MATH 172 Spring, 2004 Exam \#2 Name:

There are 100 points. For full credit you must show your work. You may use a calculator, but this does not exempt you from explaining your answers by giving results of computations or sketches of graphs, etc.

1. (36 points) For each model equation, and initial condition, first give the solution equation. Then answer the other questions.
a. Model equation $u_{n}=(1.07) u_{n-1}$ with initial condition $u_{0}=350$; then $u_{5}=$ \qquad
b. Model equation $P^{\prime}(t)=0.07 P(t)$ with initial contion $P(0)=350$; then $P(5)=$ \qquad . The population is double the initial population when $t=$ \qquad
c. Model equation $z_{n}=z_{n-1}+(3 / 2)$ with initial condition $z_{0}=9$.
d. Model equation $v_{n}=0.96 v_{n-1}+5$ with $v_{0}=200$. Does the equilibrium appear to be stable (yes or no)? \qquad Briefly explain.
e. In (d) compute the ratio $\frac{v_{n}-E}{v_{n-1}-E}$ and explain its significance by saying how rapidly v_{n} goes towards or away from the equilibrium.
f. (7 bonus points) Model equation $P^{\prime}=-0.04 P+5$ with $P(0)=200$.
2. (10 points) Verify that $Q(x)=2 x^{2}+c x+d$, where c and d are constants, satisfies the model equation $Q^{\prime \prime}(x)=4$. Compute the values of c and d so that $Q(0)=5$ and $Q^{\prime}(0)=3$.
3. (7 points) Convert $r=2, \theta=5 \pi / 6$ (radians) to (x, y) coordinates. Also give the equivalent measure of $\theta=5 \pi / 6$ in degrees.
4. (10 points) The period of $\sin (3 x)$ is $x=$ \qquad . Find A and B so that $A \cos (B x)$ has an amplitude of 5 and a period of 4 .
5. (12 points) Determine the model equation satisfied by $R(t)=-3 \cos 5 t+$ $2 \sin 5 t$.
6. (15 points) Let $A=\left[\begin{array}{cc}1.3 & -0.2 \\ 0.15 & 0.9\end{array}\right], \mathbf{v}=\left[\begin{array}{l}2 \\ 1\end{array}\right], \mathbf{w}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$.
a. Compute $A \mathbf{v}$ and $A \mathbf{w}$.
b. The eigenvalues for this matrix are $\lambda_{1}=1.2$ and $\lambda_{2}=1$, and eigenvectors are \mathbf{v} and \mathbf{w}. Which goes with which? Briefly explain.
c. Find a vector that lines up with the eigenvector belonging to eigenvalue 1, but whose column total is 1 .
7. (10 points) Compute the sum of each series; or state that no sum exists.
a. $\quad \sum_{k=0}^{\infty}(3 / 10)(-1 / 5)^{k}$
b. $\quad \sum_{j=0}^{\infty}(1 / 4)(5 / 2)^{j}$
8. (6 bonus points) In a 2 -variable system you find that eventually $u_{n} \approx 1.09 u_{n-1}$ and $v_{n} \approx 1.02 v_{n-1}$. Is the total population $T_{n}=u_{n}+v_{n}$ growing or decling? Can you say at what rate? Is there eventually a stable distribution? Briefly explain your answers.
9. (6 bonus points) Given below is the transition matrix for a weather model with three states: sunny (S), cloudy (C) and rainy (R).

$$
A=\begin{array}{ccccc}
\text { tomorrow } \downarrow \text { today } \rightarrow & S & C & R \\
S & 1 / 2 & 0 & 1 / 8 \\
C & 1 / 4 & 1 / 4 & 1 / 8 \\
R & 1 / 4 & 3 / 4 & 3 / 4
\end{array} \quad \mathbf{v}=\left[\begin{array}{c}
1 / 6 \\
1 / 6 \\
2 / 3
\end{array}\right] .
$$

If it is rainy today, what is the probability that it is cloudy tomorrow? \qquad . If it is rainy today, what is the probability that it is cloudy the day after tomorrow? ___ (Hint: don't do more work that is absolutely necessary!) One can show that $A \mathbf{v}=\mathbf{v}$; what is the significance of this observation?

