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Abstract In this work we develop highly geometric Hardy spaces, for the full range
0 < p ≤ 1. These spaces are constructed over multi-level ellipsoid covers of R

n that
are highly anisotropic in the sense that the ellipsoids can change shape rapidly from
point to point and from level to level. This generalizes previous work on anisotropic
Hardy spaces where the geometry of the space was ‘fixed’ over R

n and extends Hardy
spaces over spaces of homogeneous type, where the theory holds for p values that are
‘close’ to 1.
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decomposition
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1 Introduction

Anisotropic phenomena appear in various contexts in mathematical analysis and its
applications. The formation of shocks results in jump discontinuities of solutions of
hyperbolic conservation laws across lower dimensional manifolds and sharp edges
often separate areas of little detail in digital images, to name just two examples.
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In Sect. 2 we review a general anisotropic framework on R
n using the multi-level

ellipsoid covers introduced in [8]. Whereas in previous work the anisotropy is fixed
and global over R

n, in our settings only mild ‘local’ conditions are imposed on the
ellipsoids which allow them to rapidly change from point to point and in depth, from
level to level. The ellipsoid covers induce anisotropic quasi-distances on R

n and to-
gether with the usual Lebesgue measure, form spaces of homogeneous type.

The theory of function spaces defined over spaces of homogeneous type has been
extensively studied from the 70s [6, 7, 13] (see [10] for an excellent survey). In this
context, the theory of real Hardy spaces in more ‘geometric’ settings has also received
much attention. Coifman and Weiss pioneered this field in the 70s [6, 7]. Then, Fol-
land and Stein in the 80s studied Hardy spaces over homogeneous groups [11]. How-
ever, in general settings, such as the setting of spaces of homogeneous type, the Hardy
Spaces with p ‘close’ to zero do not have sufficient structure. Bownik [3] (see also
[4, 5, 12, 13]) investigated a special form of Hardy spaces defined over R

n, where the
Euclidian balls are replaced by images of the unit ball by powers of a fixed expan-
sion matrix. In this setup, Bownik was able to construct and fully analyze anisotropic
Hardy spaces for the full range 0 < p ≤ 1.

In this work we generalize Bownik’s spaces, by constructing Hardy spaces
Hp(�), 0 < p ≤ 1, over ellipsoid multi-level covers �, where the anisotropy may
change rapidly from point to point. In Sect. 3 we define the Hardy spaces using
anisotropic maximal functions. In Sect. 4 we introduce the atomic Hardy spaces and
prove the equivalence between the two definitions. This section is rather technical
but the general framework generalizes Sects. 4–6 in [3]. Finally, in Sect. 5, we show
that two anisotropic Hardy spaces Hp(�1) and Hp(�2) are equivalent if and only
if the quasi distances induced by the covers �1 and �2 are equivalent. In particular,
this implies that the class of anisotropic Hardy spaces we construct contains and is
strictly bigger than the class in [3].

Throughout the paper, the constants c > 0, depend on various fixed constants such
as the parameters of our covers, the dimension n as well as other parameters and their
value may change from line to line.

2 Anisotropic Ellipsoid Covers of R
n

We recall the definitions of [8]. An ellipsoid is the image of the Euclidian unit ball B∗
in R

n via an affine transform. For a given ellipsoid θ we let Aθ be an affine transform
such that θ = Aθ(B

∗). Denoting by vθ := Aθ(0) the center of θ we have

Aθ(x) = Mθx + vθ ,

where Mθ is a nonsingular n × n matrix.

Definition 2.1 We say that

� :=
⋃

t∈R

�t

is a continuous multilevel ellipsoid cover of R
n if it satisfies the following conditions,

where p(�) := {a1, . . . , a6} are positive constants:
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(i) For every x ∈ R
n and t ∈ R there exists an ellipsoid θ(x, t) ∈ �t and an affine

transform Ax,t (y) = Mx,ty + x such that θ(x, t) = Ax,t (B
∗) and

a12−t ≤ ∣∣θ(x, t)
∣∣ ≤ a22−t . (2.1)

(ii) For any x, y ∈ R
n, t ∈ R and s ≥ 0, if θ(x, t) ∩ θ(y, t + s) �= ∅, then

a32−a4s ≤ 1/
∥∥M−1

y,t+sMx,t

∥∥ ≤ ∥∥M−1
x,t My,t+s

∥∥ ≤ a52−a6s . (2.2)

Let us describe a useful form of covers of R
2. We select all ellipses on levels ≤ 0 to

be Euclidian balls. For levels > 0 we allow the ellipses to change from Euclidian balls
to ellipses with the ‘parabolic scaling’ parameters (a6, a4) = (1/3,2/3). This choice
of parameters relates to polygonal approximation of a planar curve, with segments of
length h and approximation error of O(h2). Roughly speaking, with this choice we
can simulate the performance of polygonal approximation by constructing at the level
t > 0 ‘thin’ ellipses of length ∼ 2−t/3 and width ∼ 2−2t/3, such they (are aligned with
and) cover the function’s curve singularities with a ‘strip width’ of ∼ 2−2t/3. Away
from the curve singularities, the ellipses can be selected to be Euclidian balls (see
also the constructions in Sect. 7.1 of [8]).

We will need the following lemmas

Lemma 2.2 Let � be a cover. Then there exists c > 0 such that for any x ∈ R
n, t > 0,

and λ ≥ 1,

x + λMx,t

(
B∗) ⊆ θ(x, t − cλ), (2.3)

Proof Fix x ∈ R
n and t > 0. Note that (2.3) holds if and only if

M−1
x,t−cλMx,t (B

∗) ⊆ 1

λ
B∗, λ ≥ 1.

From (2.2) we have M−1
x,t−cλMx,t (B

∗) ⊆ a52−a6cλB∗. Therefore, one should choose

large enough c, such that a52−a6cλ ≤ 1
λ

for all λ ≥ 1. �

Choosing λ = 2 in (2.3) gives

Lemma 2.3 Let � be a cover. Then, there exists J (p(�)) ≥ 1 such that for every
x ∈ R

n and t ∈ R

θ(x, t) ⊆ x + (1/2)Mx,t−J (B∗) ⊂ θ(x, t − J ).

The following two covering lemmas for ellipsoid covers are versions of classic
results on ball coverings in arbitrary spaces of homogeneous type (see e.g. [15]). They
are essential for the Calderón-Zygmund decomposition, which we will use later.

Lemma 2.4 (Wiener) Let � be a cover of R
n. There exists a constant γ (p(�)) > 0

such that for any �, a bounded subset of R
n or open with |�| < ∞ and t : � → R a

function, there exists a sequence of points {xj } ⊂ � (finite or infinite), such that the
ellipsoids θ(xj , t (xj )) are mutually disjoint and � ⊂ ⋃

j θ(xj , t (xj ) − γ ).
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Proof One chooses the constant γ such that for all x, y ∈ R
n and t, s ∈ R, if θ(x, t)∩

θ(y, s) �= ∅ with t < s, then θ(y, s) ⊂ θ(x, t − γ ) (see Lemma 2.8 in [8]). Using this
property, the proof is standard (see e.g. [3] for details). �

Lemma 2.5 (Whitney) Let � be a cover of R
n. There exists a constant γ (p(�)) > 0,

such that for any open � ⊂ R
n with |�| < ∞ and any m ≥ 0, there exist a sequence

of points {xj }j∈N ⊂ � and a sequence {tj }j∈N, so that

(i) � = ⋃
j θ(xj , tj ),

(ii) θ(xj , tj + γ ) are pairwise disjoint,
(iii) For every j ∈ N, θ(xj , tj −m−γ )∩�c = ∅, but θ(xj , tj −m−γ −1)∩�c �= ∅,
(iv) If θ(xj , tj − m) ∩ θ(xi, ti − m) �= ∅ then |ti − tj | < γ + 1,
(v) For every j ∈ N

#{i ∈ N : θ(xi, ti − m) ∩ θ(xj , tj − m) �= ∅} ≤ L,

where L depends only on the parameters of the cover and m.

Proof We choose the constant γ as in the Wiener Lemma. For every x ∈ � define

t (x) := inf
s∈R

{
θ(x, s − m − γ ) ⊂ �

}
.

Since � is open and since for each point x ∈ R
n, the diameters of the ellip-

soids θ(x, s − m − γ ) decrease as s → ∞ we get that t (x) is well defined. Also,
since � has finite volume, t (x) is finite. By the Wiener Lemma, we can find for
the function t (x) a sequence {xj }, such that θ(xj , tj + γ ) are disjoint and � =⋃

j θ(xj , tj ), where tj := t (xj ). This gives properties (i) and (ii). By construction,
θ(xj , tj − m − γ )∩�c = ∅ but θ(xj , tj − m − γ − 1)∩�c �= ∅ which implies prop-
erty (iii). To prove property (iv), assume by contradiction that there exist indices
i, j such that θ(xi, ti − m) ∩ θ(xj , tj − m) �= ∅ with tj ≤ ti − γ − 1. This gives that
θ(xi, ti − m − γ − 1) ∩ θ(xj , tj − m) �= ∅ with tj − m ≤ ti − m − γ − 1. Therefore
θ(xi, ti − m − γ − 1) ⊂ θ(xj , tj − m − γ ) which is a contradiction since

∅ �= θ(xi, ti − m − γ − 1) ∩ �c ⊂ θ(xj , tj − m − γ ) ∩ �c = ∅.

We now prove property (v). For j ≥ 1, let I (j) := {i : θ(xi, ti − m) ∩
θ(xj , tj − m) �= ∅}. From property (iv) we derive that tj ≤ ti + γ + 1, ∀i ∈ I (j).
Therefore

⋃
i∈I (j) θ(xi, ti − m) ⊂ θ(xj , tj − m − 2γ − 1). On the other hand, since

tj ≥ ti − γ − 1, we also have that |θ(xj , tj − m − 2γ − 1)| ≤ L|θ(xi, ti + γ )|,
∀i ∈ I (j), for some L ≥ 1 that depends on the properties of the cover and m. This,
coupled with property (ii) gives

#I (j) ≤ 1

mini∈I (j) |θ(xi, ti + γ )|
∑

i∈I (j)

∣∣θ(xi, ti + γ )
∣∣

≤ |θ(xj , tj − m − 2γ − 1)|
mini∈I (j) |θ(xi, ti + γ )| ≤ L. �
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The ellipsoid covers induce quasi-distances on R
n. A quasi-distance on a set

X is a mapping ρ : X × X → [0,∞) that satisfies the following conditions for all
x, y, z ∈ X:

(a) ρ(x, y) = 0 ⇔ x = y,
(b) ρ(x, y) = ρ(y, x),
(c) For some κ ≥ 1

ρ(x, y) ≤ κ
(
ρ(x, z) + ρ(z, y)

)
. (2.4)

Let � be a cover. We define ρ : R
n × R

n → [0,∞) by

ρ(x, y) = inf
θ∈�

{|θ | : x, y ∈ θ
}
. (2.5)

The following results are proved in [8].

Theorem 2.6 The function ρ in (2.5), induced by an ellipsoid cover, is a quasi-
distance on R

n.

Let � be an ellipsoid cover inducing a quasi-distance ρ. We denote

B(x, r) := {
y ∈ R

n : ρ(x, y) < r
}
. (2.6)

Evidently,

B(x, r) =
⋃

θ∈�

{
θ : |θ | < r, x ∈ θ

}
.

Theorem 2.7 Let � be an ellipsoid cover. For each ball B(x, r), there exist ellipsoids
θ ′, θ ′′ ∈ �, such that θ ′ ⊂ B(x, r) ⊂ θ ′′ and |θ ′| ∼ |B(x, r)| ∼ |θ ′′| ∼ r , where the
constants depend on p(�).

Spaces of homogeneous type were first introduced in [6] (see also [14]) as a means
to extend the Calderón-Zygmund theory of singular integral operators to more general
settings. Let X be a topological space endowed with a Borel measure μ and a quasi-
distance ρ. Assume that the balls B(x, r) := {y ∈ X : ρ(x, y) < r}, x ∈ X, r > 0,
form a basis for the topology in X. The space (X,ρ,μ) is said to be of homogenous
type if there exists a constant λ such that for all x ∈ X and r > 0,

μ
(
B(x,2r)

) ≤ λμ
(
B(x, r)

)
. (2.7)

If (2.7) holds then μ is said to be a doubling measure [15]. A space of homogeneous
type is said to be normal, if the equivalence μ(B(x, r)) ∼ r holds. Theorem 2.7 en-
sures (2.7) holds for the case of an ellipsoid cover and implies that it induces a normal
space of homogeneous type (Rn, ρ, dx), where ρ is the quasi-distance (2.5) and dx

is the Lebesgue measure.
We conclude this section by relating the quasi-distances induced by ellipsoid cov-

ers with the Euclidian distance. To this end we first require the following definition.
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Definition 2.8 Let ρ be a quasi-distance on R
n and let μ = (μ0,μ1), 0 < μ0 ≤ μ1.

For any x, y ∈ R
n and d > 0 we define

μ(x, y, d) :=
{

μ0 ρ(x, y) < d,

μ1 ρ(x, y) ≥ d.
μ̃(x, y, d) :=

{
μ1 ρ(x, y) < d,

μ0 ρ(x, y) ≥ d.
(2.8)

The following is proved in [9] for a discrete version of covers, but it also holds for
the continuous version.

