

195

7

Introduction to
Maple Programming

C

hemical engineers apply

principles of chemistry, physics, and engineering to the design and oper-

ation of industrial plants for the production of materials that are mixed

and undergo other chemical changes during the manufacturing process.

Reactors and reactor models can be used to synthesize and analyze the

components that are combined to create products such as shampoos,

cosmetics, plastics and drugs. The reactor model developed in this

chapter’s application is based on the principle of

conservation of mass

.

The use of Maple in the analysis of this model involves a user-defined

procedure written in the Maple programming language. In addition to

introducing the Maple programming language, you will find discussions

on the use of conditional and looping statements.

Solvents and Solutes

196

MAPLE V FOR ENGINEERS

he first six chapters presented techniques for direct interaction
with Maple: enter a command, receive a response. While this is suf-
ficient for many situations, there are times when repeatedly step-

ping through complicated multi-command sequences is inconvenient and
inefficient. The main topic of this chapter is the use of Maple as a pro-
gramming language to create user-defined commands, including loops,
conditionals, input arguments, error handling, and return values.

The simplicity of Maple programs, more properly called

procedures

, is
derived from the fact that the programming is done using standard Maple
commands. The power of the Maple programming language is evidenced
by the fact that almost all Maple commands are implemented in the Maple
programming language. Moreover, as you will learn in Section 7.1, the def-
initions can be viewed, and even modified, by the user.

Some of the examples and problems present a final look at examples and
applications from previous chapters. The application introduced in this
chapter investigates some of the analytical techniques used by chemical
engineers in the design of reactors for the mixing of solvents and solutes.

7-1 VIEWING MAPLE PROCEDURES

Almost all Maple commands are written in Maple, and these definitions
can be viewed by the user. Thus, a natural way to begin to learn about the
Maple programming language is by looking at the way these commands
are implemented. The

showstat

 command (which is new in Release 4) dis-
plays a procedure in a format that clearly illustrates the structure of the
procedure specified in the first argument.

Viewing a Maple Procedure

Use

showstat

 to display the definition of the

conjugate

 function.

SOLUTION

>

showstat(

conjugate

);

conjugate := proc(a)
 1 if nargs <> 1 then
 2 ERROR(`expecting 1 argument, got `.nargs)
 elif type(a,`complex(numeric)`) then
 3 subs((-1)^(1/2) = -(-1)^(1/2),a)
 elif type(a,anything^integer) then
 4 conjugate(op(1,a))^op(2,a)
 elif type(a,`*`) and type(op(1,a),numeric) then
 5 op(1,a)*conjugate(subsop(1 = 1,a))
 else
 6 `conjugate/conjugate`(a)
 fi

■ ■

end

TINTRODUCTION

EXAMPLE 7-1

CHAPTER 7 INTRODUCTION TO MAPLE PROGRAMMING

197

Note that the first unnumbered line of the definition says that

conjugate

is defined to be a

procedure

 (

proc

...

end

) with one formal argument (

a

).
The body of the procedure, the lines numbered 1 through 6, illustrates
Maple’s

conditional statement

 (

if

...

then

...

elif

...

else

...

fi

). The

end

 indi-
cates the end of the procedure’s body. The value returned by

conjugate

is the value of the last command executed in the procedure.
The conditional statement is not difficult to understand. The Boolean

expression in line 1 checks the arguments for errors. If

conjugate

 is
called with more than one argument, or no arguments, then

nargs<>1

 will
evaluate to

true

, execution of

conjugate

 will terminate, and an error
message will be generated. If there is exactly one argument, then process-
ing continues by checking the Boolean expressions in the

elif

 lines. If all
of the Boolean expressions evaluate to

false

, then the command
following the

else

 is executed.

Determine input arguments that will be processed by each of the five dif-

ferent cases in the definition of

conjugate

.

Since a procedure is a Maple object, the

print

 command provides a second
method for viewing the definition of a command. One complication with
the use of

print

 is that, by default, Maple does not display the body of proce-
dures. To override this default, the command

interface(

verboseproc=2):

should be executed. (The

eval

 command produces the same output
as

print

.)

Another Method for Viewing a Maple Procedure

Use

print

 to display the definition of

conjugate

. How does this compare
with the display produced by

showstat

?

SOLUTION

Before the interface default is changed, printing a procedure simply
shows that

conjugate

 is a procedure with one formal parameter.

