finally, in Sect. 5, we show
that two anisotropic Hardy spaces H”(®1) and H? (®;) are equivalent if and only
if the quasi distances induced by the covers ® and ®; are equivalent. In particular,
this implies that the class of anisotropic Hardy spaces we construct contains and is
strictly bigger than the class in [3].

Throughout the paper, the constants ¢ > 0, depend on various fixed constants such
as the parameters of our covers, the dimension n as well as other parameters and their
value may change from line to line.

2 Anisotropic Ellipsoid Covers of R"

We recall the definitions of [8]. An ellipsoid is the image of the Euclidian unit ball B*
in R” via an affine transform. For a given ellipsoid 6 we let Ag be an affine transform
such that 6 = Ay (B*). Denoting by vg := Ay (0) the center of 6 we have

Ag(x) = Mpx + vg,

where Mp is a nonsingular n X n matrix.

Definition 2.1 We say that

e:=[Je

teR

is a continuous multilevel ellipsoid cover of R” if it satisfies the following conditions,
where p(®) :={ay, ..., ae} are positive constants:
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(i) For every x € R" and r € R there exists an ellipsoid 0 (x, t) € ®, and an affine
transform Ay ;(y) = M, ;y + x such that 6 (x,7) = A, ,(B*) and

a;27 <0, )| <a27. 2.1
(ii) Forany x,y e R",t € Rand s > 0,if 0(x,1) NO(y,t +5) # @, then

az27 <1/ My 1.

M| < | My My g | < as279%", (2.2)

Let us describe a useful form of covers of R2. We select all ellipses on levels < 0 to
be Euclidian balls. For levels > 0 we allow the ellipses to change from Euclidian balls
to ellipses with the ‘parabolic scaling’ parameters (ag, a4) = (1/3,2/3). This choice
of parameters relates to polygonal approximation of a planar curve, with segments of
length & and approximation error of O (h?). Roughly speaking, with this choice we
can simulate the performance of polygonal approximation by constructing at the level
t > 0 ‘thin’ ellipses of length ~ 27*/3 and width ~ 27%/3  such they (are aligned with
and) cover the function’s curve singularities with a ‘strip width> of ~ 272/3, Away
from the curve singularities, the ellipses can be selected to be Euclidian balls (see
also the constructions in Sect. 7.1 of [8]).

We will need the following lemmas

Lemma 2.2 Let ® be a cover. Then there exists ¢ > 0 such that for any x e R",t > 0,
and . > 1,
X+ AMy (B*) SO(x, 1t —ch), (2.3)

Proof Fix x € R" and 7 > 0. Note that (2.3) holds if and only if

Mfl

xX,t—ch

1
Mx,t(B*) - XB*, A>1.

From (2.2) we have M;}_CAMX,,(B*) C as52~%¢* B* Therefore, one should choose

large enough c, such that a52_a60)‘ < % forall A > 1. O
Choosing A =2 in (2.3) gives

Lemma 2.3 Let ® be a cover. Then, there exists J(p(®)) > 1 such that for every
xeR"andt eR

O(x,1) Sx+ (1/2)My;—j(B*) CO(x,t — J).

The following two covering lemmas for ellipsoid covers are versions of classic
results on ball coverings in arbitrary spaces of homogeneous type (see e.g. [15]). They
are essential for the Calder6n-Zygmund decomposition, which we will use later.

Lemma 2.4 (Wiener) Let ® be a cover of R". There exists a constant y (p(®)) > 0
such that for any 2, a bounded subset of R" or open with |2] <ocoandt:Q2— Ra
function, there exists a sequence of points {x;} C Q (finite or infinite), such that the
ellipsoids 0 (x, t(x;)) are mutually disjoint and Q C Uj O(xj,t(xj)—y).
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Proof One chooses the constant y such that forall x, y e R" and ¢, s € R, if 0(x, )N
0(y,s) =W witht <s,then 6(y,s) CO(x,t —y) (see Lemma 2.8 in [8]). Using this
property, the proof is standard (see e.g. [3] for details). g

Lemma 2.5 (Whitney) Let ® be a cover of R". There exists a constant y (p(©)) > 0,
such that for any open Q2 C R" with |Q2| < oo and any m > 0, there exist a sequence
of points {x} jen C Q and a sequence {t;} jen, so that

(i) 2=, 00,1,
(ii) O(x;,t; + y) are pairwise disjoint,
(iii) Forevery jeN,0(xj,tj—m—y)NQ =0, butb(x;, t;j—m—y—1)NQ° £y,
G(v) If0(xj,t; —m)NO(x;, t; —m) #Dthen |t; —tj| <y +1,
(v) Forevery j €N

#ieN:0(x;,t; —m) ﬂ@(xj,tj —m)#£WP} <L,
where L depends only on the parameters of the cover and m.

Proof We choose the constant y as in the Wiener Lemma. For every x € Q define
t(x):=infi{6(x,s —m — Q.
(x) SIQR{ (x,s —m—y)CQ}

Since 2 is open and since for each point x € R", the diameters of the ellip-
soids 6(x,s —m — y) decrease as s — oo we get that 7(x) is well defined. Also,
since 2 has finite volume, #(x) is finite. By the Wiener Lemma, we can find for
the function #(x) a sequence {x;}, such that 6(x;,; +y) are disjoint and Q =
U j 0(xj,t;), where t; := t(x;). This gives properties (i) and (ii). By construction,
O(xj,tj—m—y)NQ°=Pbutb(x;,t; —m —y — 1) N Q° # () which implies prop-
erty (iii). To prove property (iv), assume by contradiction that there exist indices
i, j such that 6(x;,t; —m) NO(xj,t; —m) #P with t; <t; — y — 1. This gives that
O(xi,ti —m—y —1)NO(xj,t; —m) #P witht; —m <t; —m — y — 1. Therefore
O(x;,ti —m —y — 1) CO(x;,t; —m — y) which is a contradiction since

P#O(xi, ti—m—y —1DNQ COxj,tj—m—y)NQ° =0

We now prove property (v). For j > 1, let I(j) = {i : 6(x;,t;, —m) N
O(xj,tj —m) # (}. From property (iv) we derive that t; < ¢ + y + 1, Vi € I(j).
Therefore Uiel(j) O(x;,t; —m) C 0(xj,t; —m — 2y — 1). On the other hand, since
tj >t —y — 1, we also have that |0(x;,t; —m —2y —1)| < L|0(x;, t; + y)I,
Vi € I(j), for some L > 1 that depends on the properties of the cover and m. This,
coupled with property (ii) gives

1
#1(j) < — 2_ [0Gs1i+7)
min;es(jy |6 (xi, i +v)l iel(j)

< |9(.xj,tj—m—2y— 1] <L
min; e ;) 10(xi, 6 +p)I H
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The ellipsoid covers induce quasi-distances on R”. A quasi-distance on a set
X is a mapping p : X x X — [0, co) that satisfies the following conditions for all
x,y,z € X:

@ px,y)=0cx=y,
(®) plx,y)=p(y,x),
(c) Forsome x >1

p(x,y) <k(p(x,2) + p(z, y)). 2.4
Let ® be a cover. We define p : R” x R" — [0, 00) by

,y)=inf{|0] : x,y €0}. 2.5
p(x,y) 912 {| |:x,y } 2.5)
T'he following results are proved in [8].

Theorem 2.6 The function p in (2.5), induced by an ellipsoid cover, is a quasi-
distance on R".

Let ® be an ellipsoid cover inducing a quasi-distance p. We denote
B(x,r):= {yeR”:p(x,y)<r}. (2.6)
Evidently,

Bx,r)=|J{0:101 <r. xe0}.
0e®

Theorem 2.7 Let © be an ellipsoid cover. For each ball B(x, r), there exist ellipsoids
0',0"” € ©, such that ' C B(x,r) C 8" and |0'| ~ |B(x,r)| ~ |0"| ~ r, where the
constants depend on p(®).

Spaces of homogeneous type were first introduced in [6] (see also [14]) as a means
to extend the Calderén-Zygmund theory of singular integral operators to more general
settings. Let X be a topological space endowed with a Borel measure ¢ and a quasi-
distance p. Assume that the balls B(x,r) :={ye X: p(x,y)<r},x e X, r >0,
form a basis for the topology in X. The space (X, p, w) is said to be of homogenous
type if there exists a constant A such that for all x € X and r > 0,

M(B(x,Zr)) SAM(B(x,r)). 2.7

If (2.7) holds then p is said to be a doubling measure [15]. A space of homogeneous
type is said to be normal, if the equivalence p(B(x,r)) ~ r holds. Theorem 2.7 en-
sures (2.7) holds for the case of an ellipsoid cover and implies that it induces a normal
space of homogeneous type (R”, p, dx), where p is the quasi-distance (2.5) and dx
is the Lebesgue measure.

We conclude this section by relating the quasi-distances induced by ellipsoid cov-
ers with the Euclidian distance. To this end we first require the following definition.
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Definition 2.8 Let p be a quasi-distance on R” and let u = (uo, 11), 0 < o < u1.
For any x, y € R" and d > 0 we define

mo  p(x,y) <d, - mr o p(x,y) <d,
b ’d = N ,d = 2.8
ulx,y.d) {m p(x,y)=d. ax.y.d) {MO p(x,y)=d. 28)

The following is proved in [9] for a discrete version of covers, but it also holds for
the continuous version.

Theorem 2.9 Let ® be a cover and p the induced quasi-distance (2.5). Denote by
w:= (uo, 1) = (ae, as) where 0 < ag < a4 are the parameters from (2.2). Then for
each fixed y € R" there exist constants 0 < ¢ < ¢p < 00 that depend on y and p(©)
such that

c1p(e, D < x —yl < copx, D, Vx e RY, 2.9)
where |x — y| is the usual Euclidian distance between x and y.

In the special case where the ellipsoid cover is composed of Euclidian balls, we
have that the parameters in (2.2) satisfy a4 = ag = 1/n and (2.9) is easily verified by

lx =yl ~Hz:lz —x| <y —x|}|'/"

= px, N = pax, T = p(x, )b,

3 Anisotropic Hardy Spaces via Maximal Functions

Let S denote the Schwartz class of rapidly decreasing test functions (in Euclidian
sense) and S’ the dual space.