Theorem 2.9 Let � be a cover and ρ the induced quasi-distance (2.5). Denote by
μ := (μ0,μ1) = (a6, a4) where 0 < a6 ≤ a4 are the parameters from (2.2). Then for
each fixed y ∈ R

n there exist constants 0 < c1 < c2 < ∞ that depend on y and p(�)

such that

c1ρ(x, y)μ̃(x,y,1) ≤ |x − y| ≤ c2ρ(x, y)μ(x,y,1), ∀x ∈ R
n, (2.9)

where |x − y| is the usual Euclidian distance between x and y.

In the special case where the ellipsoid cover is composed of Euclidian balls, we
have that the parameters in (2.2) satisfy a4 = a6 = 1/n and (2.9) is easily verified by

|x − y| ∼ |{z : |z − x| ≤ |y − x|}|1/n

= ρ(x, y)1/n = ρ(x, y)μ(x,y,1) = ρ(x, y)μ̃(x,y,1).

3 Anisotropic Hardy Spaces via Maximal Functions

Let S denote the Schwartz class of rapidly decreasing test functions (in Euclidian
sense) and S ′ the dual space.

Definition 3.1 Let � be an ellipsoid cover. We define the following maximal func-
tions of Hardy-Littlewood type.

MBg(x) := sup
r>0

1

|B(x, r)|
∫

B(x,r)

∣∣g(y)
∣∣dy, (3.1)

M�g(x) := sup
t∈R

1

|θ(x, t)|
∫

θ(x,t)

∣∣g(y)
∣∣dy, (3.2)

where B(x, r) are the (anisotropic) balls corresponding to the quasi-distance (2.5).

Lemma 3.2 Let � be an ellipsoid cover. Then for g ∈ S ′,

MBg(x) ∼ M�g(x), ∀x ∈ R
n. (3.3)

Proof The equivalence (3.3) is a direct consequence of the fact that by Theo-
rem 2.7, for any anisotropic ball B(x, r), there exist ellipsoids θ ′, θ ′′ ∈ �, such
that θ ′ ⊆ B(x, r) ⊆ θ ′′ and |θ ′| ∼ |B(x, r)| ∼ |θ ′′| ∼ r . This easily implies that
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MBg(x) ≤ cM�g(x). The observation that any ellipsoid θ ∈ �, with center xθ , is
contained in B(xθ , |θ |) provides the other direction. �

It is a classic result [15] that the Maximal Theorem holds for the Hardy-Littlewood
maximal function in the general setup of spaces of homogeneous type. This, com-
bined with Lemma 3.2 yields

Theorem 3.3 Let � be an ellipsoid cover. Then

(i) There exists a constant c depending only on the parameters of the cover and n

such that for all f ∈ L1(Rn) and α > 0
∣∣{x : M�f (x) > α

}∣∣ ≤ cα−1‖f ‖1. (3.4)

(ii) For 1 < p < ∞ there exists a constant Ap depending only on c and p such that
for all f ∈ Lp(Rn)

‖M�f ‖p ≤ Ap‖f ‖p. (3.5)

It is known [15] that in contrast to the case p > 1, the nature of Hardy spaces for
0 < p ≤ 1 involves not only the size of a given distribution, but also some delicate
cancellation properties. Therefore, we are required to replace the Hardy-Littlewood
type maximal function by convolutions with functions of sufficient smoothness and
fast decay.

Definition 3.4 For a function ψ ∈ CN(Rn) and α ∈ Z
n+, |α| ≤ N ≤ Ñ , let

‖ψ‖
α,Ñ

:= sup
y∈Rn

(1 + |y|)Ñ |∂αψ(y)|,
‖ψ‖

N,Ñ
:= max|α|≤N

‖ψ‖
α,Ñ

,
(3.6)

and

S
N,Ñ

:= {ψ ∈ S : ‖ψ‖
N,Ñ

≤ 1}. (3.7)

We also denote SN := SN,N .

Let � be a cover where θ(x, t) = Mx,t (B
∗)+x for each x ∈ R

n and t ∈ R. Denote

ψx,t (y) := ∣∣det
(
M−1

x,t

)∣∣ψ
(
M−1

x,t (x − y)
)
.

Definition 3.5 Let g ∈ S ′ and let ψ ∈ S . We define the radial maximal function as

M◦
ψg(x) = sup

t∈R

∣∣∣∣
∫

Rn

g(y)ψx,t (y)dy

∣∣∣∣, (3.8)

and for any 0 < N ≤ Ñ , the grand radial maximal function of g as

M◦
N,Ñ

g(x) = sup
ψ∈S

N,Ñ

M◦
ψg(x). (3.9)
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Let � be a continuous cover of R
n with parameters p(�) = (a1, . . . , a6) and let

0 < p ≤ 1. We define Np(�) as the minimal integer satisfying

Np(�) >
max(1, a4)n + 1

a6p
, (3.10)

and then Ñp(�) as the minimal integer satisfying

Ñp(�) >
a4Np(�) + 1

a6
. (3.11)

Definition 3.6 Let � be an ellipsoid cover and let 0 < p ≤ 1. Denoting M◦ :=
M◦

Np,Ñp
, we define the anisotropic Hardy space as

Hp(�) := {g ∈ S ′ : M◦g ∈ Lp},
with the quasi-norm ‖g‖Hp(�) := ‖M◦g‖p.

The next Lemma is needed to show that (up to a constant) the grand maximal
function can be defined using test functions supported on B∗. The fact that Ñp(�)

satisfies (3.11) in relation to Np(�), comes into play here.

Lemma 3.7 Let � be a cover and N ≥ 1. Denote by Ñ the minimal integer that
satisfies Ñ > (a4N + 1)/a6. Then there exist constants c1, c2 > 0, that depend
on the parameters of �, the dimension n and N such that for any ψ ∈ S

N,Ñ
,

x ∈ R
n and s ∈ R, there exists a representation ψx,s := |det(M−1

x,s )|ψ(M−1
x,s (x − ·)) =

∑∞
j=1 φ

j
x,sj , where for each j

(i) sj ∈ R,
(ii) φj ∈ S and supp(φj ) ⊆ B∗,

(iii) ‖φj‖
N,Ñ

≤ c12−c2j .

Proof Without loss of generality, by applying an affine transform argument, one may
assume that x = 0, s = 0 and that θ(x, s) = B∗. By Lemma 2.2 there exists a constant
γ (p(�)), such that 2θ(0, t) ⊆ θ(0, t − γ ), ∀t ∈ R. Using classic Sobolev extension
principles [1], one can construct φ1 ∈ S with the following properties:

1. supp(φ1) ⊆ B∗,
2. φ1(y) = ψ(y) on θ(0, γ + 1) ⊆ 1/2B∗,
3. ‖φ1‖

N,Ñ
≤ c̃‖ψ‖

N,Ñ
≤ c̃.

Assume by induction that we have constructed for k ≥ 1 a series ψk:=
∑k

j=1 φ
j

0,1−jγ ,
with the following properties:

1. supp(φj ) ⊆ B∗, 1 ≤ j ≤ k,

2. supp(ψk) ⊆ θ(0,1 − (k − 1)γ ),
3. ψk(y) = ψ(y) on θ(0,1 − (k − 2)γ ),
4. ‖φj‖

N,Ñ
≤ c12−jc2 , 1 ≤ j ≤ k.
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Let

gk+1(x) :=
⎧
⎨

⎩

(ψ − ψk)(x), x ∈ θ(0,1 − (k − 1)γ ),

ψ(x), x ∈ θ(0,1 − kγ )\θ(0,1 − (k − 1)γ ),

0, else.

Notice that gk+1(x) = 0 for x ∈ θ(0,1 − (k − 2)γ ), since by our induction process
ψ = ψk on this ellipsoid. Let

hk+1(y) := |detM0,1−(k+1)γ |gk+1(M0,1−(k+1)γ y).

Then

supp
(
hk+1) ⊆ M−1

0,1−(k+1)γ M0,1−kγ

(
B∗) ⊆ 1/2B∗.

Again, by Sobolev extension principles [1], there exists φk+1 such that

(i) supp(φk+1) ⊆ B∗,
(ii) φk+1(y) = hk+1(y) for y ∈ M−1

0,1−(k+1)γ M0,1−kγ (B∗),
(iii) ‖φk+1‖

N,Ñ
≤ c̃‖hk+1‖

N,Ñ
.

Let

y ∈ M−1
0,1−(k+1)γ M0,1−kγ

(
B∗)\M−1

0,1−(k+1)γ M0,1−(k−1)γ

(
B∗).

Then

hk+1(y) = |detM0,1−(k+1)γ |ψ(M0,1−(k+1)γ y),

and with c2 := γ (a6Ñ − a4N − 1)/2 > 0, for any α ∈ Z
n+ with |α| ≤ N ,

|∂αhk+1(y)| = |detM0,1−(k+1)γ ||∂α(ψ(M0,1−(k+1)γ ·))(y)|
≤ c2γ k(1+a4|α|)|∂αψ(M0,1−(k+1)γ y)|
≤ c2γ k(1+a4|α|)(1 + |M0,1−(k+1)γ y|)−Ñ‖ψ‖S

N,Ñ

≤ c2γ k(1+a4N−a6Ñ) ≤ c12−c2(k+1).

Note that φk+1
0,1−(k+1)γ (y) is supported on θ(0,1 − (k + 1)γ )\θ(0,1 − (k − 1)γ )

with φk+1
0,1−(k+1)γ (y) = ψ − ψk on θ(0,1 − (k − 1)γ )\θ(0,1 − (k − 2)γ ) and

φk+1
0,1−(k+1)γ (y) = ψ on θ(0,1 − kγ )\θ(0,1 − (k − 1)γ ). Therefore for ψk+1 :=

∑k+1
j=0 φ

j

0,1−jγ we have that ψk+1(y) = ψ(y) on θ(0,1 − kγ ). �

Theorem 3.8 For any cover �, there exists constants c1, c2 > 0 depending on the
parameters of the cover such that

M◦f (x) ≤ c1 sup
ψ∈S

N,Ñ
,supp(ψ)⊆B∗

M◦
ψf (x), x ∈ R

n, (3.12)

M◦f (x) ≤ c2M�f (x), x ∈ R
n. (3.13)

Therefore the Maximal Theorem (see Theorem 3.3) also holds for M◦.
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Proof To prove (3.12), denote by M◦
C the restriction of M◦, defined by only using

functions in S
N,Ñ

with support in B∗. For any ψ ∈ S
N,Ñ

, s ∈ R and x ∈ R
n, let

ψx,s = ∑∞
j=1 φ

j
x,sj , be the representation of Lemma 3.7, where φj are supported

on B∗. Thus,

M◦
ψf (x) =

∣∣∣∣
∫

Rn

f (y)ψx,s(y)dy

∣∣∣∣ ≤
∞∑

j=1

∣∣∣∣
∫

Rn

f (y)φ
j
x,sj (y)dy

∣∣∣∣

≤ M◦
Cf (x)

∞∑

j=1

‖φj‖
N,Ñ

≤ c1M
◦
Cf (x).

Inequality (3.13) is a simple consequence of (3.12) and The Maximal Theorem for
M◦ is a direct application of (3.13) and Theorem 3.3. �

Using classical arguments as in Sect. III of [15], one can show that for any cover �

and 1 < p ≤ ∞, Hp(�) ∼ Lp(Rn). Therefore, for the rest of the paper, we focus our
attention on the range 0 < p ≤ 1. In particular, we show in Sect. 5 that for this range
of p, anisotropic Hardy spaces are equivalent if and only if the underlying covers
induce equivalent quasi-distances.

4 Atomic Decompositions

As in the classical case, the anisotropic Hardy spaces can be characterized and then
investigated through atomic decompositions.

Definition 4.1 For a cover �, we say that (p, q, l) is admissible if 0 ≤ p ≤ 1,
1 ≤ q ≤ ∞, p < q , and l ∈ N, such that l ≥ Np(�) (see (3.10)). An (p, q, l)-atom is
a function a : R

n → R such that

(i) supp(a) ⊆ θ(x, t) for some θ(x, t) ∈ �, where x ∈ R
n and t ∈ R,

(ii) ‖a‖q ≤ |θ(x, t)|1/q−1/p ,
(iii)

∫
Rn a(y)yαdy = 0 for all α ∈ N

n such that |α| ≤ l.

It follows from property (2.1) that an (p, q, l)-atom a supported on an ellipsoid at
the level t satisfies

‖a‖q ≤ c2−t (1/q−1/p).

Definition 4.2 Let � be an ellipsoid cover, and let (p, q, l) be an admissible triple.
We define the atomic Hardy space H

p
q,l(�) associated with � as the set of all

tempered distribution f ∈ S ′ of the form
∑∞

i=1 λiai , where
∑∞

i=1 |λi |p < ∞ and
ai ∈ (p, q, l) for every i ∈ N. The quasi norm of f is defined as

‖f ‖H
p
q,l (�) := inf

{( ∞∑

i=1

|λi |p
)1/p

: f =
∞∑

i=1

λiai, ai ∈ (p, q, l) ∀i ∈ N

}
.
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Our goal is to prove that H
p
q,l(�) ∼ Hp(�), for every admissible triple (p, q, l),

where Hp(�) is defined with the maximal function M◦ (see Definition 3.6).

4.1 The Inclusion H
p
q,l(�) ⊆ Hp(�)

First we prove that each admissible atom is in Hp(�).

Theorem 4.3 Suppose (p, q, l) is admissible for a cover �. Then there exist c such
that

‖M◦a‖p ≤ c,

for any (p, q, l)-atom a, where c depends on p,q,n and p(�).

Proof Let θ(z, t) be the ellipsoid associated with an atom a, where z ∈ R
n and t ∈ R.