>

print(

conjugate

);

proc

(

a

) ... end

When the printing of procedure bodies is enabled, the result is

>

interface(

verboseproc=2

):

>

print(

conjugate

);

proc

(

a

)

option `Copyright (c) 1995 by Waterloo Maple Inc. All rights reserved.`;
if nargs ≠ 1 then ERROR (`expecting 1 argument, got `.nargs)
elif type (a, `complex(numeric)`) then subs(I=-I,a)
elif type (a, anything^integer) then conjugate(op(1,a))^op(2,a)
elif type (a, `*`) and type(op(1,a), numeric) then
op(1,a)*conjugate(subsop(1=1,a))

else `conjugate/conjugate`(a)
fi

end

Try It

!

EXAMPLE 7-2

198 MAPLE V FOR ENGINEERS

Differences between the output produced by print and by showstat
include the inclusion of line numbers by showstat and the use of differ-
ent fonts and styles to distinguish names, functions, and reserved words
by print. Note also that I is displayed by print, but showstat uses the

■ ■

internal representation ((-1)^(1/2)).

For short procedures, the differences between print and showstat are
often a matter of personal taste. For longer procedures, however, the abil-
ity to display selected lines from a procedure with showstat can be
extremely useful. The line numbers correspond to the line numbers pro-
duced by showstat and are specified in the optional second argument as
a single number or as a range.

Viewing a Portion of a Procedure

Display the first three lines of the definition of conjugate.

SOLUTION

> showstat(conjugate, 1..3);

conjugate := proc(a)
 1 if nargs <> 1 then
 2 ERROR(`expecting 1 argument, got `.nargs)
 elif type(a,'complex(numeric)') then
 3 subs((-1)^(1/2) = -(-1)^(1/2),a)
 elif type(a,anything^integer) then
 ...
 elif type(a,`*`) and type(op(1,a),numeric) then
 ...
 else
 ...
 fi
end

The proc and end lines are always displayed by showstat. The condi-
tional command (line 1) includes the elif, else, and fi lines even though

■ ■

they do not appear within the specified lines in the definition.

The definition of the dsolve command is quite long (93 numbered lines).
The first few lines check the input arguments, then a conditional is used
to determine the method to use to attempt to solve the equation. Use
showstat to a) display the part of dsolve that looks for errors in the
arguments and b) display the conditional statement that shows the tests
Maple applies to determine the algorithm to use to attempt to solve the
equation.

EXAMPLE 7-3

Try It

!

CHAPTER 7 INTRODUCTION TO MAPLE PROGRAMMING 199

The only commands that cannot be displayed using showstat, print, or
eval are the built-in commands. These are typically the most fundamental
commands and other commands whose Maple implementation would be
noticeably inefficient. Examples of built-in commands include subs, op,
sort, and diff.

7-2 FUNCTIONAL OPERATORS
As the examples in Section 7.1 illustrate, the proc ... end command is
the primary Maple command used to define a Maple procedure. The arrow
operator (->), which you first encountered in Chapter 3, can be used to
define simple procedures, called functional operators, which consist of a
single command. In general, while the arrow operator is somewhat sim-
pler to use than proc ... end, its main use is for implementing mathe-
matical functions, for example, f := (x,y) -> (x^2-y^2)/(x^2+y^2);.

Example 3-8 Revisited with Functional Operators

In Example 3-8 you created the sorted list of integers, through 1 million,
that are both perfect squares and cubes. Use the arrow operator and the
member command to define a procedure, checkSC, whose input argument
is a single integer, n, and returns true if n is both a perfect square and
cube and false in all other cases.

SOLUTION

From the solution to Example 3-8, the following commands create the
sorted list of perfect squares and cubes that do not exceed 1 million.

> SQR := { i^2 $ i=1..1000 }:
> CUB := { i^3 $ i=1..100 }:
> SClist := sort(convert(SQR intersect CUB, list)):

The simplest Maple procedure that meets the requirements of this
problem is

> checkSC := n -> member(n, SClist);

checkSC := n -> member(n, SClist)

To test this procedure, call checkSC for a variety of input arguments.

> checkSC(64);

true

> checkSC(65);

■ ■

false

EXAMPLE 7-4

200 MAPLE V FOR ENGINEERS

The implementation of checkSC in Example 7-4 assumes that the argu-
ment is a single number. One means of overcoming this limitation is the
map command, which applies a procedure, specified as its first argument,
to each operand of the expression specified in the second argument. If the
procedure requires additional arguments, these can be specified as
optional arguments to map.