Definition 3.1 Let ® be an ellipsoid cover. We define the following maximal func-
tions of Hardy-Littlewood type.

1
Mpg(x) :=sup ——— lg(|dy, (3.1)
r>0 1BG, M) B,

Mgg(x) :=sup lg(»|dy, (3.2)

rer 10, D] Joe.n
where B(x, r) are the (anisotropic) balls corresponding to the quasi-distance (2.5).
Lemma 3.2 Let © be an ellipsoid cover. Then for g € S’,
Mpg(x) ~ Mpg(x), VxeR" 3.3)
Proof The equivalence (3.3) is a direct consequence of the fact that by Theo-

rem 2.7, for any anisotropic ball B(x,r), there exist ellipsoids 6’,0” € ®, such
that 8’ € B(x,r) € 0" and |0'| ~ |B(x,r)| ~ |0”| ~ r. This easily implies that
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Mpg(x) < cMepg(x). The observation that any ellipsoid 6 € ®, with center xp, is
contained in B(xg, |#|) provides the other direction. Il

Itis a classic result [15] that the Maximal Theorem holds for the Hardy-Littlewood
maximal function in the general setup of spaces of homogeneous type. This, com-
bined with Lemma 3.2 yields
Theorem 3.3 Let © be an ellipsoid cover. Then

(i) There exists a constant ¢ depending only on the parameters of the cover and n
such that for all f € L'"(R") and o > 0

[{x:Mof(0)>al| <ca'IIfI. (3.4)

(ii) For 1 < p < o0 there exists a constant A, depending only on ¢ and p such that
forall feLP(R")

Mo fllp<Apllfllp. (3.5)

It is known [15] that in contrast to the case p > 1, the nature of Hardy spaces for

0 < p <1 involves not only the size of a given distribution, but also some delicate
cancellation properties. Therefore, we are required to replace the Hardy-Littlewood

type maximal function by convolutions with functions of sufficient smoothness and
fast decay.

Definition 3.4 For a function ¥ € CYN(R") and @ € Z", || < N < N, let

¥l 5 == sup (14 YDV 1%y (),

yeR" (3.6)
19y 5 = max I, 5
and
Syi=WeS: ¥y 5=} 3.7)

We also denote Sy := Sy .
Let © be a cover where 6 (x, 1) = M, ;(B*) 4 x for each x € R"” and 7 € R. Denote
Vs (p) 1= [det (M) [ (M) (x = y).

Definition 3.5 Let g € S’ and let ¢ € S. We define the radial maximal function as

My, g(x) = sup f gMYx  (y)dy|, (3.8)
teR|JR"
and forany 0 < N < N , the grand radial maximal function of g as
M, j8(x) = sup Myg(x). (3.9)

SON N
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Let ® be a continuous cover of R" with parameters p(®) = (ay, ..., a¢) and let
0 < p < 1. We define N,(®) as the minimal integer satisfying

max(1,aq)n + 1

Np(©) > ———— T (3.10)
asp

and then N »(©®) as the minimal integer satisfying

asN,(®) + 1

N, (©
p( ) > a5

(3.11)
Definition 3.6 Let ® be an ellipsoid cover and let 0 < p < 1. Denoting M° :=
M° _ , we define the anisotropic Hardy space as
Ny, N
HP(©):={geS :M°geLP},

with the quasi-norm || g|lgr (@) := [I1M°g|l p.

The next Lemma is needed to show that (up to a constant) the grand maximal
function can be defined using test functions supported on B*. The fact that N,(®)
satisfies (3.11) in relation to N, (®), comes into play here.

Lemma 3.7 Let © be a cover and N > 1. Denote by N the minimal integer that
satisfies N > (a4N + 1)/ag. Then there exist constants ci,cy > 0, that depend
on the parameters of ©, the dimension n and N such that for any ¥ € Sy .
x e R" and s € R, there exists a representation Yy s 1= |det(M;§)|1p(M;§ x—=2))=
Z?‘;l 1.5 where for each j

(1) Sj'E R, )
>ii) ¢’ € S and supp(¢_f) C B*,
(i) ll¢/ Ny 5 =127,

Proof Without loss of generality, by applying an affine transform argument, one may
assume that x =0, s = 0 and that 6 (x, s) = B*. By Lemma 2.2 there exists a constant
y (p(®)), such that 26(0,¢) € 6(0,t — y), Vt € R. Using classic Sobolev extension
principles [1], one can construct ¢! € S with the following properties:

1. supp(¢!) C B*,
2. ') =y (y)on 60,y +1) S 1/2B*,
3. M0 My 5 <Elvly 5 <&

Assume by induction that we have constructed for k > 1 a series y;:= ZI;'=1 ¢é = jye
with the following properties:

supp(¢/) € B*, 1 < j <k,

supp(¥x) €0(0,1— (k- 1)y),

- YY) =¥ (y)on 60,1 —(k—2)y),
Ny gy =a277/2 1<) <k

B =
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Let
W — ) x), x€60,1—k—1)y),
&) =1 v, x€0(0,1—ky)\0(0,1—(k—1y),
0, else.

Notice that gk+1(x) =0 for x €6(0,1 — (k —2)y), since by our induction process
Y =y, on this ellipsoid. Let

R (y) = |detM0,1—(k+1)y|gk+l(M0,l—(k+1)y)’)-
Then

k+1 —1
supp(h“™) € Mgy 11y,

Mo, 1 —ky (B*) C1/2B*.
Again, by Sobolev extension principles [1], there exists ¢k+1 such that

(i) supp(¢**h) € B*,

(i) 9“1 () = h*T1(y) for y € My |1, Mo,1—ky (BY),
i) "+ 1y 5 <elr* My -
Let

—1 —1

ye MO,lf(kJrl)yMO’l—kV (B*)\MO,17(k+1)yM0v1—(k—1))/ (B*)

Then

R (y) = [det Mo, 1—k+1)y 1 (Mo, 1—k+1)y Y)>

and with ¢ := y(a6]\7 —asN —1)/2 >0, for any o € Z'} with |a| <N,
19°R* T (y)] = |det Mo, 1—k+1)y 118 (W (Mo, 1— et 1yy ) (D)
< Il 1%y (Mo 11y )
< MDA 4 1Mo 1y yD VI s,
< Czyk(1+a4Nfa61§/) < 012702(k+1).
Note that ¢gjl_(k+l)y(y) is supported on 6(0,1— (k+ 1)Y)\0(0,1 —(k —1)y)
with ¢l o, ) = ¥ — ¥ on 60, 1—(k—1)y)\6(0,1— (k—2)y) and

¢§jl_(k+l)y(y) =1 on 6(0,1 —ky)\O(0,1— (k—1)y). Therefore for Y41 :=
Z';:E) ¢’(j),1—jy we have that Y1 (y) =¥ (y) on 6(0, 1 —ky). O

Theorem 3.8 For any cover ®, there exists constants c1,cy > 0 depending on the
parameters of the cover such that

M°f(x) <ci sup My f(x), xeR", (3.12)
YEeSy §-supp(¥)SB*
M°f(x) <caMe f(x), xeR". (3.13)

Therefore the Maximal Theorem (see Theorem 3.3) also holds for M°.
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Proof To prove (3.12), denote by M¢. the restriction of M°, defined by only using
functions in Sy y with support in B*. For any ¢ € Sy . s € R and x € R", let

Yrs = D521 1.5, be the representation of Lemma 3.7, where ¢/ are supported
on B*. Thus,

M3 f(x) = ‘ A; Oy fR O )y

o0
=2
j=1

< M) D N0 Ny 5 < ci M@ f(x).

J=l1

Inequality (3.13) is a simple consequence of (3.12) and The Maximal Theorem for
M? is a direct application of (3.13) and Theorem 3.3. U

Using classical arguments as in Sect. III of [15], one can show that for any cover ®
and 1 < p < oo, HP(®) ~ LP(R"). Therefore, for the rest of the paper, we focus our
attention on the range 0 < p < 1. In particular, we show in Sect. 5 that for this range
of p, anisotropic Hardy spaces are equivalent if and only if the underlying covers
induce equivalent quasi-distances.

4 Atomic Decompositions

As in the classical case, the anisotropic Hardy spaces can be characterized and then
investigated through atomic decompositions.

Definition 4.1 For a cover ®, we say that (p,g,[) is admissible if 0 < p <1,
1<g<o00,p<g,and!eN,suchthat! > N,(0) (see (3.10)). An (p, g, [)-atom is
a function a : R" — R such that

(1) supp(a) C0(x,t) for some O(x,t) € ®, where x e R" and ¢t € R,

(i) llally < 160(x,0)|"/271/P,
(iil) fgaa(y)y*dy =0 for all @ € N" such that |a| <.

It follows from property (2.1) that an (p, ¢, [)-atom a supported on an ellipsoid at
the level ¢ satisfies
lally < 2~ t(/q=1/p)

Definition 4.2 Let ® be an ellipsoid cover, and let (p, g, ) be an admissible triple.
We define the atomic Hardy space H ; ;(®) associated with © as the set of all

tempered distribution f € & of the form Y 2, A;a;, where Y o [A;|P < co and
a; € (p,q,l) for every i € N. The quasi norm of f is defined as

[} I/p 0o
”f”H;l(@) .—lnf{ <Z|)\«l| ) . f = Z)\'la“ a; € (qu,l) VieN¢.

i=1 i=1

Birkhauser



1076 J Fourier Anal Appl (2011) 17:1066-1107

Our goal is to prove that H j /(®) ~ HP(O), for every admissible triple (p, q,1),
where H?(©) is defined with the maximal function M° (see Definition 3.6).

4.1 The Inclusion qul(®) C HP(®)

First we prove that each admissible atom is in H?” (®).

Theorem 4.3 Suppose (p, q,1) is admissible for a cover ©. Then there exist ¢ such
that

IM°all, <c,

forany (p, q,l)-atom a, where c depends on p, q,n and p(®).

Proof Let 0(z, t) be the ellipsoid associated with an atom a, where z € R” and r € R.
We estimate the integral of the function (M°a)? separately on 6(z,t — J) and on
0(z,t — J)¢, where J is from Lemma 2.3.