We estimate the integral of the function (M◦a)p separately on θ(z, t − J ) and on
θ(z, t − J )c , where J is from Lemma 2.3.

We begin with the estimate of
∫
θ(z,t−J )

(M◦a(x))pdx. There are two cases: q > 1,
and q = 1. We start with 1 < q < ∞. Since p ≤ 1 we have q/p > 1 and by Hölder
inequality we have

∫

θ(z,t−J )

(
M◦a(x)

)p
dx ≤

(∫

θ(z,t−J )

(
M◦a(x)

)q
dx

)p/q

|θ(z, t − J )|1−p/q . (4.1)

Applying Theorem 3.8 and then property (ii) in Definition 4.1, gives

(∫

θ(z,t−J )

(
M◦a(x)

)q
dx

)p/q

≤
(∫

Rn

(
M◦a(x)

)q
dx

)p/q

≤ ‖M◦a‖p
q ≤ c‖a‖p

q ≤ c|θ(z, t − J )|p/q−1.

When combined with (4.1) we conclude
∫
θ(z,t−J )

(M◦a(x))pdx ≤ c. The case q = ∞
is simpler.

The second case is q = 1. Since p < q , we have p < 1. By the Maximal Theorem,
for any λ > 0, we have that |ωλ| ≤ c‖a‖1/λ for the set ωλ := {x ∈ R

n : M◦a(x) > λ}.
Combined with property (ii) in Definition 4.1 gives

|ωλ ∩ θ(z, t − J )| ≤ (c/λ)|θ(z, t − J )|1−1/p.

We proceed with
∫

θ(z,t−J )

(M◦a(x))pdx =
∫ ∞

0
|ωλ ∩ θ(z, t − J )|pλp−1dλ

≤
∫ |θ(z,t−J )|−1/p

0
|θ(z, t − J )|pλp−1dλ

+ c

∫ ∞

|θ(z,t−J )|−1/p

|θ(z, t − J )|1−1/ppλp−2dλ = c̃,

where c̃ < ∞, since p < 1.
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We now estimate
∫
θ(z,t−J )c

(M◦a(x))pdx. From Lemma 2.3 we have θ(z, t −kJ +
J ) ⊂ θ(z, t − kJ ), for every k ∈ N. We write

∫

θ(z,t−J )c
(M◦a(x))pdx =

∞∑

k=2

∫

θ(z,t−kJ )\θ(z,t−kJ+J )

(M◦a(x))pdx

≤ c

∞∑

k=2

2−t2kJ sup
x∈θ(z,t−kJ )\θ(z,t−kJ+J )

(M◦a(x))p.

Therefore, to prove the lemma, it is sufficient to show that

sup
x∈θ(z,t−kJ )\θ(z,t−kJ+J )

(
M◦a(x)

)p ≤ c12t2−c2k, (4.2)

for every k ≥ 3, where c2 > J .
To this end, by (3.12), we may estimate | ∫

Rn a(y)ψx,s(y)dy|p , where ψ ∈ SN

with support in B∗, s ∈ R and x ∈ θ(z, t − kJ ) \ θ(z, t − kJ + J ). It is easy see that
if θ(z, t) ∩ θ(x, s) = ∅ then

∫
Rn a(y)ψx,s(y)dy = 0. Thus, we may assume

θ(z, t) ∩ θ(x, s) �= ∅. (4.3)

Suppose P is a polynomial (to be chosen later) of degree N − 1, where N ≥ Np(�)

(see (3.10)). Applying (2.1), the zero moment property of atoms (Definition 4.1) and
the Hölder inequality we have

∣∣∣∣
∫

Rn

a(y)ψx,s(y)dy

∣∣∣∣

≤ c2s

∣∣∣∣
∫

Rn

a(y)ψ(M−1
x,s (x − y))dy

∣∣∣∣

≤ c2s

∣∣∣∣
∫

Rn

a(y)(ψ(M−1
x,s (x − y)) − P(M−1

x,s (x − y)))dy

∣∣∣∣

≤ c2s

∫

θ(z,t)

|a(y)‖ψ(M−1
x,s (x − y)) − P(M−1

x,s (x − y))|dy

≤ c2s‖a‖q

(∫

θ(z,t)

|ψ(M−1
x,s (x − y)) − P(M−1

x,s (x − y))|q,

dy

)1/q,

≤ c2s‖a‖q2−s/q,

(∫

F(θ(z,t))

|ψ(y) − P(y)|q,

dy

)1/q,

,

where 1/q + 1/q, = 1 and

F
(
θ(z, t)

) := M−1
x,s

(
x − [

Mz,t

(
B∗) + z

]) = M−1
x,s (x − z) − M−1

x,sMz,t

(
B∗).

Therefore
∣∣∣∣
∫

Rn

a(y)ψx,s(y)dy

∣∣∣∣ ≤ c2s/q‖a‖q |F (
θ(z, t)

)|1/q,

sup
y∈F(θ(z,t))

|ψ(y) − P(y)|.
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Since 1 − 1/q, = 1/q and ‖a‖q ≤ c2−t (1/q−1/p), we get
∣∣∣∣
∫

Rn

a(y)ψx,s(y)dy

∣∣∣∣
p

≤ c2t2(s−t)(p/q)|M−1
x,sMz,t

(
B∗)|p/q,

sup
y∈F(θ(z,t))

|ψ(y) − P(y)|p. (4.4)

We now analyze the set F(θ(z, t)). We know that

F(θ(z, t)) = M−1
x,s (x − z) − M−1

x,sMz,t (B
∗),

where

x ∈ θ(z, t − kJ ) \ θ(z, t − kJ + J ) = Mz,t−kJ (B∗) \ Mz,t−kJ+J (B∗) + z,

which implies that

x − z ∈ Mz,t−kJ (B∗) \ Mz,t−kJ+J (B∗).

Therefore

F
(
θ(z, t)

) ⊂ [
M−1

x,sMz,t−kJ

(
B∗) \ M−1

x,sMz,t−kJ+J

(
B∗)] − M−1

x,sMz,t

(
B∗). (4.5)

Since Lemma 2.3 gives

M−1
x,sMz,t (B

∗) ⊆ (1/2)M−1
x,sMz,t−kJ+J (B∗),

this yields

F
(
θ(z, t)

) ⊆ (
(1/2)M−1

x,sMz,t−kJ+J

(
B∗))c

. (4.6)

Case 1. t ≤ s. We choose P = 0 and estimate the term |M−1
x,sMz,t (B

∗)|p/q,
. From

(2.2) and (4.3) we induce that

M−1
x,sMz,t

(
B∗) ⊂ a−1

3 2a4(s−t)B∗, (4.7)

which implies that

|M−1
x,sMz,t (B

∗)|p/q, ≤ c2a4(s−t)np/q,

.

Since ψ ∈ SN , where N ≥ Np(�) is defined in (3.10), we may apply (4.4) and (3.7)
to obtain

∣∣∣∣
∫

Rn

a(y)ψx,s(y)dy

∣∣∣∣
p

≤ c2t2(s−t)(p/q+na4p/q,) sup
y∈F(θ(z,t))

|ψ(y)|p

≤ c2t2(s−t)(p/q+na4p/q,) sup
y∈F(θ(z,t))

(1 + |y|)−pN . (4.8)

We now estimate the term

sup
y∈F(θ(z,t))

(1 + |y|)−pN .
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Since 2 ≤ k and t ≤ s, we have t − kJ + J ≤ s, which implies by (4.6) that for
y ∈ F(θ(z, t))

|y| ≥ (2a5)
−12a6(s−t)2a6Jk2−a6J ,

which lead to

(1 + |y|)−pN ≤ c2−a6(s−t)pN2−a6JpNk,

where c depends only on p and the parameters of �. From (4.8) we conclude that

∣∣∣∣
∫

Rn

a(y)ψx,s(y)dy

∣∣∣∣
p

≤ c2t2(s−t)[p/q+pna4/q
,−a6pN ]2−(a6JpN)k. (4.9)

Since s − t ≥ 0 and N ≥ Np(�) satisfies (3.10) we obtain the desired estimate (4.2).
Case 2. We now assume s ≤ t . From (4.3) and (2.2) we have

|M−1
x,sMz,t (B

∗)|p/q, ≤ c2(s−t)a6pn/q,

.

Hence (4.4) yields

∣∣∣∣
∫

Rn

a(y)ψx,s(y)dy

∣∣∣∣
p

≤ c2t2(s−t)(p/q+a6pn/q,) sup
y∈F(θ(z,t))

|ψ(y) − P(y)|p, (4.10)

which implies that

∣∣∣∣
∫

Rn

a(y)ψx,s(y)dy

∣∣∣∣
p

≤ c2t sup
y∈F(θ(z,t))

|ψ(y) − P(y)|p. (4.11)

We now choose P to be the Taylor expansion of ψ at point M−1
x,s (x − z) of or-

der N ≥ Np(�) and estimate supy∈F(θ(z,t)) |ψ(y) − P(y)|p. From (2.2) we have
M−1

x,sMz,t (B
∗) ⊂ a52−a6(t−s)B∗. The Taylor Remainder Theorem gives

sup
y∈M−1

x,s (x−z)+M−1
x,sMz,t (B∗)

|ψ(y) − P(y)|

≤ c sup
u∈M−1

x,sMz,t (B∗)
sup

|α|=N

|∂αψ(M−1
x,s (x − z) + u)‖u|N

≤ c2−a6(t−s)N sup
y∈M−1

x,s (x−z)+M−1
x,sMz,t (B∗)

sup
|α|=N

|∂αψ(y)|

≤ c2−a6(t−s)N sup
y∈M−1

x,s (x−z)+M−1
x,sMz,t (B∗)

(1 + |y|)−N .

From (4.11) we get that

∣∣∣∣
∫

Rn

a(y)ψx,s(y)dy

∣∣∣∣
p

≤ c2t2−a6(t−s)pN sup
y∈M−1

x,s (x−z)+M−1
x,sMz,t (B∗)

(1 + |y|)−pN .

(4.12)
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We have two cases to consider. The first one is when t − kJ + J ≤ s, and the
second one is when s ≤ t − kJ + J . We start with the first case. From (2.2) we have

c2−a6J 2a6(s−t)2a6kJ B∗ ⊂ M−1
x,sMz,t−kJ+J

(
B∗), (4.13)

which combined with (4.6) leads to

(1 + |y|)−pN ≤ c2a6pN(t−s)2−a6pNkJ . (4.14)

From (4.12) and (3.10) we conclude that
∣∣∣∣
∫

Rn

a(y)ψx,s(y)dy

∣∣∣∣
p

≤ c2t2−(n+1)J k.

For the case when s ≤ t − kJ + J we proceed from (4.12) using the estimate
(1 + |y|)−pN ≤ c, y ∈ R

n, the fact that J (k − 1) ≤ t − s and the assumption (3.10) to
obtain for k ≥ 3
∣∣∣∣
∫

Rn

a(y)ψx,s(y)dy

∣∣∣∣
p

≤ c2t2−a6(t−s)pN

≤ c2t2−a6J (k−1)pN ≤ c2t2−(n+1)(k−1)J ≤ c2t2−(2(n+1)/3)kJ .

Thus, we may conclude (4.2) for the case s ≤ t which completes the proof. �

Theorem 4.4 Let � be a cover and suppose (p, q, l) is admissible (see Defini-
tions 3.6, 4.1 and 4.2). Then

H
p
q,l(�) ⊆ Hp(�).

Proof Let f ∈ H
p
q,l . For ε > 0, assume that f = ∑∞

i=1 λiai , where
∑∞

i=1 |λi |p ≤
‖f ‖p

H
p
q,l

+ ε. Then, from Theorem 4.3

‖f ‖p

Hp(�) =
∫

Rn

[
M◦

( ∞∑

i=1

λiai

)
(x)

]p

dx

≤
∞∑

i=1

|λi |p
∫

Rn

[M◦(ai)(x)]pdx ≤ c(‖f ‖p

H
p
q,l (�)

+ ε).
�

4.2 The Calderón-Zygmund Decomposition

To show the converse inclusion Hp(�) ⊆ H
p
q,l(�) we need to carefully construct, for

each given distribution, an appropriate atomic decomposition. This is achieved by us-
ing the Calderón-Zygmund decomposition. Throughout this section for a given cover
�, we consider a tempered distribution f such that for every λ > 0, |{x : M◦f (x) >

λ}| < ∞. For fixed λ > 0 we define

� := {x : M◦f (x) > λ}.
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Recall that there exists a constant γ such that for all x, y ∈ R
n and t, s ∈ R, if θ(x, t)∩

θ(y, s) �= ∅ with t < s, then θ(y, s) ⊂ θ(x, t − γ ). Applying the Whitney Lemma 2.5
on � with m := J + γ , where the constants J and γ are defined in Sect. 2, yields
sequences (xi)i∈N ⊂ � and (ti)i∈N, such that

� =
⋃

j∈N

θ(xi, ti), (4.15)

θ(xi, ti + γ ) ∩ θ(xj , tj + γ ) = ∅, ∀i �= j, (4.16)

θ(xi, ti − J − 2γ ) ∩ �c = ∅,

θ(xi, ti − J − 2γ − 1) ∩ �c �= ∅, ∀i ∈ N,
(4.17)

θ(xi, ti − J − γ ) ∩ θ(xj , tj − J − γ ) �= ∅ then |ti − tj | ≤ γ + 1, (4.18)

#
{
j ∈ N : θ(xj , tj − J − γ ) ∩ θ(xi, ti − J − γ ) �= ∅} ≤ L, ∀i ∈ N. (4.19)

Fix φ ∈ C∞(Rn) such that supp(φ) ⊂ 2B∗, 0 ≤ φ ≤ 1 and φ ≡ 1 on B∗. For every
i ∈ N we define

φ̃i (x) := φ
(
M−1

xi ,ti
(x − xi)

)
. (4.20)

We have that φ̃i ≡ 1 on θ(xi, ti) and also by Lemma 2.3

supp(φ̃i) ⊆ xi + 2Mxi,ti

(
B∗) ⊆ θ(xi, ti − J ).