Determine, in a single statement, which powers of 2 are in SClist. (Hint:
Use $ to create the list of all powers of 2 that do not exceed 1 million.)

A Recursive Extension to Example 7-4

Implement, using the arrow operator and recursion, a version of checkSC
that is automatically applied to each element of any set or list that is spec-
ified as an argument.

SOLUTION

One way to approach this problem is with recursion. In this case, this
means that the basic definition is to be applied only when the argument
contains a single operand; otherwise, the function should be mapped to
each operand. For example,

> checkSC2 := n -> if nops(n)=1
> then member(n, SClist)
> else map(checkSC2, n)
> fi;

checkSC2 := proc(n)
option operator, arrow;
 if nops(n) = 1 then member(n, SClist)
 else map(checkSC2, n)
 fi
end

Testing of checkSC2 should include examples that can be evaluated
with and without recursion.

> checkSC2(64);

true

> checkSC2(65);

false

> checkSC2([k^3 $ k=1..20]);

[true, false, false, true, false, false, false, false, true, false, false, false,
false, false, false, true, false, false, false, false]

Try It

!

EXAMPLE 7-5

CHAPTER 7 INTRODUCTION TO MAPLE PROGRAMMING 201

It might seem that the simpler definition
checkSC3 := n -> map(member,n,SClist); fulfills the requirements of
Example 7-5, without resorting to recursion. Show that checkSC2 and
checkSC3 are not equivalent by finding one argument for which different
results are obtained.

Recursion can be very useful, but it should not be overused. In particular,
one of the quickest ways to kill a Maple session is to define a recursive
function whose stopping state is never satisfied. (See the Maple V Pro-
gramming Guide, Section 1.2, for additional comments on the use of
recursion in Maple.)

A Purely Procedural Solution to Example 7-4

The various implementations of checkSC all depend on the prior existence of
SClist, the list of perfect squares and cubes through 1 million. Create a
functional operator testSC that can be applied for any integer argument,
or set or list of integers. Test testSC on the list [32^k $ k = 0 .. 12].

SOLUTION

If the collection of perfect squares and cubes is not computed in advance,
then it will be necessary to implement a test that determines whether an
integer is a perfect square and a perfect cube. One possibility is

> testSC := n -> if nops(n) = 1
> then evalb(ispower(n,2) and ispower(n,3))
> else map(testSC, n)
> fi;

testSC := proc(n)
option operator, arrow;
 if nops(n) = 1 then evalb(ispower(n, 2) and ispower(n, 3))
 else map(testSC, n)
 fi
end

where ispower is a Maple function, which has not yet been written, that
accepts two integer arguments (n,p), with p > 0, and returns true if n = mp

for some integer m and false otherwise. Since n = mp for some integer m
if and only if n1/p is an integer, this suggests the use of surd to implement
ispower:

> ispower := (NUMBER, POWER) -> type(surd(NUMBER, POWER), integer);

ispower := (NUMBER, POWER) -> type(surd(NUMBER, POWER), integer)

To conclude, you should first test that ispower is working correctly

Try It

!

EXAMPLE 7-6

202 MAPLE V FOR ENGINEERS

> ispower(32, 2);

false

> ispower(32, 5);

true

Since these results are correct, you should conclude by conducting tri-
als with testSC:

> testSC([32, 64]);

[false, true]

> pow32 := [32^k $ k=0..12];

pow32 := [1, 32, 1024, 32768, 1048576, 33554432, 1073741824,
34359738368, 1099511627776, 35184372088832,
1125899906842624, 36028797018963968,
1152921504606846976]

> testSC(pow32);

[true, false, false, false, false, false, true, false, false, false, false, false, true]

Thus, from this list of 13 integers, only 3 are perfect squares and cubes.

Compare the results obtained in Example 7-6 with those obtained by
applying the appropriate version of checkSC to pow32.

The specific integers from pow32 that are perfect squares and cubes can
be found by careful counting. The select command provides a more gen-
eral method of selecting elements of a list, set, sum, product, or function
that meet a prescribed Boolean condition. The remove command is simi-
lar, except that the output is formed by removing all elements that meet
the condition. For example, to extract the five entries from pow32 that are
perfect cubes

> select(ispower, pow32, 3);

[1, 32768, 1073741824, 35184372088832, 1152921504606846976]

Use select and testSC to identify the three elements of pow32 that were
identified as perfect squares and cubes in Example 7-6.