We begin with the estimate of f9(z,t—1) (M°a(x))Pdx. There are two cases: g > 1,
and ¢ = 1. We start with 1 < g < 0o. Since p <1 we have g/p > 1 and by Holder
inequality we have

r/q
/9( J)(M"a(x))pdx < (/0( , (Moa(x))qu) 0(z,t — D|'7P. (4.1)
Z,1— Z, 01—

Applying Theorem 3.8 and then property (ii) in Definition 4.1, gives

plq plq
</0( J)(Moa(x))qu) < </ (Moa(x))qu>
Z,1— "

—1
< |IM°a|} <clalf <clo@,t— )P/t

When combined with (4.1) we conclude fH(z,tfl) (M°a(x))Pdx <c.Thecase g = o0
is simpler.

The second case is ¢ = 1. Since p < g, we have p < 1. By the Maximal Theorem,
for any A > 0, we have that |w; | < c|lal|1/X for the set w), := {x € R" : M°a(x) > A}.
Combined with property (ii) in Definition 4.1 gives

j@: 100G, t = )| < (e/DIOG, ¢ = DI'P.

We proceed with

o0
/ (M°a(x))’dx =/ lwx NO(z, 1 — J)| pAP~ld
O(z,t—J) 0

6 (z,t—J)|~V/P
< / 10(z,t — J)| pAP~1da
0

o
+c/ 10(z,t — )|'VPpaP2d) =¢,
16z, 1 =)~ 1/P

where ¢ < 00, since p < 1.

Birkhauser



J Fourier Anal Appl (2011) 17:1066-1107 1077

We now estimate fg(z =T (M°a(x))Pdx.From Lemma 2.3 we have 0(z,t —kJ +
J) CO(z,t —kJ), for every k € N. We write

o0

M°a(x))Pdx =
fe(Z’I_J)H( a(x))’dx Z

/ (M°a(x))Pdx
k=2 ¢ 0@, 1—=kI\O(z,t=kJ+J)

o0
< CZZ_IZI‘J sup (M°a(x))?.
k=2 x€0(z,t—kJ)\O(z,t—kJ+J)

Therefore, to prove the lemma, it is sufficient to show that

sup (MPa(x))” < ci2127 2, 4.2)
x€0(z,t—kJ)\O(z,t—kJ+J)

for every k > 3, where ¢; > J.

To this end, by (3.12), we may estimate |fR,, a(y)Vyx s (v)dy|?, where ¥ € Sy
with support in B*, s e Rand x € 0(z,t —kJ)\ 0(z,t —kJ + J). It is easy see that
if 6(z,t) NO(x,s) = then f]R" a(y)¥x s (y)dy =0. Thus, we may assume

0(z,1) NO(x,s) # 0. 4.3)

Suppose P is a polynomial (to be chosen later) of degree N — 1, where N > N, (©)
(see (3.10)). Applying (2.1), the zero moment property of atoms (Definition 4.1) and
the Holder inequality we have

‘/ a(y)t/fx,s(y)dy‘
Rn

<c2*

/R a(y)¥ (M (x — y))dy‘

S C2S

/R AW (M (x = y)) = P(M(x = y)))dy‘

<2 /9 AV ) = PO = iy
Z,t
_ l/q
< cz‘*nanq(fe( IO =) = PO = dy)
Z,t

1/q
<c2'||al| 275 (/ () — P(y)lq’dy> ,
F(9(z,1))

where 1/g +1/¢g> =1 and

F(0(z.1)) = My} (x — [M.(B*) +2]) = My (x —2) — M ; M. (B*).

X,

Therefore

<2 all |F 0z 0)IY"  sup |y () — PO
yeF(0(z,1))

f a()’)l/fx,s()’)dy
Rll
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Since 1 — 1/g> = 1/q and |la|l, < c27'V/a=1/P) we get

p

‘ / a0 s (0)dy
R}l

<220 MM, (B)IP/ sup [y () — PP, (44)
yeF(0(z,1))

We now analyze the set F(6(z, t)). We know that

F(0(z,1) = My (x —2) = My ;M1 (B"),
where

x€0(z,t —kI)\O(z,t —kJ +J)=M; g (B*)\ Mz 1—kj+7(B*) + 2z,
which implies that
X —2€My kg (BY\ Mz —kj+7(B).
Therefore
F(0(z,0) C[MyiM s (B*)\ My iM_ s+ (B*)] — My M. (B*). (4.5)

Since Lemma 2.3 gives

My Mo (BY) S (1/2)M My i+ (BY),
this yields

F(0(z.1) S ((1/2M; i M. s—ks+s(B¥)) . (4.6)

Case 1. 1 < 5. We choose P = 0 and estimate the term |M;§MZ,,(B*)|P/‘1’. From
(2.2) and (4.3) we induce that

M;’;MZJ(B*) c a3—12a4(sft)B*, @
which implies that
MM, (B*)|P/0 < c2046=Dmplar
Since ¥ € Sy, where N > N,(®) is defined in (3.10), we may apply (4.4) and (3.7)

to obtain

14
‘ / a(ywx,s(y)dy‘ < 220 Np/atnasp/a)  gup |y (y)|?
R® yeF(0(z,1))

< c2126=0(p/q+nasp/q’) sup  (1+ |y|)*PN. (4.8)
yeF(6(z,t))

‘We now estimate the term

sup  (1+[y)~"".
yeF(0(z,1))

Birkhauser



J Fourier Anal Appl (2011) 17:1066-1107 1079

Since 2 <k and ¢t < s, we have t — kJ + J < s, which implies by (4.6) that for
y € F(@(z,1))

|y| Z (zas)—l2a6(s—t)2a6]k2—a6J’
which lead to

1+ |)’|)7pN < 6‘27“6(5*f)I’N27a6Jka’

where ¢ depends only on p and the parameters of ®. From (4.8) we conclude that
p
‘/ a(y) ¥y s(y)dy‘ < c2126=0lp/q+pnas/q —agpNly—(asJpN)k (4.9)
Rl‘l

Since s —t > 0 and N > N, (0O) satisfies (3.10) we obtain the desired estimate (4.2).
Case 2. We now assume s < t. From (4.3) and (2.2) we have

|Mx_£Mz t(B*)|p/q~ < 2G—Naspn/q

Hence (4.4) yields

P
‘ / a(ywx,s(y)dy‘ <2267 DW/ataspr/a) gqup |y (y) — P(y)|P, (4.10)
R” yeF(0(z,1))

which implies that

p
<c2' sup |y () —PWI. (4.11)
YEF(0(z,1))

‘/ a()¥y s (y)dy
Rn

We now choose P to be the Taylor expansion of ¥ at point M sl (x —z) of or-
der N > N,(®©) and estimate SUPye F oz, W (V) — P(y)|?. From (2.2) we have

M § M, (B*) C as2~%(~%) B* The Taylor Remainder Theorem gives

sup [ (y) — P(y)]
yeM7 x—2)+M M, (B%)

<c  sup sup 3%y (M} (x —2) +u)l|ul™
ueM; i M. ,(B*) leI=N

S e2eetmon sup sup 139 ()
yeMy x—)+Mi M, (B*) lel=N
S 02—a6(l‘—s)N Sup (1 + |y|)—N

yeMy s (x—2)+Mx s M-+ (B¥)

From (4.11) we get that

p
< ¢2!p—ast=s)pN sup (1+1yh=PN.
YEM; ) (x—2)+M;y s M (B¥)

l /R a0y
4.12)
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We have two cases to consider. The first one is when r — kJ + J < s, and the
second one is when s <t — kJ + J. We start with the first case. From (2.2) we have

277 2066020k g* « M UMy _ksvs (B¥). (4.13)
which combined with (4.6) leads to
(1 + |y PN < 29PN U=$)p=aspNkJ (4.14)

From (4.12) and (3.10) we conclude that

p
< C212—(l’l+1)]k.

‘ / a(W)Px s (y)dy
Rn

For the case when s <t — kJ + J we proceed from (4.12) using the estimate
(14 1y)~PN < ¢,y e R, the fact that J (k — 1) < t — s and the assumption (3.10) to
obtain for k > 3

p
< Cztz—a(,(t —s)pN

‘ / A s (0)dy
Rn

< cztz—a()l(k—l)pN < Czl‘z—(n-‘rl)(k—])./ < Cztz—(2(n+1)/3)k/ )
Thus, we may conclude (4.2) for the case s <t which completes the proof. |

Theorem 4.4 Let ® be a cover and suppose (p,q,l) is admissible (see Defini-
tions 3.6, 4.1 and 4.2). Then

H; (©) C HP(®).

Proof Let f € H;’l. For € > 0, assume that f = > ;2 A;a;, where Y ;= [A;|P <
||f||Zp + €. Then, from Theorem 4.3
q.l

o] p
”f"I[Z[p(@) = /Rn |:Mo (Zkiai>(x)i| dx

i=1
o
P °(q: 14 p
<3 [ @ <, o +o.

4.2 The Calderén-Zygmund Decomposition

To show the converse inclusion H”(®) C H : ;(®) we need to carefully construct, for
each given distribution, an appropriate atomic decomposition. This is achieved by us-
ing the Calder6n-Zygmund decomposition. Throughout this section for a given cover
®, we consider a tempered distribution f such that for every A > 0, |{x : M° f(x) >
M} < oo. For fixed A > 0 we define

Q:i={x:M°f(x)> A}
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Recall that there exists a constant y such that forall x, y e R" and ¢, s € R, if 0(x, )N
O(y,s) #Wwitht < s, then 0(y,s) CO(x,t—y). Applying the Whitney Lemma 2.5
on Q with m := J + y, where the constants J and y are defined in Sect. 2, yields
sequences (x;)ieN C 2 and (#;);eN, such that

Q=Jow.n. (4.15)
jeN
O ti +y)NOxj, tj+y)=0, Vi#]j, (4.16)

O(xi t; —J —2y)NQ =0,

Oxi i —J =2y —1HNQ°#P, VieN,

Oxi,ti—J —y)NO(xj,tj—J —y)#P thenl|t;, —tj| <y +1, (4.18)
#jeN:0x;,tj—J—y)NO;, ti—J —y)#V} <L, VieN. (4.19)

4.17)

Fix ¢ € C*°(R") such that supp(¢) C 2B*,0<¢ <1 and ¢ =1 on B*. For every
i € N we define

¢i(x) = (M (x — xp)). (4.20)
‘We have that d;,- =1 on 6(x;, t;) and also by Lemma 2.3
supp(¢i) S xi +2My, 1, (B*) 0 (xi, 1 — J).