We define

φi(x) :=
{

φ̃i (x)∑
j φ̃j (x)

, if x ∈ �,

0, if x /∈ �.
(4.21)

Observe that φi is well defined since by (4.15) and (4.19), 1 ≤ ∑
i φ̃i (x) ≤ L, for ev-

ery x ∈ �. Also φi ∈ C∞(Rn), and supp(φi) ⊆ θ(xi, ti − J ). From (4.15) and (4.17),
we conclude that for every x ∈ R

n

∑

i

φi(x) = 1�(x),

which implies that the family {φi} forms a smooth partition of unitary subordinate to
the covering of � by the ellipsoids {θ(xi, ti − J )}.

Let Pl denote the space of polynomials of n variables with degree ≤ l, where
Np(�) ≤ N ≤ l (see Definition 4.1). For each i ∈ N we introduce an Hilbert space
structure on the space Pl by setting

〈P,Q〉i := 1∫
φi

∫

Rn

P (x)Q(x)φi(x)dx, ∀P,Q ∈ Pl . (4.22)

The distribution f ∈ S ′ induces a linear functional on Pl by

Q → 〈f,Q〉i , ∀Q ∈ Pl ,
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which by the Riesz Lemma is represented by a unique polynomial Pi ∈ Pl such that

〈f,Q〉i = 〈Pi,Q〉i , ∀Q ∈ Pl . (4.23)

Obviously Pi is the orthogonal projection of f with respect to the norm induced
by (4.22).

For every i ∈ N we define the locally ‘bad part’ bi = (f − Pi)φi . We will show
that with N := Np(�), Ñ := Ñp(�) and l ≥ N , the series

∑
i bi converges in S ′,

which will allow us to define the ‘good part’ g := f − ∑
i bi .

Definition 4.5 The representation f = g + ∑
i bi , where g and bi as above, is a

Calderón-Zygmund decomposition of degree l and height λ associated with M◦.

Lemma 4.6 For any i ∈ N, let zi ∈ θ(xi, ti − K1) and si ∈ R such that ti ≤ si + K2,
where K1,K2 > 0. Then, there exist a constant c > 0 depending on the parameters
of the cover, N , K1, K2 and choice of φ, such that

sup
|α|≤N

sup
y∈Rn

|∂αφ̂i(y)| ≤ c, where φ̂i (y) := φi

(
Mzi,si (y)

)
.

Proof Recall that for i ∈ N, supp(φi) ⊆ θ(xi, ti − J ). Also, by (4.19), for U := {j ∈
N : θ(xj , tj − J ) ∩ θ(xi, ti − J ) �= ∅}, we have that #U ≤ L. Thus, we may write

φ̂i (y) = φi((Mzi,si (y)) = φ̃i ((Mzi ,si (y))
∑

j∈N
φ̃j ((Mzi ,si (y))

= φ(M−1
xi ,ti

Mzi ,si (y) − M−1
xi ,ti

(xi))
∑

j∈U φ(M−1
xj ,tj

Mzi ,si (y) − M−1
xj ,tj

(xj ))
.

The desired estimate follows from iterative application of quotient rule combined
with

sup
|α|≤N

sup
y∈Rn

∣∣∂αφ
(
M−1

xj ,tj
Mzi ,si (·)

)
(y)

∣∣ ≤ c, (4.24)

where c > 0 depends on the parameters of the cover, N , K1, K2 and choice of φ. In-
deed, (4.24) holds, since by (2.2), for every j ∈ U , we have that ‖M−1

xj ,tj
Mxi,ti ‖ ≤ c1

and ‖M−1
xi ,ti

Mzi ,si ‖ ≤ c2 for some constants c1, c2 > 0. Thus we also have

‖M−1
xj ,tj

Mzi ,si ‖ ≤ c3 for some constant c3 > 0. �

For a fixed i ∈ N, let {πβ : β ∈ N
n+, |β| ≤ l}, be an orthonormal basis for Pl with

respect to the Hilbert space structure (4.22). For |β| ≤ l and a point z ∈ θ(xi, ti −J −
2γ − 1) ∩ �c (whose existence is guaranteed by (4.17)) we define

�β(y) := |det(Mz,ti )|∫
φi

πβ

(
z − Mz,ti (y)

)
φi

(
z − Mz,ti (y)

)
, (4.25)

Lemma 4.7 There exists c > 0 such that

‖�β‖
N,Ñ

≤ c, for all |β| ≤ l.
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Proof We begin with the estimate of the first term in (4.25). We know that
∫

Rn

φi(y)dy =
∫

θ(xi ,ti−J )

φi(y)dy ≥
∫

θ(xi ,ti )

1

L
dy = 1

L
|θ(xi, ti)|.

Applying (2.1) gives

|det(Mz,ti )|∫
φi

≤ cL
|θ(z, ti )|
|θ(xi, ti)| ≤ cLa−1

1 a2 ≤ c. (4.26)

For the third term in (4.25), we get from Lemma 4.6

sup
|α|≤N

sup
y∈Rn

|∂αφi(z − Mz,ti (·))(y)| ≤ c.

We now deal with the second term, πβ(z − Mz,ti (y)). We have

supp(�β) = supp(φi(z − Mz,ti (·)))
⊆ {y ∈ R

n : y ∈ M−1
z,ti

(z − xi) + M−1
z,ti

Mxi,ti−J (B∗)}.
Since z ∈ θ(xi, ti − J − 2γ − 1) = xi + Mxi,ti−J−2γ−1(B

∗), there exist constants
c1, c2 > 0 that depend only on p(�) such that

M−1
xi .ti

(z − xi) ∈ M−1
xi ,ti

Mxi,ti−J−2γ−1
(
B∗) ⊆ c1B

∗,

M−1
z,ti

Mxi,ti−J

(
B∗) ⊂ M−1

z,ti
Mxi,ti−J−2γ−1

(
B∗) ⊆ c2B

∗.

Therefore we conclude that for some c3 > 0, supp(�β) ⊂ c3B
∗. Thus, to prove the

Lemma, it remains to show that the partial derivatives of �β up to the order N are
bounded.

Observe that z − Mz,ti (B
∗) ⊂ θ(xi, ti − J − 2γ − 1). Since Pl is finite vector

space, all the norms are equivalent and there exists a constant c4 > 0 such that for
every P ∈ Pl

sup
|α|≤N

sup
y∈c3B

∗
|∂αP (y)| ≤ c4

∫

B∗
|P(y)|2dy.

For the same reason, since θ(xi, ti − J − 2γ − 1) and θ(xi, ti + γ ) have similar
shape and volume, we also have that

∫

θ(xi ,ti−J−2γ−1)

|P(y)|2dy ≤ c

∫

θ(xi ,ti+γ )

|P(y)|2dy.

Applying the last two estimates together with φi(y) = 1 for y ∈ θ(xi, ti) yields

sup
|α|≤N

sup
y∈c3B

∗
|∂α(πβ(z − Mz,ti (·)))(y)|

≤ c4

∫

B∗
|πβ(z − Mz,ti (y))|2dy
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≤ c

|det(Mz,ti )|
∫

z−Mz,ti
(B∗)

|πβ(y)|2dy ≤ c

|det(Mz,ti )|
∫

θ(xi ,ti−J−2γ−1)

|πβ(y)|2dy

≤ c

|det(Mz,ti )|
∫

θ(xi ,ti+γ )

|πβ(y)|2φi(y)dy ≤ c∫
φi

∫

Rn

|πβ(y)|2φi(y)dy ≤ c.

Now, since �β is supported on c3B
∗ and we have bounded the S

N,Ñ
norm of the

three terms in (4.25) by absolute constants we can apply the product rule to conclude
the Lemma. �

We can now estimate ‘local’ good parts of f .

Lemma 4.8 There exist a constant c > 0 such that

sup
y∈Rn

|Pi(y)φi(y)| ≤ cλ,

where φi is defined in (4.21) and Pi is defined by (4.23).

Proof Combining supp(φi) ⊆ θ(xi, ti − J ) and |φi(y)| ≤ 1, we have

sup
y∈Rn

|Pi(y)φi(y)| ≤ sup
y∈θ(xi ,ti−J )

|Pi(y)|.

For the function �β defined in (4.25) and the point z ∈ �c, Lemma 4.7 yields

∣∣∣∣
∫

f (y)(�β)z,ti (y)dy

∣∣∣∣ ≤ ‖�β‖
N,Ñ

M◦f (z) ≤ cλ.

Also, using definitions (4.25) and then (4.22)
∣∣∣∣
∫

f (y)(�β)z,ti (y)dy

∣∣∣∣ =
∣∣∣∣
∫

f (y)|det(M−1
z,ti

)|�β(M−1
z,ti

(z − y))dy

∣∣∣∣

= c

∣∣∣∣
1∫
φi

∫

Rn

f (y)πβ(y)φi(y)dy

∣∣∣∣ = c|〈f,πβ〉i |.

Therefore for all |β| ≤ l

|〈f,πβ〉i | ≤ cλ. (4.27)

Since {πβ} are polynomials of degree ≤ l and an orthonormal system in the Hilbert
space defined by (4.22), one can show using the equivalence of norms of finite di-
mensional Banach spaces that

‖πβ‖L∞(θ(xi ,ti−J )) ≤ c|θ(xi, ti − J )|−1/2‖πβ‖L2(θ(xi ,ti−J )) ≤ c. (4.28)

Recall that by (4.23) we have that

Pi =
∑

|β|≤l

〈f,πβ〉iπβ. (4.29)
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Therefore, combining (4.27) and (4.28) we have

sup
y∈θ(xi ,ti−J )

|Pi(y)| ≤
∑

|β|≤l

|〈f,πβ〉i ||πβ(y)| ≤ cλ,

which completes the proof. �

Lemma 4.9 There exist a constant c > 0 such that

M◦bi(x) ≤ cM◦f (x) for all x ∈ θ(xi, ti − J ). (4.30)

Proof Take ψ ∈ S
N,Ñ

, x ∈ θ(xi, ti − J ) and s ∈ R. We have

∫

Rn

bi(y)ψx,s(y)dy =
∫

Rn

(f (y) − Pi(y))φi(y)ψx,s(y)dy

=
∫

Rn

f (y)φi(y)ψx,s(y)dy −
∫

Rn

Pi(y)φi(y)ψx,s(y)dy,

and therefore
∣∣∣∣
∫

Rn

bi(y)ψx,s(y)dy

∣∣∣∣

≤
∣∣∣∣
∫

Rn

f (y)φi(y)ψx,s(y)dy

∣∣∣∣ +
∣∣∣∣
∫

Rn

Pi(y)φi(y)ψx,s(y)dy

∣∣∣∣

=: I1 + I2. (4.31)

First we estimate I2. Since ψ ∈ S
N,Ñ

and Ñ > n, we have that ‖ψ‖L1 ≤ c. For x ∈ �,
we have M◦f (x) > λ and thus combined with Lemma 4.8 we have

I2 =
∣∣∣∣
∫

Rn

Pi(y)φi(y)ψx,s(y)dy

∣∣∣∣ ≤ cλ‖ψ‖L1 ≤ cλ ≤ cM◦f (x).

For the estimate of I1 in (4.31), there are two cases.
Case 1: ti ≤ s. Define �(y) := φi(x − Mx,s(y))ψ(y). Since I1 = | ∫

Rn f (y) ×
�x,s(y)dy| and � ∈ S we have

∣∣∣∣
∫

Rn

f (y)�x,s(y)dy

∣∣∣∣ ≤ ‖�‖
N,Ñ

M◦f (x).

Now we estimate the term ‖�‖
N,Ñ

. Since ti ≤ s and x ∈ θ(xi, ti − J ), Lemma 4.6
yields

sup
y∈Rn,|α|≤N

|∂αφi(x − Mx,s(·))(y)| ≤ c.

By the product rule

‖�‖
N,Ñ

= sup
y∈Rn,|α|≤N

(1 + |y|)Ñ |∂α(φi(x − Mx,s(·))ψ(·))(y)|
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≤ c
(

sup
y∈Rn,|α|≤N

(1 + |y|)Ñ |∂αψ(y)|)( sup
y∈Rn,|α|≤N

|∂α(φi(x − Mx,s(·))(y)|)

≤ c‖ψ‖
N,Ñ

≤ c.

Hence

I1 =
∣∣∣∣
∫

Rn

f (y)φi(y)ψx,s(y)dy

∣∣∣∣ ≤ cM◦f (x).

Case 2: s < ti We define

�̃(y) := |det(M−1
x,sMx,ti )|φi(x − Mx,ti (y))ψ(M−1

x,sMx,ti (y)).

First we note that

I1 =
∫

Rn

f (y)φi(y)ψx,s(y)dy =
∫

Rn

f (y)�̃x,ti (y)dy,

which implies that

I1 =
∣∣∣∣
∫

Rn

f (y)�̃x,ti (y)dy

∣∣∣∣ ≤ ‖�̃‖
N,Ñ

M◦f (x). (4.32)

Therefore, it suffices to show that ‖�̃‖
N,Ñ

≤ c. Because x ∈ θ(xi, ti − J ), we get

supp(�̃) ⊂ supp(φi(x − Mx,ti (·))) ⊂ cB∗.