Try It

!

Try It

!

CHAPTER 7 INTRODUCTION TO MAPLE PROGRAMMING 203

The map command, and its close relative map2, can be used for functions
with more than one argument. For example, map(ispower, pow32, 3);
checks if each element of the pow32 is an integer power of 3. Similarly,
map2(ispower, 64, [2, 3, 4]); determines if 64 is a perfect square,
cube, or quartic power. Note that, for both map and map2, only one argu-
ment of the function changes and the difference between map and map2 is
the location of the argument that changes.

7-3 TYPE CHECKING, ERROR, AND RETURN
The testSC procedure defined in Example 7-6 is written with the implicit
assumption that the argument is an integer or a compound object whose
operands are integers.

Using testSC with Non-integer Arguments

Consider the implementation of testSC and ispower from Example 7-6.
What response do you expect from the command testSC(1/64);? What
response is produced by this command?

SOLUTION

From the context of the original definition of checkSC, it would seem that
this command should produce either an error message or false. In fact,
execution of this command yields

> testSC(1/64);

Error, (in testSC) too many levels of recursion

The infinite loop is caused by the fact that nops(1/64) evaluates to 2,
but map sees only a single element to which testSC should be applied.

■ ■

The same error message is obtained for any rational number.

This problem can be avoided if you include explicit checks that the argu-
ments to a user-defined procedure have the correct type and structure.
One way to accomplish this is with conditionals involving the type com-
mand and messages created by the ERROR command.

Explicit Type Checking

Modify the definition of testSC to include a check that the argument is an
integer, set of integers, or list of integers.

SOLUTION

Note that if the arrow operator is to be used, it is necessary to include the
entire type checking and definition in a single (conditional) statement.
One possibility is

EXAMPLE 7-7

EXAMPLE 7-8

204 MAPLE V FOR ENGINEERS

> testSC := n ->
> if not type(n,{integer,set(integer),list(integer)}) then
> ERROR(`argument must be an integer or a list or set of integers`)
> elif nops(n)=1 then
> evalb(ispower(n,2) and ispower(n,3))
> else
> map(testSC, n)
> fi;

testSC := proc(n)
option operator, arrow;
if not type(n, {list(integer), set(integer), integer}) then
ERROR(`argument must be an integer or a list or set of integers`)

elif nops(n) = 1 then evalb(ispower(n, 2) and ispower(n, 3))
else map(testSC, n)
fi

end

Note that normal usage has not been changed

> testSC(64);

true

> testSC([1, -1, 64]);

[true, false, true]

while noninteger data is now reported as invalid

> testSC(1/64);

Error, (in testSC) argument must be an integer or a list or set of integers

> testSC([1, 2, 1/6]);

Error, (in testSC) argument must be an integer or a list or set of integers

Observe that even though the arrow operator is used to define checkSC2
and testSC, the printed version that appears immediately after the defini-
tion uses the proc ... end structure. The only indication that these proce-

■ ■

dures came from an arrow operator is the line (option operator, arrow;).

Maple’s type-based pattern matching provides a second technique to
check that input arguments are of a specific type. To use this feature for
checking arguments of a procedure, simply append the string :: and the
appropriate type specification immediately following the appropriate
name in the argument list, for example n :: integer. In particular, x :: t
is a synonym for type(x, t). Additional information about pattern
matching can be found under the help topic typematch. For information
about the description of types, see the type, type,surface, and
type,structure help worksheets.

CHAPTER 7 INTRODUCTION TO MAPLE PROGRAMMING 205

Automatic Pattern Matching

Rewrite the version of testSC in Example 7-8 in a form that uses Maple’s
type-based pattern matching. Compare the output from this procedure
and the one in Example 7-8.

SOLUTION

The only modification that is required is to move the description of a valid
argument from the first part of the conditional to the left-hand side of the
arrow operator, which must be enclosed in parentheses.