We define

&igx) if Q
bi(r) =] T,hm0 TTE 4.21)
0, ifx ¢ Q.

Observe that ¢; is well defined since by (4.15) and (4.19), 1 <}, qS,- (x) < L, for ev-
ery x € Q. Also ¢; € C*®°(R"), and supp(¢;) < 6(x;, t; — J). From (4.15) and (4.17),
we conclude that for every x € R”

D i) =1g(x),

which implies that the family {¢;} forms a smooth partition of unitary subordinate to
the covering of €2 by the ellipsoids {0 (x;, t; — J)}.

Let P; denote the space of polynomials of n variables with degree <[, where
N,(®) < N <1 (see Definition 4.1). For each i € N we introduce an Hilbert space
structure on the space P; by setting

1
(P, Q)i = —/ Px)Qx)p;(x)dx, VP,QeP. 4.22)
[ bi Jrn

The distribution f € &’ induces a linear functional on P; by
0—(f.0)i, YOeTP,
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which by the Riesz Lemma is represented by a unique polynomial P; € P; such that
(f,Q)i=(Pi,Q)i, VOeP. (4.23)

Obviously P; is the orthogonal projection of f with respect to the norm induced
by (4.22).

For every i € N we define the locally ‘bad part’ b; = (f — P;)¢;. We will show
that with N := N, (), N = ]\71,(@) and [ > N, the series ) ; b; converges in S,
which will allow us to define the ‘good part’ g:= f — >, b;.

Definition 4.5 The representation f = g + >, b;, where g and b; as above, is a
Calder6n-Zygmund decomposition of degree / and height A associated with M°.

Lemma 4.6 Foranyi €N, let 7; € 0(x;,t; — K1) and s; € R such that t; <s; + K>,
where K1, Ko > 0. Then, there exist a constant ¢ > 0 depending on the parameters
of the cover, N, K1, K> and choice of ¢, such that

sup sup 3% (v <c, where ¢;(y) := i (M, 5, ().
|a|<N yeR"

Proof Recall that for i € N, supp(¢;) € 6(x;,t; — J). Also, by (4.19), for U :={j €
N:0(xj,t; —J)NO(x;, t; — J) # ¥}, we have that #U < L. Thus, we may write
¢ (M5, ()
)3 ,-GNqBj((Mz,- 5 ()
¢<M—‘,Mz, s ) = M, (x,»
e dM M () — M ()

The desired estimate follows from iterative application of quotient rule combined
with

Gi(y) = ¢i (M, 5,()) =

sup sup [3%p (M, Mz, 5, ()] < e, (4.24)

’J
|a|<N yeR"

where ¢ > 0 depends on the parameters of the cover, N, K1, K> and choice of ¢. In-
deed, (4. 24) holds, since by (2.2), for every j € U, we have that | M _1 Ll <

and || M 5]l < ¢ for some constants c¢i,cy > 0. Thus we also have
X, 1 20 Si

| M x/ ,j M, 1l < c3 for some constant ¢3 > 0. (I

For a fixed i e N, let {mg : € N', |8] <[}, be an orthonormal basis for PP, with
respect to the Hilbert space structure (4.22). For || <[ and apointz € 0 (x;, t; — J —
2y — 1) N Q¢ (whose existence is guaranteed by (4.17)) we define

|det(Mz;,)|

[ i

Lemma 4.7 There exists ¢ > 0 such that

Pp(y) = —F—"mg(z — M., ()i (z — Mz1;()), (4.25)

Dglly 5 <c. forall|Bl<L.
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Proof We begin with the estimate of the first term in (4.25). We know that

1 1
/ @i (y)dy =/ ¢ (y)dy > / —dy = —10(x;, t;)|.
R" 0(xi ti—J) 0kt L L

Applying (2.1) gives

det(M; ;, 0(z, ¢ -
[det(M )] . 16(z, 1)1 <cLaylay <c. (4.26)
[ i 16 (x;, ;)]

For the third term in (4.25), we get from Lemma 4.6

sup sup [8%¢pi(z — M, (1)) (Y| <c.
|a|<N yeR”

We now deal with the second term, 7wg(z — M, ;; (y)). We have
supp(Pg) = supp(e; (z — M, ()
Cl{yeR":yeM_ | (z—x)+M_ My ;_y(B").

Since z € O(x;, t; — J — 2y — 1) = x; + My, 1,—j—2,—1(B¥), there exist constants
c1, c2 > 0 that depend only on p(®) such that

—1 —1
Mx,-‘[i (Z - xi) € MxiyliMx,-,t,-—J—Zy—l(B*) - ClB*v
M.} My, —s (B*) C M2 My, ;i y—2y—1(B*) S c2B™.

Therefore we conclude that for some c3 > 0, supp(®g) C c3B*. Thus, to prove the
Lemma, it remains to show that the partial derivatives of ®g up to the order N are
bounded.

Observe that z — M, ;, (B*) C 0(x;,t; —J — 2y — 1). Since P; is finite vector
space, all the norms are equivalent and there exists a constant ¢4 > 0 such that for
every P € P

sup sup |8“P(y)|564f |P(y)I*dy.
le|<N yec3 B* B*

For the same reason, since 0(x;,t; —J — 2y — 1) and 6(x;, t; + y) have similar
shape and volume, we also have that

f PPy < c/ 1P(y)Pdy.
0(x;,t;—J—2y—1) 0(x;,t;+y)

Applying the last two estimates together with ¢;(y) =1 for y € 6(x;, t;) yields

sup sup [0%(mg(z — M. ()W)

|| <N yec3B*

< /B Ip(z = Moy )Py
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c

< — s (y)|°d
et )l Jooar, 54y

c 2
ye—o ()| dy
[det(Mz, )| Jo(i ti—s—2y-1) !

< ¢
| det(Mz,t,')| 0 (xi ti+y)

s ()i ()dy < /C¢- /R g Pdi(y)dy <c.

Now, since ®4 is supported on c¢3B* and we have bounded the Sy ; norm of the
three terms in (4.25) by absolute constants we can apply the product rule to conclude
the Lemma. U

We can now estimate ‘local’ good parts of f.

Lemma 4.8 There exist a constant ¢ > O such that

sup |P;(y)¢i (y)| <cA,
yeR?

where ¢; is defined in (4.21) and P; is defined by (4.23).
Proof Combining supp(¢;) € 0(x;,t; — J) and |¢; (y)| < 1, we have

sup [P0 < sup  [P(Y)I.
yeR" yeO (xi ti—J)

For the function ®g defined in (4.25) and the point z € Q¢, Lemma 4.7 yields

Vf(y)(@,s)z,zi WMdy| = 1Pl yM° f(2) <ch.

Also, using definitions (4.25) and then (4.22)

‘/ FO(Pp)zs; (y)dy‘ = ‘/ SOl det(M )| ®p(M_ (- y))dy‘

1

| i

=cC

/Rn f()’)”ﬂ()’)(f’i()’)d)" =c|{f, )il

Therefore for all |8] <1
I(f, 7mp)il < ch. (4.27)

Since {mg} are polynomials of degree <[ and an orthonormal system in the Hilbert
space defined by (4.22), one can show using the equivalence of norms of finite di-
mensional Banach spaces that

1781 L @t — 1) < €10 iy ti — DIV 781 Ly i1y < € (4.28)

Recall that by (4.23) we have that

Pi= (f.mp)imp. (4.29)
1BI<l
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Therefore, combining (4.27) and (4.28) we have

sup [P = D I(fmpdillmp(0)] <
YEO(xi ti—J) 1Bl<I

which completes the proof. d

Lemma 4.9 There exist a constant ¢ > 0 such that
M°b;(x) <cM° f(x) forallx €O0(xi, t; — J). (4.30)
Proof Take ¢ eSNJ;,, x €0(x;,t; — J) and s € R. We have

/R B 0Wes()dy = /R (PO = PO s )y

= /Rn FOGi MY s(Mdy — /Rn Pi(0)¢i (W ¥x s (y)dy,

and therefore
‘ /R b (ym,s(y)dy‘

=<

/Rn F i (y)%,s(y)dy' + '/}R Pi(y)¢i (y)%,s(y)dy‘
=1 +Dh. (4.31)

First we estimate /,. Since ¢ € Sy,  and N > n, we have that [ llp1 <c.Forx e,
we have M° f(x) > X and thus combined with Lemma 4.8 we have

= ‘[R Pi(»0)di 0 ¥xsMdy| < eyl Sch < cM® f(x).

For the estimate of 7 in (4.31), there are two cases.

Case 1: 1; < 5. Define ®(y) := ¢i(x — My ()Y (). Since I1 = | [ f(¥) X
D, s(y)dy| and ® € S we have

UR” f(y)©x,s(y)dy' S @lly 7 M°f(x).

Now we estimate the term |||l 5. Since #; < s and x € 0(x;, #; — J), Lemma 4.6
yields

sup 3% (x — My (D)W <c.

yeR" Ja|<N
By the product rule
1Py g=sup (14 IyDV[0%(@i(x = My s (DY ()]
yeR" Ja|<N
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<c( sup (1+|yI)N|8°‘Iﬂ(y)I)( sup 0% (i (x — My (D) (0)I)
yeR" |a|<N yeR" |la|<N

<clylly gy <c.

Hence

<cM°f(x).

I = ‘/R F i M Yxs(v)dy

Case 2: s < t; We define

D(y) := | det(My { M ;)i (x — My, O (M { My 1, ().