From Lemma 4.6 we conclude that

sup
y∈Rn,|α|≤N

|∂α(φi(x − Mx,ti (·)))(y)| ≤ c.

Since ψ ∈ S
N,Ñ

and ‖M−1
x,sMx,ti ‖ ≤ c for s ≤ ti , we have

sup
y∈Rn,|α|≤N

(1 + |y|)Ñ |∂α(ψ(M−1
x,sMx,ti (·)))(y)| ≤ c.

From the last two estimates and the chain rule we conclude that

‖�̃‖
N,Ñ

= sup
y∈Rn,|α|≤N

(1 + |y|)Ñ |�̃(y)| ≤ c.

Therefore, by (4.32) we have

I1 ≤ ‖�̃‖
N,Ñ

M◦f (x) ≤ cM◦f (x). �

Lemma 4.10 There exists a constant c > 0 such that for all i ∈ N and k ≥ 0

M◦bi(x) ≤ cλν−k (4.33)

for all x ∈ θ(xi, ti − J (k + 2)) \ θ(xi, ti − J (k + 1)), where ν := 2a6JN .
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Proof Since M◦bi(x) = supψ∈S
N,Ñ

sups∈R

∫
Rn bi(y)ψx,s(y)dy, choose any ψ ∈

S
N,Ñ

and s ∈ R. We then consider two cases.
Case 1: s ≥ ti . From the definition of bi

∣∣∣∣
∫

Rn

bi(y)ψx,s(y)dy

∣∣∣∣ ≤
∣∣∣∣
∫

Rn

f (y)φi(y)ψx,s(y)dy

∣∣∣∣ +
∣∣∣∣
∫

Rn

Pi(y)φi(y)ψx,s(y)dy

∣∣∣∣

=: I1 + I2.

We begin with the estimation of I1. For w ∈ θ(xi, ti − J − 2γ − 1) ∩ �c define

�(z) := |det(M−1
x,s )|

|det(M−1
w,s)|

φi

(
w − Mw,s(z)

)
. (4.34)

Since w ∈ �c, we get

I1 =
∣∣∣∣
∫

Rn

f (y)�w,s(y)ψ
(
M−1

x,s (x − y)
)
dy

∣∣∣∣

≤ max
y∈θ(xi ,ti−J )

∣∣ψ
(
M−1

x,s (x − y)
)∣∣‖�‖

N,Ñ
λ.

First we estimate ‖�‖
N,Ñ

by estimating each of the two terms in (4.34). From prop-
erty (2.1) of covers

|det(M−1
x,s )|

|det(M−1
w,s)|

≤ c(n)a−1
1 a2.

Since w ∈ θ(xi, ti − 2γ − J − 1) and s ≥ ti , Lemma 4.6 yields

sup
y∈Rn,|α|≤N

∣∣∂αφi

(
w − Mw,s(·)

)
(y)

∣∣ ≤ c. (4.35)

Now we estimate the term maxy∈θ(xi ,ti−J ) |ψ(M−1
x,s (x − y))|. Since x /∈ θ(xi, ti −

J (k + 1)) and y ∈ θ(xi, ti − J ), there exists a constant c′ such that y /∈ θ(x, ti +
c′ − Jk). Thus y /∈ x + Mx,ti+c′−JkB

∗ which implies that for some constant c′′ > 0,
M−1

x,s (x − y) /∈ c′′M−1
x,sMx,ti−JkB

∗. This gives

∣∣M−1
x,s (x − y)

∣∣ ≥ c2a6(s−ti+Jk). (4.36)

Therefore, since ψ ∈ S
N,Ñ

max
y∈θ(xi ,ti−J )

|ψ(M−1
x,s (x − y))| ≤ max

y∈θ(xi ,ti−J )
(1 + |M−1

x,s (x − y)|)−Ñ

≤ c2−a6(s−ti+Jk)Ñ ≤ c2−νk.

This concludes the estimate for I1 and we now proceed with the estimate of I2.
From Lemma 4.8, and from the fact that ψ ∈ S

N,Ñ
we get
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I2 =
∣∣∣∣
∫

Rn

Pi(y)φi(y)ψx,s(y)dy

∣∣∣∣

≤
∫

θ(xi ,ti−J )

|Pi(y)φi(y)||det(M−1
x,s )‖ψ(M−1

x,s (x − y))|dy

≤ cλ|det(M−1
x,s )|

∫

θ(xi ,ti−J )

|ψ(M−1
x,s (x − y))|dy

≤ cλ|det(M−1
x,s )|

∫

θ(xi ,ti−J )

(1 + |M−1
x,s (x − y))|)−Ñ dy.

Since |det(M−1
x,s )||θ(xi, ti − J )| ≤ c2s−ti , we have using (4.36)

I2 ≤ cλ2s−ti 2−(s−ti+Jk)a6Ñ ≤ cλ2−νk,

which complete the first case.
Case 2: s < ti . From Theorem 3.8 we know that

M◦bi(x) ≤ c sup
ψ∈S

N,Ñ
,supp(ψ)⊆B∗

∣∣∣∣
∫

Rn

bi(y)ψx,s(y)dy

∣∣∣∣.

Thus, let ψ ∈ S
N,Ñ

such that supp(ψ) ⊆ B∗. Since supp(bi) ⊂ θ(xi, ti − J ), if
θ(xi, ti − J ) ∩ θ(x, s) = ∅ then

∫

Rn

bi(y)ψx,s(y)dy = 0. (4.37)

Hence we assume

θ(xi, ti − J ) ∩ θ(x, s) �= ∅. (4.38)

The Taylor expansion of ψ about z := M−1
x,s (x − xi), of order N is

ψ(M−1
x,s (x − y)) = ψ(z + M−1

x,s (xi − y))

=
∑

|α|≤N

∂αψ(z)

α! (M−1
x,s (xi − y))α + Rz(z + M−1

x,s (xi − y)),

where Rz is the residue.
Let w ∈ θ(xi, ti − J − γ − 1) ∩ �c.

�(y) := |det(M−1
x,s )|

|det(M−1
w,ti

)|φi(w − Mw,ti (y)).

From Lemma 4.6 and the fact that s < ti we get ‖�‖
N,Ñ

≤ c. By (4.23), the local
‘bad’ part bi has l ≥ N zero moments and therefore
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∣∣∣∣
∫

Rn

bi(y)ψx,s(y)dy

∣∣∣∣ =
∣∣∣∣
∫

Rn

bi(y)|det(M−1
x,s )|Rz(z + M−1

x,s (xi − y))dy

∣∣∣∣

≤
∣∣∣∣
∫

θ(xi ,ti−J )

f (y)�w,ti (y)Rz(z + M−1
x,s (xi − y))dy

∣∣∣∣

+ |det(M−1
x,s )|

∣∣∣∣
∫

θ(xi ,ti )

Pi(y)φi(y)Rz(z + M−1
x,s (xi − y))dy

∣∣∣∣

=: I1 + I2.

Since w ∈ �c we have

I1 ≤ ‖�‖
N,Ñ

M◦f (w) sup
y∈θ(xi ,ti−J )

|Rz(z + M−1
x,s (xi − y))|

≤ cλ sup
y∈θ(xi ,ti−J )

|Rz(z + M−1
x,s (xi − y))|.

Thus, to complete the estimate of I1 it is sufficient to show that

sup
y∈θ(xi ,ti−J )

∣∣Rz

(
z + M−1

x,s (xi − y)
)∣∣ ≤ c

(
2a6JN

)−k
. (4.39)

Assuming s ≤ ti − J (the case ti − J ≤ s < ti is easier), using (4.38) and applying
the Taylor remainder theorem gives

sup
y∈θ(xi ,ti−J )

|Rz(z + M−1
x,s (xi − y))|

≤ c sup
u∈M−1

x,sMxi ,ti−J (B∗)
sup

|α|=N

|∂αψ(z + u)||u|N

≤ c2−a6(ti−s)N sup
v∈M−1

x,s (x−xi )+M−1
x,sMxi ,ti−J (B∗)

(1 + |v|)−N .

Since x /∈ θ(xi, ti − J (k + 1)), we get that M−1
x,s (x − xi) /∈ M−1

x,sMxi,ti−J (k+1)B
∗, and

therefore v /∈ M−1
x,sMxi,ti−JkB

∗.
We need to consider two subcases. The first one ti − Jk ≤ s < ti , and the other is

s < ti − Jk. We begin we the first subcase.
Since we assumed (4.38), we may apply (2.2) to obtain

M−1
x,sMxi,ti−Jk(B

∗) ⊇ c2a6(s−ti )2a6JkB∗,

which implies that

sup
v∈M−1

x,s (x−xi )+M−1
x,sMxi ,ti−J (B∗)

(1 + |v|)−N ≤ c2a6(ti−s)N (2a6JN)−k.

Therefore, (4.39) holds and we have

I1 ≤ cλ(2a6JN)−k.
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To show (4.39) holds also for the other subcase, s < ti − Jk, we simply proceed by

sup
y∈θ(xi ,ti−J )

∣∣Rz

(
z + M−1

x,s (xi − y)
)∣∣ ≤ c2−a6(ti−s)N ≤ c2−a6JNk.

To conclude the proof, we estimate I2 by combining Lemma 4.8 and (4.39)

I2 ≤
∣∣∣∣det(M−1

x,s )

∫

θ(xi .ti−J )

|Pi(y)φi(y)||Rz(z + M−1
x,s (xi − y))|

∣∣∣∣dy

≤ cλ|det(M−1
x,s )||θ(xi .ti − J )| sup

y∈θ(xi ,ti−J )

|Rz(z + M−1
x,s (xi − y))|

≤ cλ2s−ti (2a6JN)−k ≤ cλ(2a6JN)−k. �

Lemma 4.11 Suppose f ∈ Hp(�), 0 < p ≤ 1. Then there exists a constants
c1, c2 > 0, independent of f , i ∈ N, and λ > 0 such that

(i)
∫

Rn(M
◦bi)(x)pdx ≤ c1

∫
θ(xi ,ti−J )

(M◦f )(x)pdx.

Moreover, the series
∑

i bi converges in Hp(�), and

(ii)
∫

Rn M◦(
∑

i bi)(x)pdx ≤ c2
∫
�
(M◦f )(x)pdx.

Proof We apply Lemma 4.9, Lemma 4.10, the facts that θ(xi, ti − J ) ⊂ � and that
ν−p2J = 2(1−a6pN)J < 1 (recall assumption (3.10)), to obtain (i)

∫

Rn

(M◦bi(x))pdx

=
∫

θ(xi ,ti−J )

(M◦bi(x))pdx +
∞∑

k=0

∫

θ(xi ,ti−J (k+2))\θ(xi ,ti−J (k+1))

(M◦bi(x))pdx

≤ c

∫

θ(xi ,ti−J )

(M◦f (x))pdx + cλp

∞∑

k=0

|θ(xi, ti − J (k + 2))|ν−kp

≤ c

∞∑

k=0

(ν−p2J )k
∫

θ(xi ,ti−J )

(M◦f (x))pdx ≤ c

∫

θ(xi ,ti−J )

(M◦f (x))pdx.

Since Hp(�) is complete, from (i) and (4.19) we have

∫

Rn

(
M◦

(∑

i

bi

)
(x)

)p

dx ≤
∑

i

∫

Rn

(M◦(bi)(x))pdx

≤ c
∑

i

∫

θ(xi ,ti−J )

(M◦(f )(x))pdx ≤ c

∫

�

(M◦(f )(x))pdx.
�
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Lemma 4.12 If f ∈ L1(Rn), then the series
∑

i∈N
bi converges in L1(Rn). Moreover

there exist a constant c > 0 independent of f , i, λ, such that
∫

Rn

∑

i∈N

|bi(x)|dx ≤ c

∫

Rn

|f (x)|dx (4.40)

Proof From the definition of {bi} and Lemma 4.8
∫

Rn

|bi(x)|dx =
∫

Rn

|(f (x) − pi(x))φi(x)|dx

≤
∫

θ(xi ,ti−J )

|f (x)φi(x)|dx +
∫

θ(xi ,ti−J )

|Pi(x)φi(x)|dx

≤
∫

θ(xi ,ti−J )

|f (x)|dx + cλ|θ(xi, ti − J )|.

Therefore from (4.15), (4.19), and the Maximal Theorem (see Theorem 3.8), we have
∫

Rn

∑

i

|bi(x)|dx ≤
∑

i

∫

Rn

|bi(x)|dx

≤
∑

i

(∫

θ(xi ,ti−J )

|f (x)|dx + cλ|θ(xi, ti − J )|
)

≤ L

(∫

�

|f (x)|dx + cλ|�|
)

≤ c

∫

Rn

|f (x)|dx. �

Lemma 4.13 Suppose
∑

i bi converges in S ′. Then there exist a constant c, indepen-
dent of f ∈ S ′ and λ > 0, such that

M◦g(x) ≤ cλ
∑

i

ν−ki (x) + M◦f (x)1�c(x), (4.41)

where

ki(x) =
{

k, if for k ≥ 0, x ∈ θ(xi, ti − J (k + 2)) \ θ(xi, ti − J (k + 1)),
0, x ∈ θ(xi, ti − J ).

(4.42)

Proof If x ∈ �c, we know from Lemma 4.10

M◦g(x) ≤ M◦f (x) +
∑

i

M◦bi(x) ≤ M◦f (x)1�c(x) + cλ
∑

i

ν−ki (x).

