MATH 172 Fall, 2011 Exam \#2 Name:

There are 100 points. For full credit you must show your work. Recall that (1) an affine continuous model $\frac{d Q}{d t}=a Q+b$ has an explicit solution $Q(t)=C e^{a t}+Q^{*}$, where Q^{*} is the equilibrium value, and C can be determined from the initial condition, and (2) an affine discrete model $Q_{n+1}=a Q_{n}+b$ has an explicit solution $Q_{n}=C a^{n}+Q^{*}$, where Q^{*} is the equilibrium value, and C can be determined from the initial condition.

1. (16 points) We are given a discrete model $P_{n+1}=(-0.9) P_{n}+95$ with $P(0)=70$.
a. Find the explicit solution for P_{n}.
b. What happens to P_{n} as $n \rightarrow \infty$? Does it increase, decrease, oscillate, tend towards or away from the equilibrium? Conclude whether the equilibrium is stable or not.
2. (10 points) Let $A=\left[\begin{array}{cc}-4 & 6 \\ 9 & 11\end{array}\right], \mathbf{v}=\left[\begin{array}{l}1 \\ 3\end{array}\right], \mathbf{w}=\left[\begin{array}{c}-2 \\ 1\end{array}\right]$. Determine which (possibly both) of \mathbf{v} and \mathbf{w} is an eigenvector for A, and find the corresponding eigenvalue.
3. (16 points) In a particular wooded habitat, a population of birds $B=B(t)$ declines at a per capita rate of $6 \% \mathrm{yr}^{-1}$, but is reinforced by the in-migration of birds from destroyed nearby habitats at 300 birds/yr. Write a continuous affine model equation for this situation, and solve it, assuming that the initial bird population is 15,000 . What exactly happens to the bird population in the long term, and how do you know?
4. (16 points) A matrix M has eigenvectors \mathbf{v}_{1} and \mathbf{v}_{2}. These go with eigenvalues $\lambda_{1}=1.04$ and $\lambda_{2}=0.8$, respectively. We have $\mathbf{P}_{0}=\mathbf{v}_{1}+5 \mathbf{v}_{2}$.
a. Compute $\mathbf{P}_{1}=M \mathbf{P}_{0}$. You may leave the symbols \mathbf{v}_{1} and \mathbf{v}_{2} in your answer.
b. Compute $\mathbf{P}_{2}=M^{2} \mathbf{P}_{0}$. You may leave the symbols \mathbf{v}_{1} and \mathbf{v}_{2} in your answer.
c. What is a good approximation to $\mathbf{P}_{t}=M^{t} \mathbf{P}_{0}$ when t is large? Briefly explain.
5. (26 points) A population consists of 0 to 3 year olds: newborns $\left(N_{t}\right)$, juveniles $\left(J_{t}\right)$, subadults $\left(S_{t}\right)$, and mature adults $\left(M_{t}\right)$.
a. In each time period an individual either dies or survives and moves into the next age group. Set up the Leslie or population transition matrix A to express the following data. Newborns have a mortality rate of 80% over the first year. Juveniles have a survival rate of 60%, and subadults have a survival rate of 90%. Subadults produce 1 newborn on average each year; mature adults produce 10 , and die after reproduction.
b. The initial population vector is $\mathbf{P}_{0}=\left[\begin{array}{c}100 \\ 0 \\ 10 \\ 0\end{array}\right]$. Compute \mathbf{P}_{1} and \mathbf{P}_{2}.
d. The dominant eigenvalue for A is $\lambda=1.048$, which goes with an eigenvector $\mathbf{v}=\left[\begin{array}{l}0.717 \\ 0.138 \\ 0.078 \\ 0.067\end{array}\right]$. We find that $\mathbf{P}_{30}=\left[\begin{array}{c}221.5 \\ 30.3 \\ 27.2 \\ 15.7\end{array}\right]$ (total 294.7). Has the population reached its stable age distribution? Explain.
c. Now suppose these groups represent stages of development. Modify the matrix A to give a Lefkowitch matrix B in which the fecundities (reproduction of newborns) are as before, the survival of newborns to become juveniles remains the same, and 25% of juveniles survive as juveniles, while 35% grow into subadults. Subadults remain subadults with a 75% chance and grow into mature adults with a 15% chance. Mature adults survive with a 90% chance.
e. The dominant eigenvalue for B is 1.172 with eigenvector $\mathbf{v}=\left[\begin{array}{l}0.668 \\ 0.145 \\ 0.120 \\ 0.066\end{array}\right]$, and the total population at $t=30$ is 5117 with $\mathbf{P}_{30}=\left[\begin{array}{c}3420.3 \\ 741.9 \\ 615.3 \\ 339.3\end{array}\right]$. Has this population reached stable age distribution, and why? Use the eigenvalue to predict the total population at $t=31$. Why, in real life terms, should the eigenvalue and the population values be larger than the corresponding ones for A ?
6. (16 points) A grasshopper population $G=G(t)$, measured in millions, now finds that the quality of the habitat is decreasing as measured by the per capita growth rate $s(t)$; in fact $\frac{d G}{d t}=s(t) G$, with $s(t)=0.08-0.005 t$ in units of yr^{-1}. At time $t=0$ there were 20 million individuals.
a. Use separation of variables to solve the model equation and use your solution to find the number of grasshoppers at times $t=10$ years.
b. How does the information provided about $s(t)$ tell us that the quality of the habitat is decreasing?
c. (Bonus) Explain how you can tell that $G(t)$ increases and then decreases. At what time does the population peak? Hint: the graph of $s(t)$ gives it away.