> testSC := (n :: {integer,set(integer),list(integer)}) ->
> if nops(n)=1 then
> evalb(ispower(n,2) and ispower(n,3))
> else
> map(testSC, n)
> fi;

testSC := proc(n::{list(integer), set(integer), integer})
option operator, arrow;
 if nops(n) = 1 then evalb(ispower(n, 2) and ispower(n, 3))
 else map(testSC, n)
 fi
end

The tests of this implementation show its equivalence to the implemen-
tation in Example 7-8:

> testSC(64);

true

> testSC([1, -1, 64]);

[true, false, true]

> testSC(1/64);

Error, testSC expects its 1st argument, n, to be of type {list(integer),
set(integer), integer}, but received 1/64

> testSC([1, 2, 1/6]);

Error, testSC expects its 1st argument, n, to be of type
{list(integer), set(integer), integer}, but received [1, 2, 1/6]

The only difference between the implementations in Example 7-8 and
this one is that the error messages created with the automatic pattern
matching are more informative than the simple messages generrated in

■ ■

Example 7-8.

EXAMPLE 7-9

206 MAPLE V FOR ENGINEERS

Rewrite the ispower procedure so that it generates error messages when
the first argument is not an integer and the second argument is not a pos-
itive integer. (Select appropriate test cases that test all aspects of the new
definition.)

The value returned by a procedure is usually the value of the last evalu-
ated expression before the end of the procedure. One exception to this is
the ERROR command, which stops execution of the procedure without
returning a value and displays the error message that is provided. The
RETURN command also terminates execution of a procedure, but returns
the value of the expression in its argument (after evaluation).

The Fibonacci Sequence

The Fibonacci sequence is the sequence of integers 0, 1, 1, 2, 3, 5, 8, … .
The complete mathematical definition of this sequence is fn = fn − 1 + fn − 2
if n ≥ 2 with f0 = 0 and f1 = 1. Write a Maple procedure that returns the
nth Fibonacci number, fn.

SOLUTION

A Maple procedure, complete with type checking, for the computation
of the nth Fibonacci number is

> fib := proc(n :: nonnegint)
> if n>=2 then
> RETURN(fib(n-1)+fib(n-2))
> else
> RETURN(n)
> fi
> end:

Note that neither RETURN is necessary in this case, but that the use of
RETURN in these situations is good programming style. You should
develop these habits from the outset.

The first eleven Fibonacci numbers are

> [seq(fib(k), k=0..10)];

■ ■

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

The efficient evaluation of a recursively defined function should avoid
repeated evaluation of the function for the same argument. In Maple, a
remember table keeps a record of the input arguments and corresponding
return value for all calls to a procedure (see the help worksheet for
remember). To request that a procedure maintain a remember table, sim-
ply specify option remember; between the proc clause and the first line
of the body of the procedure.

Try It

!

EXAMPLE 7-10

CHAPTER 7 INTRODUCTION TO MAPLE PROGRAMMING 207

Creating a Remember Table

Modify the definition of fib in Example 7-10 to create a new procedure,
Fib, that uses a remember table.

SOLUTION

The only modifications are the renaming of the procedure and the
insertion of option remember; immediately following the proc command.

> Fib := proc(n :: nonnegint)
> option remember;
> if n>=2 then
> RETURN(Fib(n-1)+Fib(n-2))
> else
> RETURN(n)
> fi
> end:

A simple test that this function works as expected is:

> Fib(10);

■ ■

55

The number of function calls, cn, required to compute fn without the use
of a remember table can be shown to satisfy the recurrence relation
cn = cn − 1 + cn − 2 + 1 for n ≥ 2 with c0 = 1 and c1 = 1. Write a Maple proce-
dure that efficiently computes cn.

7-4 REPETITION LOOPS
Most modern programming languages provide some form of loop control
structure. In Maple the repetition statement is the for ... while ...
do ... od command. Any combination of the for and while clauses can
be specified; only the do and od are required.

Using Repetition to Sum a Collection of Numbers

Use the repetition statement to find the sum of the squares of the first
ten Fibonacci numbers.

EXAMPLE 7-11

Try It

!

EXAMPLE 7-12

208 MAPLE V FOR ENGINEERS

SOLUTION

> SUM := 0; for N from 1 to 10 by 1 do SUM := SUM + Fib(N) od;

SUM := 0

SUM := 1

SUM := 2

SUM := 4

SUM := 7

SUM := 12

SUM := 20

SUM := 33

SUM := 54

SUM := 88

■ ■

SUM := 143

The syntax of the repetition statement is fairly straightforward. The name
following for identifies the loop index; the from clause sets the initial
value for the loop index (if omitted, the initial value is 1); the by clause
sets the step for each iteration (if omitted, this is also assumed to be 1);
the to clause identifies the final value of the loop index. If the to is omit-
ted, the loop will generally be terminated via a break statement inside the
repetition loop or a while clause. The while clause specifies a Boolean
condition that is checked at the beginning of each loop (the loop contin-
ues as long as this expression evaluates to true). The do and od denote
the beginning and end of the sequence of expressions that are executed
during each pass through the loop. For a full description of this command
please see the help worksheet for do.