First we note that
I = /R Oy = fR e 0y,

which implies that

<Dy yM°f (). (4.32)

L= ’ / FO) Py (y)dy
]R)’l
Therefore, it suffices to show that ||<i>||N 5 < c. Because x € 0(x;, 1; — J), we get
supp(®) C supp(@; (x — My ;,(-))) C cB*.

From Lemma 4.6 we conclude that

sup 3% (i (x — My ,; ()W) <c.
YER", Ja| =N

Since ¢ € SN’N and ||M;;Mx,fi || <cfors <t, wehave

sup  (1+ IyI)NIH“(I/f(M)ZiMx,z,- N =Zc.
yeR", Ja|<N

From the last two estimates and the chain rule we conclude that

1Py y= sup A+Iyh¥@W)I<ec.
yeR" |a|<N

Therefore, by (4.32) we have
L <|1®]y yM°f(x) <cM® f(x). O
Lemma 4.10 There exists a constant ¢ > 0 such that for alli € N and k > 0
M°b;(x) < chv™* (4.33)

forallx € 0(xi, t; — J(k+2))\O(xi, t; — J(k+ 1)), where v := 246N
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Proof Since M°b;(x) = SUPycs, o SUPseR fRn bi(¥)¥x.s(y)dy, choose any Y €
S v i and s € R. We then consider two cases.
Case 1: s > 1;. From the definition of b;

=<

/R ) f i (y)wx,s(y)dy' + ' /R ) Pi(0)oi (W) VYx s (y)dy

=11+ .

' / b () Wres (0)dy
Rn

We begin with the estimation of /1. For w € 6 (x;,t; — J — 2y — 1) N Q€ define

det(M !
o | det( X’S)|¢)‘(u)—Mw’S(Z)). (4.34)

D(z) = 1.9
| det(My,s)]

Since w € Q°, we get

I = ‘ /R PO (M x — )dy

Lo, _ -
= e 5 = NI

First we estimate |||, 5 by estimating each of the two terms in (4.34). From prop-
erty (2.1) of covers

det(M_!
7| ( )C_’f)l Sc(n)al_laz.
| det(My )]

Since w € 6(x;,t; —2y — J — 1) and s > ¢;, Lemma 4.6 yields

sup (3% (w — My () )| <. (4.35)
yeRY ol <N

Now we estimate the term maxyeq(x;,;—J) W(fo} (x — y))|. Since x ¢ O(x;,t; —
J(k+ 1)) and y € 0(x;,t; — J), there exists a constant ¢’ such that y ¢ 0(x,# +
¢’ — Jk). Thus y ¢ x + M,y — jx B* which implies that for some constant ¢” > 0,
M;l(x —y) ¢ c"M; M, ;i B*. This gives

| M §(x — y)| = 20170, (4.36)

Therefore, since ¥ € S N

max M = < max 1+ M (x — -N
yeo (xi,t;i—J) v ( X’S( W= ye&(x,-,tifl)( | X’S( »h

< Cz—aﬁ(s—ti-l—.]k)N < C2_Vk.

This concludes the estimate for /; and we now proceed with the estimate of /5.
From Lemma 4.8, and from the fact that ¢ € S, 5 we get
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b= ‘ /R PO s (y)dy‘
< f P ()i )| det (M) [ (M (x — y))dy
O(xj,ti—J)

< cAldet(M; ;)| [y (M5 (x — y))ldy
0(x;,ti—=J)

< cAldet(M;})] 1+ M e =)D~ Ndy.
0(xi,ti—=J)

Since |det(M;;)||0(x,-, ti — J)| < 257", we have using (4.36)
12 Sc}\‘zsft,‘zf(sft,’+1k)a61\~/ < C)u27Vk,

which complete the first case.
Case 2: s < t;. From Theorem 3.8 we know that

M°b;(x) <c sup
YeSy 5.supp(¥)SB*

/ b (ywx,S(y)dy'.

Thus, let Y € Sy, 5 such that supp(y) € B*. Since supp(b;) C 0(x;,t; — J), if
O(xi, t; — J)NBO(x,s) =0 then

/Rn bi (Y)Y s(y)dy =0. (4.37)
Hence we assume
O(xi, ti —J)NO(x,s)#D. (4.38)

The Taylor expansion of Y about z := M Ix — x;), of order N is

YM x—y) = vz + M7 i — )

= 3 TV oty — )+ Role M — ),

o!
le| <N
where R, is the residue.
Letwef(xj,t; —J —y —1)NQ°.
| det(M, )]

B(y) = Pl
Y e, )

¢i(w — My 1 (y))-

From Lemma 4.6 and the fact that s < #; we get |||, 5 < c. By (4.23), the local
‘bad’ part b; has I > N zero moments and therefore
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‘ /R b (y)wx,s(ymy‘ - ’ fR Bi()Idet (M ) Re(z + My | (i — y))dy‘

<

/ FO)VPus, (R (z+ My s (x; — y))dy‘
0(xi ti—J)

+ | det(M )]

/ Pi(y)¢i (YR (z + M;; (xi — y))dy‘
0(x; 1)

=11+ Db,.
Since w € Q¢ we have

L <@y gM°fw)  sup  [R(z+ My i (xi — y))l
yeo(x;,ti—J)

<cA  sup IRZ(Z—FM;i(Xi—y))L
veb (xi ti—J)

Thus, to complete the estimate of /; it is sufficient to show that

sup R, (z+ M7 (xi — )| < c(29N) 7. (4.39)

€O (xi,ti—J)

Assuming s <t; — J (the case t; — J < s < t; is easier), using (4.38) and applying
the Taylor remainder theorem gives

sup  |R(z+ M (x; — y))|

yeo(x;,ti—J)
<c sup sup 0%y (z 4 uw)||u)Y
uEMy s My, 1~y (B*) [¢I=N
< 2 a%li=9N sup 1+ v~V

veM§ (x—x;)+ My { My, 1;— s (B¥)

Since x ¢ 0(x;, t; — J(k+ 1)), we get that Mx_’i(x —Xxi) ¢ M;SIMXI.,,,._J(HDB*, and
therefore v ¢ M;éMxi,ti,JkB*.

We need to consider two subcases. The first one t; — Jk < s < t;, and the other is
s < t; — Jk. We begin we the first subcase.

Since we assumed (4.38), we may apply (2.2) to obtain

My My - gk(B*) 2 20020 K Bx,
which implies that

sup (1+ |v|)_N < czaé(f[—S)N(zaGJN)—k.
veMys (x—x))+ My My, 1 — (B¥)

Therefore, (4.39) holds and we have

I < cA (296 Ny=k,
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To show (4.39) holds also for the other subcase, s < t; — Jk, we simply proceed by

sup |RZ (z+ Mx_&1 (x; — y))| <27 %i=IN < p=aI Nk
yeo (xi ti—J)

To conclude the proof, we estimate I, by combining Lemma 4.8 and (4.39)

I <

det(M ;) N 1P ()i DR (2 + M (xi — y))I|dy
Xj.dti—

< caldetM DOt — DI sup  [R(z+ M (xi — )
veb (xi,ti—J)

Sckzsft,'(zaﬁ.”\/)fk Sck(zaﬁ.”\’)fk' O
Lemma 4.11 Suppose f € HP(®), 0 < p < 1. Then there exists a constants
c1, ¢y > 0, independent of f,i €N, and A > 0 such that
() fan(MOB)@)Pdx <c1 [y, 5, (MO f)(x0)Pdx.
Moreover, the series Y b; converges in H? (®), and
(i) fga M°(Q"; bi)(x)Pdx < c3 [o(M° f)(x)Pdx.
Proof We apply Lemma 4.9, Lemma 4.10, the facts that 6(x;,#; — J) C Q and that
p~P2/) =20=a6PN)J | (recall assumption (3.10)), to obtain (i)

(M®b;(x))Pdx
Rn
o0

= (M°b; (x))Pdx +
L(X,‘,t,‘-.]) Z

/ (M°bi (x))dx
k=0 0 (xi,t; = J (k4A2)\O (x; ,t; —J (k+1))

o0
e @+ Y 0 - T+ 2
0(xi ti—J) k=0

(M° f ()Pdx <c / (M° f(x))Pdx.

0 (xi ti—J)

<cy (P2l /
k=0 4

(xi,ti—J)

Since H? (®) is complete, from (i) and (4.19) we have
P
/ (M° (Z bl-> (x)) dr= Y [ e
n N " Rn
<cy /
; 0

(M°(f)(x)Pdx < C/Q(M"(f)(X))”dX-

(xisti—=J)
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Lemma4.12 If f € L'(R"), then the series Y ien bi convergesin LY(R"™). Moreover
there exist a constant ¢ > 0 independent of f, i, A, such that

[ Ymwiar=e [ ircolax (4.40)
R® R”

ieN
Proof From the definition of {b;} and Lemma 4.8
/ by () ldx = / F ) — pr(o)di () ldx
R?l ]Rn
< / | ()i (O)ldx + / | P () () ldx
0(xi.ti—J) 0(xi.ti—J)

< / | (O)ldx + A0, 1 — ).
O(xi,ti—=J)

Therefore from (4.15), (4.19), and the Maximal Theorem (see Theorem 3.8), we have

b; dx < b; d
/RD )] X<Xi:/w' (x)ldx
dx +cA|l0(xj, t; — J

< L(/ |f(x)|dx+cA|Q|)
Q

dx.
< 1rwids .

