1. (15 points) Let $A = \begin{bmatrix} 2 & 5 \\ 6 & 1 \end{bmatrix}$, $\mathbf{u} = \begin{bmatrix} 5 \\ -6 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$, and $\mathbf{w} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$. Which of \mathbf{u} , \mathbf{v} , and \mathbf{w} is an eigenvector, and which is not? Explain, and give the corresponding eigenvalues, where appropriate.

Name:

- 2. (20 points) A population consists of individuals in four stages of development: newborns (N_t) , juveniles (J_t) , reproductive adults (R_t) , and postreproductive adults ("grandmothers" G_t). Newborns have a mortality rate of 70%; those that survive become juveniles. Juveniles have a total survival rate of 60% in two categories: 20% remain in the juvenile phase and 40% advance to the reproductive adult phase. Also juveniles rarely reproduce: on average each contributes 1 newborn to the next generation. Reproductive adults have a survival rate of 80% as reproductive adults, and 10% become post-reproductive adults. Meanwhile each contributes 5 newborns to the next generation. Post-reproductive adults produce no offspring, but have a survival rate of 70%.
 - a. Set up the population transition matrix A to express the information above, so that $\mathbf{P}_{t+1} = A\mathbf{P}_t$.

b. The initial population vector is $\mathbf{P}_0 = \begin{bmatrix} 100\\ 10\\ 10\\ 10\\ 10 \end{bmatrix}$. Compute \mathbf{P}_1 .

c. At
$$t = 10$$
 we have $\mathbf{P}_{10} = \begin{bmatrix} 883\\ 238\\ 185\\ 30 \end{bmatrix}$ (approximately). Determine the total

population and the distribution vector \mathbf{D}_{10} . Carry three significant figure accuracy after the "leading" 0's (like 0.0273).

d. The dominant eigenvalue is $\lambda = 1.3147$ with eigenvector $\mathbf{v} = \begin{bmatrix} 0.661\\ 0.178\\ 0.138\\ 0.0225 \end{bmatrix}$.

Has the population reached its stable age/stage distribution at t = 10? How can you tell? Use λ to predict the total population at t = 11 and the value of N_{11} , that is, the number of newborns at t = 11; show your work.