For any x ∈ �, there exists j ∈ N, such that x ∈ θ(xj , tj −J ). Recall from (4.19) that

I (j) := {i ∈ N : θ(xi, ti − J ) ∩ θ(xj , tj − J ) �= ∅},
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with #I (j) ≤ L. We have that

M◦g(x) ≤ M◦
(

f −
∑

i∈I (j)

bi

)
(x) + M◦

( ∑

i /∈I (j)

bi

)
(x). (4.43)

By Lemma 4.10

M◦
( ∑

i /∈I (j)

bi

)
(x) ≤ c

∑

i /∈I (j)

ν−ki (x),

so to prove (4.41), it suffices to bound M◦(f − ∑
i∈I (j) bi)(x). Let ψ ∈ S

N,Ñ
, and

s ∈ R. Defining η := 1 − ∑
i∈I (j) φi , we have

∣∣∣∣
∫

Rn

(
f −

∑

i∈I (j)

bi

)
(y)ψx,s(y)dy

∣∣∣∣

≤
∣∣∣∣
∫

Rn

f (y)η(y)ψx,s(y)dy

∣∣∣∣ +
∣∣∣∣
∫

Rn

( ∑

i∈I (j)

Pi(y)φi(y)

)
ψx,s(y)dy

∣∣∣∣

=: I1 + I2.

Since ψ ∈ S
N,Ñ

and #I (j) ≤ L, from Lemma 4.8,

I2 ≤
∑

i∈I (j)

∫

Rn

|Pi(y)φi(y)||ψx,s(y)|dy ≤ cλ
∑

i∈I (j)

‖ψ‖1 ≤ cλ = cλνkj (x).

The proof of the estimate I1 ≤ cλνkj (x) is similar to the estimates in Lemma 4.10 of
I1 (in both cases, s < tj and s ≥ tj ), where η replaces φj . �

Lemma 4.14 If M◦f ∈ Lp , 0 < p ≤ 1, then M◦g ∈ L1, and there exist a constant
c1 > 0, independent of f,λ such that

∫

Rn

M◦g(x)dx ≤ c1λ
1−p

∫

Rn

(
M◦f (x)

)p
dx. (4.44)

If f ∈ L1, then g ∈ L∞, and there exist c2 > 0, independent of f,λ, such that

‖g‖∞ ≤ c2λ. (4.45)

Proof By Lemma 4.13 we have

∫

Rn

M◦g(x)dx ≤ cλ
∑

i∈N

∫

Rn

ν−ki (x)dx +
∫

�c

M◦f (x)dx, (4.46)
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where ki(x) are defined in (4.42). Recalling ν := 2a6JN and that N > a−1
6 , we get for

a fixed i ∈ N

∫

Rn

ν−ki (x)dx =
∫

θ(xi ,ti−J )

dx +
∞∑

k=0

∫

θ(xi ,ti−J (k+2))\θ(xi ,ti−J (k+1))

ν−ki (x)dx

≤ |θ(xi, ti − J )| +
∞∑

k=0

|θ(xi, ti − J (k + 2))|ν−k

≤ c2−ti

(
1 +

∞∑

k=0

2Jkν−k

)
≤ c|θ(xi, ti)|.

Therefore, we may derive (4.44) from (4.46) by
∫

Rn

M◦g(x)dx ≤ cλ
∑

i∈N

|θ(xi, ti)| +
∫

�c

M◦f (x)dx

≤ cλ|�| +
∫

�c

M◦f (x)dx ≤ cλ1−p

∫

Rn

(M◦f (x))pdx.

Since f ∈ L1, by Lemma 4.12 we have that g and bi , i ∈ N, are functions and∑
i∈N

bi converges in L1. Thus

g = f −
∑

i

bi = f 1�c +
∑

i

Piφi .

By Lemma 4.8, and (4.19), for every x ∈ � we have |g(x)| ≤ cλ. Also, for a.e.
x ∈ �c, |g(x)| = |f (x)| ≤ M◦f (x) ≤ λ. Therefore ‖g‖∞ ≤ cλ. �

Corollary 4.15 Hp(�) ∩ L1 is dense in Hp(�).

Proof Let f ∈ Hp(�) and λ > 0. Consider the Calderón-Zygmund decomposition
of f of degree l ≥ Np(�) and height λ.

f = gλ +
∑

i∈N

bλ
i .

By Lemma 4.11 we have

∥∥f − gλ
∥∥

Hp(�)
=

∥∥∥∥
∑

i∈N

bλ
i

∥∥∥∥
Hp(�)

→ 0 as λ → ∞,

which implies that gλ → f in Hp(�). Now, Lemma 4.14 gives that M◦gλ ∈ L1(Rn).
To conclude that gλ ∈ L1(Rn), one can apply the same arguments as in the proof of
Theorem 3.9 in [3], since our covers satisfy the following essential property: we have
that diam(θ(x, t)) → 0, as t → ∞, uniformly on compact sets. In fact, (2.2) implies
that for any compact set K ⊂ R

n, diam(θ(x, t)) ≤ c(K)2−a6t , for t ≥ 0. �
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4.3 The Inclusion Hp(�) ⊆ H
p
q,l(�)

Let � be a cover of R
n and let f be a tempered distribution such that M◦f ∈ Lp(Rn)

for some 0 < p ≤ 1, where M◦ is associated with �. For each k ∈ Z we consider the
Calderón-Zygmund decomposition of f of degree l ≥ Np(�) at height 2k associated
with M◦

f = gk +
∑

i

bk
i , (4.47)

where

�k := {
x : M◦f > 2k

}
, bk

i := (
f − P k

i

)
φk

i , θk
i := θ

(
xk
i , tki

)
. (4.48)

As before, for every fixed k ∈ Z, {xk
i }i∈N is a sequence in �k and {tki }i∈R satisfy

(4.15)–(4.19) for �k . Also, φk
i are defined as in (4.21) and P k

i are the projection of
f onto Pl with respect to the inner product given by (4.22).

We now define P k+1
ij as the orthogonal projection of (f − P k+1

j )φk
i with respect

to the inner product

〈P,Q〉 := 1
∫

φk+1
j

∫

Rn

P (x)Q(x)φk+1
j (x)dx for P,Q ∈ Pl . (4.49)

That is, if θ(xk
i , tki −J )∩ θ(xk+1

j , tk+1
j −J ) �= ∅, then P k+1

ij is the unique polynomial
in Pl such that

∫

Rn

(
f (y) − P k+1

j (y)
)
φk

i (y)Q(y)φk+1
j (y)dy

=
∫

Rn

P k+1
ij (y)Q(y)φk+1

j (y)dy, ∀Q ∈ Pl ,

else we may take P k+1
ij = 0.

Lemma 4.16 Suppose θ(xk
i , tki − J ) ∩ θ(xk+1

j , tk+1
j − J ) �= ∅. Then

(i) tk+1
j ≥ tki − 2γ − 1,

(ii) θ(xk+1
j , tk+1

j − J ) ⊂ θ(xk
i , tki − J − 3γ − 1),

(iii) There exists L′ > 0 such that for every j ∈ N, #I (j) ≤ L′ with

I (j) := {i ∈ N : θ(xk+1
j , tk+1

j − J ) ∩ θ(xk
i , tki − J ) �= ∅}.

Proof To prove (i), assume by contradiction that tk+1
j < tki − 2γ − 1. Therefore,

θ(xk
i , tki − J ) ∩ θ(xk+1

j , tk+1
j − J ) �= ∅, implies

θ(xk
i , tki − J − 2γ − 1) ⊆ θ(xk+1

j , tk+1
j − J − γ ).
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Since �k+1 ⊂ �k , we have (�k+1)c ⊃ (�k)c . Hence from (4.17) we have

∅ �= (
�k

)c ∩ θ
(
xk
i , tki − J − 2γ − 1

) ⊂ (
�k+1)c ∩ θ

(
xk+1
j , tk+1

j − J − γ
) = ∅,

which is contradiction. Property (ii) is a consequence of (i). We continue with (iii).
For a fixed i, let I1(j) := {i ∈ I (j) : tki ≤ tk+1

j }. Then for each such i, θ(xk+1
j , tk+1

j −
J ) ⊆ θ(xk

i , tki − J − γ ). Since xk+1
j is contained in each θ(xk

i , tki − J − γ ), i ∈ I1(j)

we obtain by (4.19) that |I1(j)| ≤ L. Now denote I2(j) := {i ∈ I (j) : tki > tk+1
j }.

Observe that

θ(xk
i , tki + γ ) ⊆ θ(xk

i , tki − J ) ⊆ θ(xk+1
j , tk+1

j − J − γ ).

At the same time, by (i), we have that tki − 2γ − 1 ≤ tk+1
j , and therefore all of the

ellipsoids θ(xk
i , tki + γ ), i ∈ I2(j), are pairwise disjoint, are all contained in the ellip-

soid θ(xk+1
j , tk+1

j −J −γ ) but also have their volume proportional to it by a multiple
constant. Therefore, |I2(j)| ≤ L′′. �

Lemma 4.17 There exist a constant c > 0, independent of i, j ∈ N and k ∈ Z, such
that

sup
x∈Rn

|P k+1
ij (x)φk+1

j (x)| ≤ c2k+1 (4.50)

Proof Let {πβ : β ∈ N
n+, |β| ≤ l} be an orthonormal basis with respect to the inner

product (4.49). Since P k+1
ij is the orthogonal projection of (f − P k+1

j )φk
i , we have

|P k+1
ij (x)φk+1

j (x)|
≤ |P k+1

ij (x)|

=
∣∣∣∣
∑

|β|≤l

(
1

∫
φk+1

j

∫

Rn

(f (y) − P k+1
j (y))φk

i (y)πβ(y)φk+1
j (y)dy

)
πβ(x)

∣∣∣∣

≤
∣∣∣∣
∑

|β|≤l

(
1

∫
φk+1

j

∫

Rn

f (y)φk
i (y)πβ(y)φk+1

j (y)dy

)
πβ(x)

∣∣∣∣

+
∣∣∣∣
∑

|β|≤l

(
1

∫
φk+1

j

∫

Rn

P k+1
j (y)φk

i (y)πβ(y)φk+1
j (y)dy

)
πβ(x)

∣∣∣∣ =: I1 + I2.

We begin by estimating I2. Since supp(φk+1
j ) ⊂ θ(xk+1

j , tk+1
j − J ) we have for each

|β| ≤ l,

1
∫

φk+1
j

∫

Rn

P k+1
j (y)φk

i (y)πβ(y)φk+1
j (y)dy

= 1
∫

φk+1
j

∫

θ(xk+1
j ,tk+1

j −J )

P k+1
j (y)φk

i (y)πβ(y)φk+1
j (y)dy.
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From Lemma 4.8 and (4.28) we have

sup
y∈θ(xk+1

j ,tk+1
j −J )

|P k+1
j (y)| ≤ c2k+1,

and

sup
y∈θ(xk+1

j ,tk+1
j −J )

|πβ(y)| ≤ c,

which leads to

I2 ≤ c2k+1.

We continue with I1. Let w ∈ (�k+1)c ∩ θ(xk+1
j , tk+1

j − J − 2γ − 1), and define for
each |β| ≤ l

�(y) :=
|det(M

w,tk+1
j

)|
∫

φk+1
j

(φk
i · πβ · φk+1

j )(w − M
w,tk+1

j
(y)).

To bound I1, it is sufficient to bound for each β , | ∫
Rn f (y)�

w,tk+1
j

(y)dy|. Since

w ∈ (�k+1)c , we get
∣∣∣∣
∫

Rn

f (y)�
w,tk+1

j
(y)dy

∣∣∣∣‖�‖
N,Ñ

2k+1.

Thus, it suffices to show ‖�‖
N,Ñ

≤ c. We define

φ̂k+1
j (y) := φk+1

j (xk+1
j + M

w,tk+1
j

(y)),

π̂β(y) := πβ(xk+1
j + M

w,tk+1
j

(y)),

φ̂k
i (y) := φk

i (w − M
w,tk+1

j
(y)).

Hence the function � can be written as

|det(M
w,tk+1

j
)|

∫
φk+1

j

φ̂k
i (y)

(
φ̂k+1

j · π̂β

)(
M−1

w,tk+1
j

(
w − xk+1

j

) − y
)
.

Calculation similar to (4.26) yields

|det(M
w,tk+1

j
)|

∫
φk+1

j

≤ C.

From Lemma 4.6, all the partial derivatives of order ≤ N of the function φ̂k
i are

bounded by universal constant. Since supp(�) ⊂ CB∗, by Lemma 4.6 and the prod-
uct rule, the partial derivatives of φ̂k+1

j · π̂i of order ≤ N are also bounded by uni-
versal constant. Now, since supp(�) ⊂ CB∗ we conclude that ‖�‖

N,Ñ
≤ C, which

completes the proof. �
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Lemma 4.18 Let k ∈ Z. Then
∑

i∈N
(
∑

j∈N
P k+1

ij φk+1
j )=0, where the series con-

verges pointwise and in S ′.

Proof By (4.19) we have #{j ∈ N : φk+1
j (x) �= 0} ≤ L. Also from definition of P k+1

ij

we have P k+1
ij = 0 if θ(xk+1

j , tk+1
j − J ) ∩ θ(xk

i , tki − J ) = ∅. By Lemma 4.16,
∑

i∈N

∑
j∈N

P k+1
ij (x)φk+1

j (x) contains at most L′ nonzero items. Combining that
with Lemma 4.17 gives

∑

i∈N

∑

j∈N

|P k+1
ij (x)φk+1

j (x)| ≤ c2k+1. (4.51)

By the Lebesgue Dominated Convergence Theorem
∑

i∈N

∑
j∈N

P k+1
ij φk+1

j con-

verges unconditionally in S ′. We let I = {i ∈ N : θ(xk+1
j , tk+1

j −J )∩ θ(xk
i , tki −J ) �=

∅}, and in order to conclude the proof it is suffice to show that

∑

i∈N

P k+1
ij =

∑

i∈I

P k+1
ij = 0 for every j ∈ N.