Lemma 4.13 Suppose Y ; b; converges in S’. Then there exist a constant c, indepen-
dent of f € S" and ) > 0, such that

Mog(x) <chy v+ MO f(n)lae (), (4.41)
where
) {l(c) ffgfngf 5)f)(xi,ti — T A DNt = TG D)o

Proof 1If x € Q¢, we know from Lemma 4.10

M°g(x) < M°f(x)+ Y M°bi(x) < M° f(x)lge(x) +ch Y v 7Rt

L 1

For any x € €2, there exists j € N, such that x € 6(x,; — J). Recall from (4.19) that

1(j):= {iENIQ(X,',Z‘,'—J)ﬂ@(xj',tj—.])#@},
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with #1 (j) < L. We have that
Mog(x) < M° (f - b,->(x> +M°( > bi)u). (4.43)
i€l ()) i¢l(j)
By Lemma 4.10
M°< > bi>(x)§c > vk,
i¢l(j) il (j)

so to prove (4.41), it suffices to bound M°(f — Ziel(j) bi)(x). Let ¥ € S > and
s € R. Defining n:=1—3_,.;;) ¢i, we have

[~ = oo

iel(j)

IA

‘ /R ,, f(y)n(y)wx,s@)dy‘ + ‘ A ( > Pi(y>¢,~(y>)1/fx,s<y>dy‘

iel(j)
=1L+

Since ¢ € SN yand#I(j) <L, from Lemma 4.8,

QSE:/

[P ()i DV, s (W) dy < cA E IVl <cd=cavki®),
. . JR?
iel(j)

iel(j)

The proof of the estimate I < cavki®) i similar to the estimates in Lemma 4.10 of
I1 (in both cases, s < t; and s > t;), where n replaces ¢; . O

Lemma 4.14 If M°f € L?,0 < p <1, then M°g € L', and there exist a constant
c1 > 0, independent of f, A such that

n

M°g(x)dx 5c1,\1—1’f (M° f(x))dx. (4.44)
Rll

If fe L, then g € L™, and there exist ¢y > 0, independent of f, A, such that

llglloo < c2A. (4.45)
Proof By Lemma 4.13 we have
/ M°g(x)dx < cA Z/ R gy +/ M° f(x)dx, (4.46)
Rl‘l leN Rll QC
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where k; (x) are defined in (4.42). Recalling v := 2%’ and that N > a; ', we get for
afixedi e N

o0

/ p ki) gy :/ dx—i—Z/ phi () gy
n 0(x;,ti—J) k=0 Y 0 (xi i =J (k+2))\0 (x; .1; —J (k+1))

o
<100k, ti = DI+ Y 100k, ti = Jk+2)v ™
k=0

o
<c27f (1 + ZZ’kvk> <cl0(x;, 1;)].

k=0

Therefore, we may derive (4.44) from (4.46) by

/ M°g(x)dx§ck2|0(xi,ti)|+/ M° f(x)dx
Rn S'Z(,‘

ieN

<cAQl+ | M°f(x)dx < ckl_p/ (M° f(x))Pdx.
Q¢ R~

Since f € LY by Lemma 4.12 we have that g and b;, i € N, are functions and
> ey bi converges in L!. Thus

g=f—Y bi=floc+) Pigi.
i i
By Lemma 4.8, and (4.19), for every x € Q we have |g(x)| < cA. Also, for a.e.
x € Q6 1g(x)| =f(x)] < M°f(x) < A. Therefore [|gllco < cA. O
Corollary 4.15 H?(®) N L' is dense in HP (®).

Proof Let f € HP(®) and A > 0. Consider the Calderén-Zygmund decomposition
of f of degree [ > N, (®) and height A.

fzgk—i—Zbi*.
ieN

By Lemma 4.11 we have

—0 asi— oo,
HP(©)

>

ieN

”f - g ”HP(@) =

which implies that g* — f in H?(©). Now, Lemma 4.14 gives that M°g* € L' (R").
To conclude that g* € L' (R"), one can apply the same arguments as in the proof of
Theorem 3.9 in [3], since our covers satisfy the following essential property: we have
that diam(@(x, t)) — 0, as t — oo, uniformly on compact sets. In fact, (2.2) implies
that for any compact set K C R", diam(8(x, 1)) < c(K)27%, for t > 0. O
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4.3 The Inclusion H? (®) C qu,l(®)

Let ® be a cover of R" and let f be a tempered distribution such that M° f € L ,(R")
for some 0 < p <1, where M° is associated with ®. For each k € Z we consider the
Calder6n-Zygmund decomposition of f* of degree [ > N, (®) at height 2k associated
with M°

f=gh+ bk, (447)

where

Qi={x:Mf>2%), b= (f-PNek,  obi=0(xk1f).  (448)

1 1 1

As before, for every fixed k € Z, {xlk}ieN is a sequence in QF and {tl.k},-eR satisfy
(4.15)—(4.19) for QK. Also, ¢f are defined as in (4.21) and Pl.k are the projection of
f onto P; with respect to the inner product given by (4.22).

We now define PZ}H as the orthogonal projection of (f — P]].‘“)qbf with respect
to the inner product

(P,Q):= / P(x)Q)¢st (x)dx for P,QeP..  (449)
Rn

1
f k+1

That is, if@(xl(‘ —-J) ﬂ@(ka k+1 —J) # 0, then PkJrl is the unique polynomial
in P; such that

/ (fO) = P ) e (dy
= /R P moeme;t ndy, Yo e,
else we may take Pl.];H =0.

Lemma 4.16 Suppose 0(x*,t* — J)n 9(xk+l "“ —J)#W. Then

1’ l
) zk“ >k -2y —1,

(ii) e(xk+1 f“ Dok k-7 -3y -1,

(iii) There exists L' > 0 such that for every j € N, #I1(j) < L' with

1(j):={i eN: 6(xk+1, f“ D NOGE tf— 1) #0).
Proof To prove (i), assume by contradiction that tf“ < tik — 2y — 1. Therefore,
Ok ik — ) ne(xk“ f“ J) # @, implies

l’l

OCxf,1f —J =2y =) COCST At — T —y).

l’l
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Since QK1 c QF, we have (QF1)¢ 5 (€@F)¢. Hence from (4.17) we have

p#(Q) No(xf, if —J =2y —1) (@) no(TL T — T —y) =0,
which is contradiction. Property (ii) is a consequence of (i). We continue with (iii).
For a fixed i, let L(j):={iel(j):tf< tk+1} Then for each suchz 9(xk+1, f“ -
J)C G(xl W k41 is contained in each Q(xl. , l. —J—=y)iel(j)

we obtain by (4.19) that |11(])| < L. Now denote I>(j) :={i € I(j) : tl.k > tj.‘H}.
Observe that

—J—v). Smcex

Ok, tf+y)ycoek, i — J)CQ(ka "*‘ —J=9).

At the same time, by (i), we have that tl.k 2y —1< tj.‘“, and therefore all of the
ellipsoids Q(xlk , tl.k +y),i € b(j), are pairwise disjoint, are all contained in the ellip-
soid 6 (xf‘“, t;.“H — J — y) but also have their volume proportional to it by a multiple
constant. Therefore, |I(j)| < L”. O

Lemma 4.17 There exist a constant ¢ > 0, independent of i, j € N and k € Z, such
that

sup |Pk+1(x)¢k+l(x)| < k! (4.50)

xeR?

Proof Let {mg : B € N, |B| <1} be an orthonormal basis with respect to the inner
product (4.49). Since Pl.lj.H is the orthogonal projection of (f — Pj'f+1)¢f , we have

|PE gl ()]
<|PfH )l

-1

1Bl=l

Z( T / fé! (y)nﬁ<y>¢k+1<y)dy)n,s<x)
18Il

1
<W fR (f) = P oef <y)nﬁ<y)¢§+‘<y)dy)nﬁ(x>
J

<

=1L +D5.

‘Z ( f¢"“ P ;e (mg <y>¢§+‘(y>dy)nﬁ<x)
1Bl=l

We begin by estimating /5. Since supp(q)k'H) C 6’(xk'H k+l

1Bl =1,

— J) we have for each

1
o /R P e ey (dy
J
1
= T /0 S P (e (mp (0T ()dy.
J A A
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From Lemma 4.8 and (4.28) we have

k+1
sup PP (] <2t
yeg(xk+1 k+| —0
and
sup l[TgMI < ¢,
y€9<xk+l ;chl 7
which leads to
12§c2k+1.

We continue with 7;. Let w € (¥ Hen Q(x;fH *+1 — J —2y — 1), and define for
each |B] <l

|det(Mw lk+1)|

f k+1

To bound 11, it is sufficient to bound for each B, | fR,l f(y)®

D(y) = ———— (@} g ST H(w — M, 1 ().

t+1(y)dy]|. Since

w, t

w e (K1, we get

‘ /R FOIP,, g )y 1@y 524
Thus, it suffices to show || D|| NS¢ We define
HH 0 = M, e (),
Ap(y) =mp(xi ! + M, 1 (),
L) = (w = M, 1 (V).

Hence the function ® can be written as
|det(M,, k+1 )|

f k+1

Calculation similar to (4.26) yields
| det(M
<C.

J

From Lemma 4.6, all the partial derivatives of order < N of the function qAb,k are
bounded by universal constant. Since supp(®) C CB*, by Lemma 4.6 and the prod-
uct rule, the partial derivatives of q@“l - 7t; of order < N are also bounded by uni-
versal constant. Now, since supp(®) C CB* we conclude that || || NS C, which
completes the proof. O

B ) (M (0= ).

w, tk“)|
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Lemma 4.18 Let k € Z. Then ZteN(Z/eN Pk+1¢k+1) =0, where the series con-
verges pointwise and in S’.

Proof By (4.19) we have #{j e N : ¢k+1(x) #0} < L Also from definition of PkJrl

we have PZI;H =0 if 9(Xk+l ;‘H J) N O(xk — J) =0. By Lemma 4. 16

YoieN Z/eN Pk+1(x)¢k+1(x) contains at most L’ nonzero items. Combining that
with Lemma 4. 17 gives

YN IPE gkt ) < 2kt 4.51)

ieN jeN

l’l

By the Lebesgue Dominated Convergence Theorem »_;cn > ey k+1¢j‘+1

verges unconditionally in S’. Welet I = {i e N : G(xf‘H, }“H J) ﬂ@(xl b =J) #
@}, and in order to conclude the proof it is suffice to show that

k+1 k+1 _ .
ZP ZPij =0 forevery j eN.
ieN iel

con-

Indeed for fixed j € N, ), Pk+ is an orthogonal projection of (f — P]].‘H) X

> icr ¢F onto Py with respect to the inner product (4.49). Since Y, ; ¢¥(x) =1 for

X € 9(xk'H k'H pktl
J

P; with respect to the inner product (4.49), which is zero by the definition of le;+1 .0

=), Y ien Pk+1 is an orthogonal projection of (f — ) onto

Theorem 4.19 (Atomic decomposition) For any cover ® and 0 < p <1, HP (®) C
HL (©).

