MATH 172 Fall, 2011 Quiz #1 Name:

- 1. A population grows so that $P_{n+1} = (1.04)P_n$, where *n* represents generations; the initial population is $P_0 = 100$.
 - a. Compute P_1 , P_2 , P_3 , and the general solution for P_n , which is an **equation**, for this model.

- b. Compute the population after 100 generations.
- c. Rewrite the model equation to have the form of a difference equation, that is, some equation of the form $\Delta P =$ something in terms of P_n , where you may take $\Delta P = P_{n+1} P_n$.
- Suppose a population S(t) of skinks is growing over time so that the per capita rate of increase is 0.007/day. Assume that skinks reproduce continuously (at least through the summer). The initial population is S(0) = 3000.
 a. Write the model equation that describes this situation.
 - d. Show how to get an **approximation** for the skink population in 20 days using just one step. Then do the same using two steps. (Hint: remember $\Delta S \approx S' \Delta t$; what is Δt in each case?)