Indeed for fixed j ∈ N,
∑

i∈N
P k+1

ij is an orthogonal projection of (f − P k+1
j ) ×

∑
i∈I φk

i onto Pl with respect to the inner product (4.49). Since
∑

i∈I φk
i (x) = 1 for

x ∈ θ(xk+1
j , tk+1

j − J ),
∑

i∈N
P k+1

ij is an orthogonal projection of (f − P k+1
j ) onto

Pl with respect to the inner product (4.49), which is zero by the definition of P k+1
j . �

Theorem 4.19 (Atomic decomposition) For any cover � and 0 < p ≤ 1, Hp(�) ⊆
H

p
∞,l(�).

Proof Let f ∈ Hp(�) ∩ L1. Consider the Calerón-Zygmund decomposition of f of
degree l at height 2k associated with M◦, f = gk +∑

i b
k . By Lemma 4.11, gk → f ,

as k → ∞, in Hp(�), and by (4.45), ‖gk‖∞ → 0, as k → −∞. Therefore

f =
∑

k∈Z

(
gk+1 − gk

)
in S ′.

From Lemma 4.18 and the fact that
∑

i∈N
φk

i bk+1
j = 1�kb

k+1
j = bk+1

j ,

gk+1 − gk =
(

f −
∑

j∈N

bk+1
j

)
−

(
f −

∑

j∈N

bk
j

)

=
∑

j∈N

bk
j −

∑

j∈N

bk+1
j +

∑

i∈N

(∑

j∈N

P k+1
ij φk+1

j

)

=
∑

i∈N

bk
i −

∑

i∈N

∑

j∈N

φk
i bk+1

j +
∑

i∈N

(∑

j∈N

P k+1
ij φk+1

j

)
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=
∑

i∈N

(
bk
i −

[∑

j∈N

φk
i bk+1

j −
∑

j∈N

P k+1
ij φk+1

j

])

=
∑

i∈N

(
bk
i −

∑

j∈N

[φk
i bk+1

j − P k+1
ij φk+1

j ]
)

=:
∑

i∈N

hk
i .

Since bk
i = (f − P k

i )φk
i , one has

hk
i = (

f − P k
i

)
φk

i −
∑

j∈N

[
φk

i

(
f − P k+1

j

) − P k+1
ij

]
φk+1

j .

By the choice of P k
i , P k+1

ij

∫

Rn

hk
i (y)Q(y)dy = 0 for all Q ∈ Pl . (4.52)

Moreover since
∑

j∈N
φk+1

j = 1�k+1 , we can write

hk
i = f 1(�k+1)cφ

k
i − P k

i φk
i +

∑

j∈N

P k+1
j φk+1

j φk
i +

∑

j∈N

P k+1
ij φk+1

j .

From definition of P k+1
i,j we know P k+1

i,j �= 0 implies θ(xk+1
j , tk+1

j − J ) ∩
θ(xk

i , tki − J ) �= ∅, also we know supp(φk+1
j ) ⊂ θ(xk+1

j , tk+1
j − J ), hence form

Lemma 4.16 we come to the conclusion that supp(
∑

j∈N
P k+1

ij φk+1
j ) ⊂ θ(xk

i , tki −J −
3γ − 1), which implies that

supp
(
hk

i

) ⊂ θ
(
xk
i , tki − J − 3γ − 1

)
. (4.53)

Obviously we have

‖hk
i ‖∞ ≤ ‖f 1(�k+1)cφ

k
i ‖∞ + ‖P k

i φk
i ‖∞ +

∥∥∥∥
∑

j∈N

P k+1
j φk

i φk+1
j

∥∥∥∥∞

+
∥∥∥∥
∑

j∈N

P k+1
ij φk+1

j

∥∥∥∥∞
.

We know that |f (x)| ≤ cM◦f (x) ≤ c2k+1 for almost every x ∈ (�k+1)c . Also from
Lemma 4.8 we have ‖P k

i φk
i ‖∞ ≤ c2k , and from Lemmas 4.16, 4.17 we conclude

∥∥∥∥
∑

j∈N

P k+1
j φk

i φk+1
j

∥∥∥∥∞
≤ c2k+1, and

∥∥∥∥
∑

j∈N

P k+1
ij φk+1

j

∥∥∥∥∞
≤ c2k+1.

Therefore we get

‖hk
i ‖∞ ≤ c2k. (4.54)
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From (4.52), (4.53) and (4.54) hk
i is a multiple of a (p,∞, l) atom ak

i , meaning

hk
i = λk

i a
k
i ,

where λk
i ∼ 2k2−tki /p . From (4.16)

∞∑

k=−∞

∑

i∈N

|λk
i |p ≤ c

∞∑

k=−∞
2kp

∑

i∈N

|θ(xk
i , tki + γ )|

≤ c

∞∑

k=−∞
2kp|�k| ≤ c

∞∑

k=−∞
p(2k)p−1|�k|2k−1

≤ c

∫ ∞

0
pλp−1|{x ∈ R

n : M◦f (x) > λ}|dλ = c‖M◦f ‖p
p

= c‖f ‖p

Hp(�).

Therefore f = ∑∞
k=−∞

∑
i∈N

λk
i a

k
i defines an atomic decomposition of f ∈ Hp(�)

∩ L1. Applying the density of Hp(�) ∩ L1 in Hp (Corollary 4.15), we complete the
proof. �

5 Classification of Anisotropic Hardy Spaces

Denote by Hp(Rn) the classic isotropic Hardy spaces. Let A be a fixed expansion ma-
trix, i.e., a matrix whose eigenvalues> 1. Thus A−j → 0 as j → ∞. The anisotropic
Hardy spaces of [3] are in fact Hardy spaces constructed over a semi-continuous
cover, where the ellipsoids θ(x, j) are determined by setting Mx,j := A−j . Let us de-
note these spaces as Hp(A). It is obvious that for 1 < p < ∞, any dilation matrix A

and any cover �, we have the equivalence Hp(Rn) ∼ Hp(A) ∼ Hp(�) ∼ Lp(Rn),
where the embedding constants depend on the parameters of A and �. Therefore an
important question is to what extent are the various Hardy spaces different for the
range 0 < p ≤ 1. Theorem 5.8, which is the main result of this section, shows that for
the range 0 < p ≤ 1, two Hardy spaces are equivalent if and only if the covers they
are associated with induce an equivalent quasi-distance.

5.1 Properties of Anisotropic Hardy Spaces

It is straight forward to show that our anisotropic function spaces are invariant under
affine transforms

Lemma 5.1 let � be a cover,A be a non-singular affine transform and (p, q, l) an
admissible triplet. Then

(i) a is a (p, q, l) atom in Hp(�) iff |detA|−1/pa(A−1·) is a (p, q, l) atom in
Hp(A(�)).

(ii) For any f ∈ S ′, f ∈ Hp(�) iff f (A−1·) ∈ Hp(A(�)).
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Proof To prove (i), let a be a (p, q, l) atom in Hp(�) and denote ã :=
|detA|−1/pa(A−1·). We verify that ã satisfies the three properties of an atom in
Hp(A(�)):

1. It is obvious that the support of ã is contained in A(θ), where supp(a) ⊂ θ .
2. If q = ∞ then ‖ã‖∞ = |detA|−1/p‖a‖∞ ≤ |detA|−1/p|θ |−1/p = |A(θ)|−1/p .

Similar for q < ∞.
3. For any α ∈ Z

n+, |α| ≤ l, we have the zero moment property by

∫

Rn

ãxαdx = |detA|−1/p

∫

Rn

a
(
A−1x

)
xαdx = |detA|1−1/p

∫

Rn

a(y)(Ay)αdy = 0.

Claim (ii) follows directly from the atomic decomposition. If f = ∑
j λjaj with

∑
j |λj |p < ∞ then f (A−1·) = ∑

j λ̃j ãj , where ãj := |detA|−1/paj (A
−1·) are

(p, q, l) atoms in Hp(A(�)) and λ̃j := |detA|1/pλj . Thus,

‖f (A−1·)‖Hp(A(�)) ∼ inf
f (A−1·)=∑

j λ̃j ãj

(∑

j

|λ̃j |p
)1/p

= |detA|−1/p inf
f =∑

j λj aj

(∑

j

|λj |p
)1/p

= |detA|−1/p‖f ‖Hp(�). �

5.2 BMO(�)

Definition 5.2 Let � be a cover and let f : R
n → R. Denote the means over the

ellipsoids by

fθ := 1

|θ |
∫

θ

f (x)dx, θ ∈ �.

Then, f is said to belong to the space of Bounded Mean Oscillation BMO(�) if there
exists a constant 0 < M < ∞ such that

sup
θ∈�

1

|θ |
∫

θ

∣∣f (x) − fθ

∣∣dx ≤ M.

We denote by ‖f ‖BMO(�) the infimum over all such constants.

Recall that the above definition could be extended to allow arbitrary constants cθ

in place of the means fθ , θ ∈ �. Indeed, if for given {cθ }θ∈�, we have

sup
θ∈�

1

|θ |
∫

θ

∣∣f (x) − cθ

∣∣dx ≤ M ′,

then |cθ − fθ | ≤ M ′, ∀θ ∈ �, and ‖f ‖BMO(�) ≤ 2M ′. This observation along with
Theorem 2.7 implies that the Definition 5.2 is equivalent to the classical definition
[7] using means over the (anisotropic) balls induced by the quasi-distance. Thus we
have,
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Theorem 5.3 [7] The dual space of H 1(�) is BMO(�).

Remarks

1. For a proof of Theorem 5.3 one can consult the proof in Sect. IV.1.2 in [15] for
the isotropic case, since the proof is identical for the anisotropic case.

2. So as to limit the scope of the paper in some reasonable sense, we will address the
issue of the Campanato dual spaces of Hp(�), 0 < p < 1 (see Sect. 8 in [3]), in a
follow-up work.

It is obvious that L∞(Rn) ⊂ BMO(�) for any cover. The following is a typical ex-
ample for a non-bounded function in BMO(�)

Lemma 5.4 For any cover � of R
n, we have that log(ρ(·,0)) ∈ BMO(�) where ρ

is the induced quasi-distance and ‖log(ρ(·,0))‖BMO(�) ≤ c(p(�)).

Proof For any θ ∈ �, let xθ ∈ θ such that ρ(xθ ,0) := minx∈θ ρ(x,0).
Case I: |θ | ≤ ρ(xθ ,0). Observe that log(ρ(xθ ,0)) := minx∈θ log(ρ(x,0)). Since for
any x ∈ θ , ρ(x,0) ≤ κ(ρ(x, xθ ) + ρ(xθ ,0)), where κ ≥ 1 is defined in (2.4), we have
that

M(θ) := 1

|θ |
∫

θ

(log(ρ(x,0)) − log(ρ(xθ ,0)))dx

≤ 1

|θ |
∫

θ

(logκ(ρ(x, xθ ) + ρ(xθ ,0)) − log(ρ(xθ ,0)))dx

≤ logκ + 1

|θ |
∫

θ

log

(
ρ(x, xθ )

ρ(xθ ,0)
+ 1

)
dx

≤ logκ + 1

|θ |
∫

θ

log

( |θ |
ρ(xθ ,0)

+ 1

)
dx

≤ logκ + log 2.

Case II: ρ(xθ ,0) ≤ |θ |. By the triangle inequality (2.4), θ ⊂ B(0,2κ|θ |) and there-
fore

1

|θ |
∫

θ

log
(
2κ|θ |) − log

(
ρ(x,0)

)
dx

≤ c
1

|B(0,2κ|θ |)|
∫

B(0,2κ|θ |)
log

(
2κ|θ |) − log

(
ρ(x,0)

)
dx.

Applying Theorem 2.7 we have

1

|B(0,2κ|θ |)|
∫

B(0,2κ|θ |)
(log(2κ|θ |) − logρ(x,0))dx

= log(2κ|θ |) + 1

|B(0,2κ|θ |)|
∞∑

j=1

∫

B(0,2κ|θ |2−j+1)\B(0,2κ|θ |2−j )

logρ(x,0)−1dx
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≤ log(2κ|θ |) + 1

|B(0,2κ|θ |)|

×
∞∑

j=1

|B(0,2κ|θ |2−j+1)\B(0,2κ|θ |2−j )| log((2κ|θ |)−12j )

≤ log(2κ|θ |) − log(2κ|θ |) + c′ 1

2κ|θ |
∞∑

j=1

2κ|θ |2−j+1j

≤ c′
∞∑

j=1

2−j+1j = c′′.
�

5.3 A Classification Result

First, we recall some basic definitions from convex analysis.

Definition 5.5 Let K ⊂ R
n be a bounded domain with piecewise C1 boundary.

Let L ⊂ R
n be an hyperplane through the origin, with normal N . For each x ∈ L

let the perpendicular line through x ∈ L be Gx = {x + yN : y ∈ R}, and let lx :=
length(K ∩ Gx). The Steiner Symmetrization of K , with respect to L is

SL(K) = {x + yN : x ∈ L,K ∩ Gx �= ∅,−(1/2)lx ≤ y ≤ (1/2)lx}.