Proof Let f € H?(®) N L'. Consider the Calerén-Zygmund decomposition of f of
degree [ at height 2% associated with M°, f = gk + Y b*. By Lemma4.11, gk — f,
as k — 0o, in H?(®), and by (4.45), ||g¥|lcc — 0, as k — —oo. Therefore

f= Z (gk+1 - gk) inS'.

keZ

From Lemma 4.18 and the fact that 3, .y ¢¥B5F! = 15+ = piF1,

gk+1_gk:<f_Zb/]<_+1>_(f_Zb1;>

jeN jeN
=Zbk—2b"“+Z<ZP"“ k+l>
jeN ! jeN ieN “jeN
L P phbH 4 ( pit! k+1)
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Z( I:Z¢kb];+l ZPk-H k+l])

ieN jeN jeN
Z( Z[(p bk+1 Pk+1 k+l ) th
ieN jeN ieN

Since bf.c =(f— Pik)(pf, one has

f=(f = PRof =D [of(f — PIH!) = PEF ]t

jeN
By the choice of Pl.k, Pl.];.H
/R () Q(y)dy =0 forall QeP;. (4.52)
Moreover since ) jeN qu‘“ = Lqk+1, We can write
BE = f1 g ogf — Pk +2Pk+l¢k+l¢ 4 ZPHI .k+1
jeN jeN

From definition of PkJrl we know Plkfl # 0 implies 0(xk+1,t§‘+1 - JnNn
G(xl, P = J) # 0, also we know supp(q)k'H) C O(x k'H ;‘“ D, hence form

Lemma 4.16 we come to the conclusion that supp(ZjeN Pk+1 ¢k+] ) C 0(x —J -
3y — 1), which implies that

supp(h¥) c O (xf, ek — 7 =3y —1). (4.53)

Obviously we have

1 lloo < I1f L i@eenyedr oo + I PEDFlloo + | D PET ™!
jeN o0
k+1 k41
+| 2P
jeN o0

We know that | f(x)| <cM°f(x) < c2k+1 for almost every x € (Qk“)”. Also from
Lemma 4.8 we have || P*¢ ||« < 2, and from Lemmas 4.16, 4.17 we conclude

Z Pj]_(+1¢l{c¢§+] < C2k+1, and Z Pi];‘+l¢§+1 < C2k+1,
jeN o0 jeN o0
Therefore we get
1A} lloo < €2°. (4.54)
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From (4.52), (4.53) and (4.54) hf? is a multiple of a (p, 0o, /) atom af‘, meaning
k k _k
h;y =Aja

i%io

where Ak ~ 2627/7_From (4.16)

o o0
DU TP e Y 2PN ok k4 )l

k=—o0ieN k=—00 ieN
oo oo
<c Yy 2Rk Yo p@Hriet k!
k=—o00 k=—o00

o
sc [ i e R M £ > Aldh =l I
0

= C||f||2p(@)'

Therefore f =Y 2o > eN Af‘al{‘ defines an atomic decomposition of f € H?(®)
N L'. Applying the density of H?(®) N L' in H? (Corollary 4.15), we complete the
proof. d

5 Classification of Anisotropic Hardy Spaces

Denote by H? (R") the classic isotropic Hardy spaces. Let A be a fixed expansion ma-
trix, i.e., a matrix whose eigenvalues> 1. Thus A~/ — 0 as j — oo. The anisotropic
Hardy spaces of [3] are in fact Hardy spaces constructed over a semi-continuous
cover, where the ellipsoids 6 (x, j) are determined by setting My ; := A7/ Letus de-
note these spaces as H”(A). It is obvious that for 1 < p < oo, any dilation matrix A
and any cover ®, we have the equivalence H” (R") ~ H?(A) ~ H?(®) ~ LP? (R"),
where the embedding constants depend on the parameters of A and ®. Therefore an
important question is to what extent are the various Hardy spaces different for the
range 0 < p < 1. Theorem 5.8, which is the main result of this section, shows that for
the range 0 < p < 1, two Hardy spaces are equivalent if and only if the covers they
are associated with induce an equivalent quasi-distance.

5.1 Properties of Anisotropic Hardy Spaces

It is straight forward to show that our anisotropic function spaces are invariant under
affine transforms

Lemma 5.1 let ® be a cover,A be a non-singular affine transform and (p, q,l) an
admissible triplet. Then

G) a is a (p,q,1) atom in HP(®) iff |det A|~VPa(A~'") is a (p,q,1) atom in
HP(A(©)).
(i) Forany f €S', f € HP(®)iff f(A~1) € HP(A(®)).
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Proof To prove (i), let a be a (p,q,l) atom in HP(®) and denote a :=
|det A|”"Pa(A~1). We verify that a satisfies the three properties of an atom in
HP(A(®)):

1. It is obvious that the support of a is contained in A(#), where supp(a) C 6.

2. If ¢ = 0o then ||@|loo = |det A|" VP |lalle < |detA|~YP|0|7V/P = |A0)|71/P.
Similar for g < oo.

3. Forany o € Z",, |a| <1, we have the zero moment property by

/ax“dx=|detA|*‘/P/ a(A*‘x)x“dx=|detA|‘*‘/1’/ a(y)(Ay)*dy =0.
n n Rﬂ

Claim (ii) follows directly from the atomic decomposition. If f =" jAjaj with
Zj AP < oo then fA™) = Zjijdj, where a; := |detA|’]/1’aj(A’1-) are
(p,q,!) atoms in H? (A(®)) and Xj = |detA|1/PAj. Thus,

B 1/p
I F AT ) e a@) ~ inf ( |)‘j|p)
FATL)=3 4 a; zj:

1/p
- |detA|_1/” 1nf <Z|,\ |P>
l )‘] J -

= |det A|"YP|| fll v (o) O
5.2 BMO(®)

Definition 5.2 Let © be a cover and let f : R” — R. Denote the means over the
ellipsoids by

1
2 :m/gf(x)dx, feo.

Then, f is said to belong to the space of Bounded Mean Oscillation BMO(®) if there
exists a constant 0 < M < oo such that

sw—/Um foldx <M.

oeo 0]
We denote by || f|lBMmo(e) the infimum over all such constants.

Recall that the above definition could be extended to allow arbitrary constants cg
in place of the means fy, 8 € ®. Indeed, if for given {cg}pce, we have

sup @/ | f(x) —coldx <M,
then |cg — fo| < M, V0 € ©, and || f||lsmo(e) < 2M’. This observation along with
Theorem 2.7 implies that the Definition 5.2 is equivalent to the classical definition
[7] using means over the (anisotropic) balls induced by the quasi-distance. Thus we
have,
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Theorem 5.3 [7] The dual space ()le (®) is BMO(®).

Remarks

1. For a proof of Theorem 5.3 one can consult the proof in Sect. IV.1.2 in [15] for
the isotropic case, since the proof is identical for the anisotropic case.

2. So as to limit the scope of the paper in some reasonable sense, we will address the
issue of the Campanato dual spaces of H” (®),0 < p < 1 (see Sect. 8in [3]),ina
follow-up work.

It is obvious that L>°(R") ¢ BMO(®) for any cover. The following is a typical ex-
ample for a non-bounded function in BMO(®)

Lemma 5.4 For any cover ® of R", we have that log(p(-,0)) € BMO(®) where p
is the induced quasi-distance and ||log(p (-, 0))lsmo©) < c(p(©)).

Proof For any 6 € O, let xg € 6 such that p(xg, 0) := min,ep p(x,0).

Case I: |0] < p(xp, 0). Observe that log(p(xg, 0)) := min,¢p log(p(x, 0)). Since for
any x €0, p(x,0) <« (p(x,x9) + p(xg,0)), where k > 1 is defined in (2.4), we have
that

1
M@®) = @/e(log(p(x,O))—log(p(xe,O)))dx

1
<o /e (logic(p(x, x9) + p(xs, 0)) — log(p (xg, 0)))dx
1 p(x, xg)
< logk + — log( + 1>dx
18] Jo p(xg,0)
<1 + ! I ( id +1)d
< logk + — [ log| ———— X
ST A Y0
< logk +log?2.

Case II: p(xg,0) < |6]|. By the triangle inequality (2.4), 6 C B(0, 2k |6]) and there-
fore
1
m/log(2K|9|) —log(,o(x,O))dx
6

1

<c— log(2«10]) —log(p(x,0))dx.
|B(0,2«|0D| JB(0,2¢16)) ( ) ( )
Applying Theorem 2.7 we have

1

_ (log(2k|0|) —log p(x,0))dx
B0, 26101 Js02010p  ° £

1 o0
=log(2¢|6]) + ——— / log p(x,0)"ldx
|B(0, 2«]0))| g B(0,2¢|012=/+1)\ B(0,2¢|6]2-7)
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<log(2k|0]) + ——————
¢ 1B(0, 216])]

o0
X Z |B(0, 2k16127 7\ B(0, 216127 7)| log((2x|6]) ~'27)
j=1

o0
_ ' —j+1
< log(2«|0]) — log(2«|0]) + ¢ Tl ,2_1:2K|9|2 j

oo
<y 2itlj=¢"
j=1

5.3 A Classification Result
First, we recall some basic definitions from convex analysis.

Definition 5.5 Let K C R” be a bounded domain with piecewise C' boundary.
Let L C R” be an hyperplane through the origin, with normal N. For each x € L
let the perpendicular line through x € L be Gy = {x + yN : y € R}, and let [, :=
length(K N Gy). The Steiner Symmetrization of K, with respect to L is

SL(K)={x+yN:xeL, KNGy #¥, -1/l <y = (1/D)l}.

It is not hard to see that whenever K is convex so is S; (K) and that the Steiner
Symmetrization preserves volume, i.e. |Sp(K)| = | K|, (see [2]).

For any hyperplane of the form H := {(y1, ..., yn—1, k) : ¥; € R}, with & fixed,
we denote H™ := {(y1,..., Ya—1.¥n) : Yo = h}, and H™ :={(y1, ..., Yu—1,Yn) :
yn < h}. For aset K, 9K denotes the boundary of K.

Lemma 5.6 Ler 0 be an ellipsoid in R". For 1 <i <n — 1, let L; be the hyperplane
Li:={x=(x1,...,x,) € R": x; =0}. Then the following hold

(a) The convex body K := 81, 081,0---08
x;-axis for every 1 <i <n.

(b) For every two hyperplanes of the form H; = {(y1, ..., Yn—1,hi)}, i = 1,2, we
have that

(0) is symmetric with respect the

n—1

|H NH,t N6 =|H NH NK|.

(c) For every two hyperplanes of the form H; = {(y1,...,Yu—1,hi) : yi € R},
i=1,2, where h; > hy, we have that

|H” N Hy N60] <nl((hi —h2)/@n = F))16],

where X, =mingy, . y,)e0 Yn, and Zp = Max(y, .. y,)eo Yn-
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Proof Assertions (a) and (b) follow from the construction of K. We now prove (c).
First we show that

|K2| <n!|K], (5.1

where K; is the minimal (with respect to volume) box that contains K. For con-
venience we can assume that K is centered at the origin. Let ay,...,a, > 0 be
positive numbers such that the points (ay,0,...,0),(0,a3,0,...,0),...,(0,...,
0, a,) belong to 0K. Let K; denote the convex hull of +(aj,0,...,0),...,£(0,
...,0,a,) ie. K{ := conv{*(a,0,...,0),...,£(@,...,0,a,)} and let K :=
conv{(+aj, £ay, ..., £a,)}. Obviously K, is the minimal box that contain K, and

K1 CK CK>.

A simple integral calculation shows that |Ki| = ([]i_,a;)2"/n!, and |K>| =
(]_[;‘=1 a;)2", which implies (5.1). Thus, from (5.1) and (b) we have
|H NHy N6|=|H NH N (S, 008, )]
< [H{ N Hy N Ka| = ((h1 — h2)/(En — Zn))| K2
=nl((hy —h2)/(@n — Xn))ISL, 0 Sp, 008, ,(0)]
= nl((hy — h2)/(@Zn — Xa))10]. O

Lemma 5.7 Let ® be a cover of R" such that B* € ©q. For 1 <i <n define

. _ Jloglxil  (x1,...,xn) € BY,
8i(X1, ..., Xn) .—{O (1 xn) & B (5.2)

Then g; e BMO(®), with c1 < ||gilIBMo(©) < c2(p(®)).

Proof Without loss of generality, we assume that n > 1 (the univariate case is known
[15]) and i = n and for the rest of the proof we denote g := g,. From the definition
of the BMO space

dx =:cy,

1
B /B |8 () —cpe

llgllBMO(©) =

where cpx = \B]_*I S 8(dy.
In the other direction, if 6 N B* = @, then g(x) = 0 on 6 and we’re done. Else,
0 N B* #(. Assume 6 =0 (x,1). If t <0, then

ﬁ/9|g(x)—69|dx§ %/};* ’g(x)|dx§c.

We now deal with the case 8 =6 (x, ) witht > 0. Let Xx = (X1, ..., X;) € 6 such that
X, =ming, .. y,)es |ynl. There are two cases:

,,,,,
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Case I: max(y, ... y,)e0 |yn — Xu| < |X,|. Here we have

1
@ /; (log |yn| —log|x,)dy < m f (log(lyn — Xp| + |X,]) — log|X,dy

<|yn_ +1>dy<10g2
%0 |

|9|
Case II: max(y, ... y,)e0 |Yn — Xn| > |X,|. This condition implies that x +3M, ;(B*)
intersects the hyperplane {y = (y1, ..., y»—1, 0)}, where M, ; is the matrix associated
with 6 (x, 1). Let (z1, ..., Zn—1, 0) be some point in the intersection. From Lemma 2.2

there exists ¢ := ¢(p(®)) > 0 such that 6§ € B := B((z1,-...,21-1,0),¢|0]). Let
us explain this last fact. By Lemma 2.2 there exist ¢ > 0 that depends only
on the parameters of the cover such that x 4+ 3M, ,(B*) € 0(x,t — 3c). Since
0(x, 1 —3c)| < aj'@2%10(x,1)|, we can choose ¢ := aj '@2* to obtain 6 C
B((z1,...,2,-1,0), ¢|0]) as claimed.

Let Z :=(Z1,...,24) € B such that |z,| := maxy,
tion,

yeB |ynl. With this defini-

.....

1 .
|9|/10g|zn —log|ynl)dy < B (IOgIan—loglynl)dy
Denoting
Hj:=BN{(y1.....y) €R": |ya| <277 Zul},  j =0,

we may apply Lemma 5.6 to conclude

1 1 &
— [ (log|zn| —log(ly.1))dy =log|Zp| + — / log|yn|~"'dy
|B|/;? " " " |B|]X:% Hj_1\H; "
1 o
<log|z,| + B > IHj1\Hjlog(1Z,|'27)
j=1

< log|Z,| —log|Z,] +n'|— Zz /|B|j

j=1

o0
<n!y 277 j=c(n).

j=1 O

Theorem 5.8 Let ©®1 and ®; be two covers and let p1 and p> be the corresponding
induced quasi-distances. Then following are equivalent:

(1) The quasi-distances p1 and py are equivalent.
(i) HY(®1) ~ H'(©2), i.e., there exist constants 0 < A < B < 0o such that for all

feS/, A||f||1—11(®l) = ||f||H1(oz) = B”f”Hl(ol)
(iii) HP(®1) ~ HP(©y) forall0 < p < 1.
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Remark Notice that in fact Theorem 5.8 really characterizes only the case p = 1.
Further generalization of the proof is needed to show that the quasi-distances are
equivalent iff the Hardy spaces are equivalent for some 0 < p < 1.

Proof 1t is obvious that (i) = (iii) = (ii) and so it remains to show that (ii) = (i).
First, observe that for n = 1 any cover induces a quasi-distance which is equivalent to
the Euclidian distance, so the result is obvious. For n > 2 assume to the contrary that
(i1) holds but (i) does not hold. Then w.l.g. there exists a sequence of pairs of points
Up, Uy € R", m > 1, such that

1 (U, V)

02U, V) m—o0 .

(5.3)

Assuming (5.3) holds we will construct a sequence of compactly supported piecewise
constant functions { f;,} such that || fiull g1(@,)/Il fmll g1 (@,) = 0 as m — oo thereby
contradicting our assumption that H L@)) ~ H(©y).

Let ¢ > 0, and let m > 1 such that p1 (&, vim)/02(Um, V) < €. Let 61 € Oy,
6 € ©7, such that py (u,, v,) = 161] and p2 (U, vy,) = |62|. We now construct three
ellipsoids centered at z,,, := (u;;, + vp,)/2 as follows:

@) 91 :=60(zm, 1) € O1, such that |91| ~ |01], and uy,, v, € 91,
(i) 02 =0(zm, 1) € Oy, such that |92| ~ |61], with u,,, v, € (92)‘
(iii) 0y = 0(zm, 12 + ¢) € ©7, with minimal ¢ (depending on the parameters of the
cover ©) such that 2M;, 1, +(B*) C M, 1, (B*).

ms

Select the affine transformation, A,,, incorporating a rotational element, that satis-
fies:

(i) Am(B*) =6,
(i1) A;l (61) is symmetric with respect to the x,, = 0 hyperplane.

We define new covers O] := A,,'0, ®) := A,,'®, with equivalent parameters to
®1, Oy, respectively and new points i, := A;l(um), Uy 1= A;l(vm). We now have
the following geometric objects ‘at the origin’ with the following properties:

(i) B*=A,'(6,) € ©),
(i) 0] := A;,' (1) € ®, with il U, € 0] and |0]| < ce,
(iii) 05 := A,,'(6,) € ® with 2B* C 0}, ily, I € (65)¢ C (2B*)¢ and |65| ~ 1.

We write 6] = 6/(0, 7)) = My 71 (B*), where 7] € R. Since 1 N (2B*)° # @, we may
define

s :==sup{s >0: (2B*)‘N My 1 1 (B*) # 0}
and
01 = Mo 1y (B").

The newly constructed ellipsoid 6] has the following properties:
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(i) (2B*)°N0; #0,

(ii) From the properties of covers and maximality of s’, there exists a constant Cy
depending on the parameters of the ellipsoid cover ®/1 (which are equivalent to
the parameters of ®1), such that 9{ c CoB*,

(iii)) W.L.G (by rotation), the distance between antipodal points on Oi is maximal
along the x axis,

@iv) 107] < ce.

The properties of 6| imply that
[B*NO;N{x eR":x; >0} ~ [(B)°N2B* NGO N{x e R" : x; > 0} ~ |61],

and therefore the existence of two boxes 21 and €2 that are symmetric to the main
axes and of dimensions a; X - - - X a, with the following properties:

(i) Q1 C B*Noy,

(i) @ C (B*)°N2B*N6,
(iii) There exists 2 <i <n such that a; < ¢ "V,
(iv) Q1] = |Q02| ~ |6;], which implies that 1/a; ~ “IX“‘X“FI‘;TMX“‘X”",

1
V) QIN{xeR":x;=0}#0and 22 N{x eR": x; =0} #0.

We shall now construct an atom a,, in H1(®/1) (which implies | a, ||H|<®/1) <1

for which ||a,, ||H1(®/2) > ¢’log(c”e~"). This will mean that for f,, := a,(A;'-) we

will have || fiull 1@,/ fnll 10, < c’”log(c”e_l)fl.

We define the atom a,, in H'(®)) by @y :=10]1 71 (1g, (x) — 1o, (x)) (am satisfies
the conditions of Definition 4.1). By Lemma 5.7, the function g; defined by (5.2) is
in BMO(®)), with ||g; ||BMO(®’2) ~ 1. From the properties of g; and the boxes €2 and
Q) we have

l{am, P
||am||H1((~)’2) = sup — > cl{am, &i)
$€BMO(0)) ||¢||BMO(®’2)

1
—Cc— log |x;|dx

B 0{ Q)
. _Cal X X aj_1 ></a,+1 X X ay / log(x;)dx;
0} 0
a;
> —C(l/ai)/ log(x;)dx;
0
> ' log(c"e ™). O
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