It is not hard to see that whenever K is convex so is SL(K) and that the Steiner
Symmetrization preserves volume, i.e. |SL(K)| = |K|, (see [2]).

For any hyperplane of the form H := {(y1, . . . , yn−1, h) : yi ∈ R}, with h fixed,
we denote H+ := {(y1, . . . , yn−1, yn) : yn ≥ h}, and H− := {(y1, . . . , yn−1, yn) :
yn ≤ h}. For a set K , ∂K denotes the boundary of K .

Lemma 5.6 Let θ be an ellipsoid in R
n. For 1 ≤ i ≤ n − 1, let Li be the hyperplane

Li := {x = (x1, . . . , xn) ∈ R
n : xi = 0}. Then the following hold

(a) The convex body K := SL1 ◦ SL2 ◦ · · · ◦ SLn−1(θ) is symmetric with respect the
xi -axis for every 1 ≤ i ≤ n.

(b) For every two hyperplanes of the form Hi = {(y1, . . . , yn−1, hi)}, i = 1,2, we
have that

|H−
1 ∩ H+

2 ∩ θ | = |H−
1 ∩ H+

2 ∩ K|.
(c) For every two hyperplanes of the form Hi = {(y1, . . . , yn−1, hi) : yi ∈ R},

i = 1,2, where h1 > h2, we have that

|H−
1 ∩ H+

2 ∩ θ | ≤ n!((h1 − h2)/(z̃n − x̃n))|θ |,

where x̃n = min(y1,...,yn)∈θ yn, and z̃n = max(y1,...,yn)∈θ yn.
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Proof Assertions (a) and (b) follow from the construction of K . We now prove (c).
First we show that

|K2| ≤ n!|K|, (5.1)

where K2 is the minimal (with respect to volume) box that contains K . For con-
venience we can assume that K is centered at the origin. Let a1, . . . , an > 0 be
positive numbers such that the points (a1,0, . . . ,0), (0, a2,0, . . . ,0), . . . , (0, . . . ,

0, an) belong to ∂K . Let K1 denote the convex hull of ±(a1,0, . . . ,0), . . . ,±(0,

. . . ,0, an) i.e. K1 := conv{±(a1,0, . . . ,0), . . . ,±(0, . . . ,0, an)} and let K2 :=
conv{(±a1,±a2, . . . ,±an)}. Obviously K2 is the minimal box that contain K , and

K1 ⊂ K ⊂ K2.

A simple integral calculation shows that |K1| = (
∏n

i=1 ai)2n/n!, and |K2| =
(
∏n

i=1 ai)2n, which implies (5.1). Thus, from (5.1) and (b) we have

|H−
1 ∩ H+

2 ∩ θ | = |H−
1 ∩ H+

2 ∩ (SL1 ◦ · · · ◦ SLn−1(θ))|
≤ |H−

1 ∩ H+
2 ∩ K2| = ((h1 − h2)/(z̃n − x̃n))|K2|

≤ n!((h1 − h2)/(z̃n − x̃n))|SL1 ◦ SL2 ◦ · · · ◦ SLn−1(θ)|
= n!((h1 − h2)/(z̃n − x̃n))|θ |. �

Lemma 5.7 Let � be a cover of R
n such that B∗ ∈ �0. For 1 ≤ i ≤ n define

gi(x1, . . . , xn) :=
{

log |xi | (x1, . . . , xn) ∈ B∗,
0 (x1, . . . , xn) /∈ B∗. (5.2)

Then gi ∈ BMO(�), with c1 ≤ ‖gi‖BMO(�) ≤ c2(p(�)).

Proof Without loss of generality, we assume that n > 1 (the univariate case is known
[15]) and i = n and for the rest of the proof we denote g := gn. From the definition
of the BMO space

‖g‖BMO(�) ≥ 1

|B∗|
∫

B∗

∣∣g(x) − cB∗
∣∣dx =: c1,

where cB∗ = 1
|B∗|

∫
B∗ g(y)dy.

In the other direction, if θ ∩ B∗ = ∅, then g(x) = 0 on θ and we’re done. Else,
θ ∩ B∗ �= ∅. Assume θ = θ(x, t). If t ≤ 0, then

1

|θ |
∫

θ

∣∣g(x) − cθ

∣∣dx ≤ 1

|θ |
∫

B∗

∣∣g(x)
∣∣dx ≤ c.

We now deal with the case θ = θ(x, t) with t ≥ 0. Let x̃ = (x̃1, . . . , x̃n) ∈ θ such that
x̃n = min(y1,...,yn)∈θ |yn|. There are two cases:
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Case I: max(y1,...,yn)∈θ |yn − x̃n| ≤ |x̃n|. Here we have

1

|θ |
∫

θ

(log |yn| − log |x̃n|)dy ≤ 1

|θ |
∫

θ

(log(|yn − x̃n| + |x̃n|) − log |x̃n|)dy

≤ 1

|θ |
∫

θ

log

( |yn − x̃n|
|x̃n| + 1

)
dy ≤ log 2.

Case II: max(y1,...,yn)∈θ |yn − x̃n| > |x̃n|. This condition implies that x + 3Mx,t (B
∗)

intersects the hyperplane {y = (y1, . . . , yn−1,0)}, where Mx,t is the matrix associated
with θ(x, t). Let (z1, . . . , zn−1,0) be some point in the intersection. From Lemma 2.2
there exists c̃ := c̃(p(�)) > 0 such that θ ⊆ B := B((z1, . . . , zn−1,0), c̃|θ |). Let
us explain this last fact. By Lemma 2.2 there exist c > 0 that depends only
on the parameters of the cover such that x + 3Mx,t (B

∗) ⊆ θ(x, t − 3c). Since
|θ(x, t − 3c)| ≤ a−1

1 a223c|θ(x, t)|, we can choose c̃ := a−1
1 a223c to obtain θ ⊆

B((z1, . . . , zn−1,0), c̃|θ |) as claimed.
Let z̃ := (z̃1, . . . , z̃n) ∈ B such that |z̃n| := max(y1,...,yn)∈B |yn|. With this defini-

tion,

1

|θ |
∫

θ

(
log |z̃n| − log |yn|

)
dy ≤ c

1

|B|
∫

B

(
log |z̃n| − log |yn|

)
dy.

Denoting

Hj := B ∩ {
(y1, . . . , yn) ∈ R

n : |yn| ≤ 2−j |z̃n|
}
, j ≥ 0,

we may apply Lemma 5.6 to conclude

1

|B|
∫

B

(log |z̃n| − log(|yn|))dy = log |z̃n| + 1

|B|
∞∑

j=1

∫

Hj−1\Hj

log |yn|−1dy

≤ log |z̃n| + 1

|B|
∞∑

j=1

|Hj−1\Hj | log(|z̃n|−12j )

≤ log |z̃n| − log |z̃n| + n! 1

|B|
∞∑

j=1

2−j |B|j

≤ n!
∞∑

j=1

2−j j = c(n).
�

Theorem 5.8 Let �1 and �2 be two covers and let ρ1 and ρ2 be the corresponding
induced quasi-distances. Then following are equivalent:

(i) The quasi-distances ρ1 and ρ2 are equivalent.
(ii) H 1(�1) ∼ H 1(�2), i.e., there exist constants 0 < A < B < ∞ such that for all

f ∈ S ′, A‖f ‖H 1(�1)
≤ ‖f ‖H 1(�2)

≤ B‖f ‖H 1(�1)
.

(iii) Hp(�1) ∼ Hp(�2) for all 0 < p ≤ 1.
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Remark Notice that in fact Theorem 5.8 really characterizes only the case p = 1.
Further generalization of the proof is needed to show that the quasi-distances are
equivalent iff the Hardy spaces are equivalent for some 0 < p ≤ 1.

Proof It is obvious that (i) ⇒ (iii) ⇒ (ii) and so it remains to show that (ii) ⇒ (i).
First, observe that for n = 1 any cover induces a quasi-distance which is equivalent to
the Euclidian distance, so the result is obvious. For n ≥ 2 assume to the contrary that
(ii) holds but (i) does not hold. Then w.l.g. there exists a sequence of pairs of points
um,vm ∈ R

n, m ≥ 1, such that

ρ1(um, vm)

ρ2(um, vm)
→

m→∞ 0. (5.3)

Assuming (5.3) holds we will construct a sequence of compactly supported piecewise
constant functions {fm} such that ‖fm‖H 1(�1)

/‖fm‖H 1(�2)
→ 0 as m → ∞ thereby

contradicting our assumption that H 1(�1) ∼ H 1(�2).
Let ε > 0, and let m ≥ 1 such that ρ1(um, vm)/ρ2(um, vm) ≤ ε. Let θ1 ∈ �1,

θ2 ∈ �2, such that ρ1(um, vm) = |θ1| and ρ2(um, vm) = |θ2|. We now construct three
ellipsoids centered at zm := (um + vm)/2 as follows:

(i) θ̃1 := θ(zm, t1) ∈ �1, such that |θ̃1| ∼ |θ1|, and um,vm ∈ θ̃1,
(ii) θ̃2 := θ(zm, t2) ∈ �2, such that |θ̃2| ∼ |θ2|, with um,vm ∈ (θ̃2)

c ,
(iii) θ̂2 := θ(zm, t2 + c) ∈ �2, with minimal c (depending on the parameters of the

cover �2) such that 2Mzm,t2+c(B
∗) ⊂ Mzm,t2(B

∗).

Select the affine transformation, Am, incorporating a rotational element, that satis-
fies:

(i) Am(B∗) = θ̂2,
(ii) A−1

m (θ̃1) is symmetric with respect to the xn = 0 hyperplane.

We define new covers �′
1 := A−1

m �1, �′
2 := A−1

m �2 with equivalent parameters to
�1, �2, respectively and new points ũm := A−1

m (um), ṽm := A−1
m (vm). We now have

the following geometric objects ‘at the origin’ with the following properties:

(i) B∗ = A−1
m (θ̂2) ∈ �′

2,
(ii) θ̃ ′

1 := A−1
m (θ̃1) ∈ �′

1, with ũm, ṽm ∈ θ̃ ′
1 and |θ̃ ′

1| < cε,
(iii) θ ′

2 := A−1
m (θ̃2) ∈ �′

2 with 2B∗ ⊂ θ ′
2, ũm, ṽm ∈ (θ ′

2)
c ⊂ (2B∗)c and |θ ′

2| ∼ 1.

We write θ̃ ′
1 = θ̃ ′

1(0, t̃ ′1) = M0,t̃ ′1(B
∗), where t̃ ′1 ∈ R. Since θ̃ ′

1 ∩ (2B∗)c �= ∅, we may
define

s′ := sup{s ≥ 0 : (2B∗)c ∩ M0,t̃ ′1+s(B
∗) �= ∅}

and

θ ′
1 := M0,t̃ ′1+s′(B∗).

The newly constructed ellipsoid θ ′
1 has the following properties:
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(i) (2B∗)c ∩ θ ′
1 �= ∅,

(ii) From the properties of covers and maximality of s′, there exists a constant C0
depending on the parameters of the ellipsoid cover �′

1 (which are equivalent to
the parameters of �1), such that θ ′

1 ⊂ C0B
∗,

(iii) W.L.G (by rotation), the distance between antipodal points on θ ′
1 is maximal

along the x1 axis,
(iv) |θ ′

1| ≤ cε.

The properties of θ ′
1 imply that

|B∗ ∩ θ ′
1 ∩ {x ∈ R

n : x1 > 0}| ∼ |(B∗)c ∩ 2B∗ ∩ θ ′
1 ∩ {x ∈ R

n : x1 > 0}| ∼ |θ ′
1|,

and therefore the existence of two boxes �1 and �2 that are symmetric to the main
axes and of dimensions a1 × · · · × an with the following properties:

(i) �1 ⊂ B∗ ∩ θ ′
1,

(ii) �2 ⊂ (B∗)c ∩ 2B∗ ∩ θ ′
1,

(iii) There exists 2 ≤ i ≤ n such that ai ≤ c n−1
√

ε,
(iv) |�1| = |�2| ∼ |θ ′

1|, which implies that 1/ai ∼ a1×···×ai−1×ai+1×···×an

|θ ′
1| ,

(v) �1 ∩ {x ∈ R
n : xi = 0} �= ∅ and �2 ∩ {x ∈ R

n : xi = 0} �= ∅.

We shall now construct an atom am in H 1(�′
1) (which implies ‖am‖H 1(�′

1)
≤ 1)

for which ‖am‖H 1(�′
2)

≥ c′ log(c′′ε−1). This will mean that for fm := am(A−1
m ·) we

will have ‖fm‖H 1(�1)
/‖fm‖H 1(�2)

≤ c′′′log(c′′ε−1)
−1

.
We define the atom am in H 1(�′

1) by am := |θ ′
1|−1(1�1(x) − 1�2(x)) (am satisfies

the conditions of Definition 4.1). By Lemma 5.7, the function gi defined by (5.2) is
in BMO(�′

2), with ‖gi‖BMO(�′
2)

∼ 1. From the properties of gi and the boxes �1 and
�2 we have

‖am‖H 1(�′
2)

= sup
φ∈BMO(�′

2)

|〈am,φ〉|
‖φ‖BMO(�′

2)

≥ c|〈am,gi〉|

≥ −c
1

θ ′
1

∫

�1

log |xi |dx

≥ −c
a1 × · · · × ai−1 × ai+1 × · · · × an

θ ′
1

∫ ai

0
log(xi)dxi

≥ −c(1/ai)

∫ ai

0
log(xi)dxi

≥ c′ log(c′′ε−1). �
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