Another Sum Using Repetition

Use the repetition statement to compute the sum of the square of the first
10 prime numbers.

SOLUTION

A straightforward solution is to start with the smallest prime and add the
square of each prime until ten primes have been found. As a cross-check,
keep a list of the primes as they are encountered.

EXAMPLE 7-13

CHAPTER 7 INTRODUCTION TO MAPLE PROGRAMMING

209

To implement this plan it is necessary to keep track of the number of
primes that have been found, the list of primes, and the sum of the
squares of the primes:

>

COUNT

:=

0;

PRIMES

:=

NULL;

SUM

:=

0;

COUNT

 := 0

PRIMES

 :=

SUM

 := 0

The remainder of the algorithm is represented by

>

for

N

from

2

by

1

while

COUNT<10

do

>

if

isprime(N)

then

>

COUNT:=COUNT+1;

>

PRIMES:=PRIMES,N;

>

SUM:=SUM+N^2;

>

fi

>

od;

In this case, the results of executing this loop are

>

COUNT;

PRIMES;

SUM;

10

2, 3, 5, 7, 11, 13, 17, 19, 23, 29

2397

Moreover, the loop index retains its final value

>

N;

■ ■

30

Another way to approach Example 7-13 is to use a loop to determine the
appropriate collection of primes as a list or set, then use other methods to
compute the square of each prime and to find the sum of the squares.
Write a Maple procedure,

sumprime

, that computes the sum of the

squares of the next

n

 primes greater than or equal to

p

. Both

n

 and

p

 will
normally be specified as arguments; if only one argument is provided,

assume it is

p

 and that

n

=

 1.

Try It

!

210 MAPLE V FOR ENGINEERS

A second variation of the repetition statement is designed for use when the
values for the index variable are to be taken from a list or set, not a geo-
metric progression. The syntax for this is the same, except that for ...
in ... replaces for ... from ... to ... by

Using Repetition in a Sum

Write a Maple procedure, minpos, that uses the repetition statement to
find the smallest positive number from a list or set of numbers. (Be sure
to include type checking.) An alternate implementation of minpos is dis-
cussed in Problem 4 at the end of this chapter.

Use Maple’s random number generator, rand, to generate test data for
minpos.

SOLUTION

The only real issue here is how to initialize the counter used to keep track
of the smallest positive number. Two possibilities are to initialize the
counter to the largest element in the set (MIN := max(DATA)) or to NULL
(the empty expression). Using the latter of these options, the procedure
can be written as

> minpos := proc(DATA :: { set(constant), list(constant) })
> MIN := NULL;
> for N in DATA do
> if N > 0 then MIN := min(MIN, N) fi;
> od;
> RETURN(MIN);
> end:

Warning, `MIN` is implicitly declared local
Warning, `N` is implicitly declared local

The help worksheet for rand indicates that a random number genera-
tor, RNG, with integer values in the interval [−100, 100] is created with the
command

> RNG := rand(-100 .. 100);

RNG := proc()
local t;
global _seed;
 _seed := irem(427419669081*_seed, 999999999989);
 t := _seed;
 irem(t, 201) - 100
end

Then, a list of 10 random numbers between −100 and 100 is obtained
from

> data := [seq(RNG(), k=1..10)];

data := [−24, −52, 41, 58, 82, 21, 29, −97, −88, 31]

EXAMPLE 7-14

CHAPTER 7 INTRODUCTION TO MAPLE PROGRAMMING 211

> minpos(data);

■ ■

21

7-5 LOCAL AND GLOBAL VARIABLES
The definition of minpos in Example 7-14 produced a warning message
about a variable being “implicitly declared local.” Each variable appearing
in a Maple procedure is either a local, global, or environment variable.
Local variables are known only within this call to the procedure and are
independent of any other use of this name. Environment variables are a
special type of global variable (see the help worksheet for the topic envvar).

Global variables should be used only when they are absolutely neces-
sary. In situations that justify the use of a global variable, the names of
each global variable should be chosen to be descriptive and prevent inad-
vertant modification by any other Maple procedure. Short names should
be avoided unless they are preceded by a special character such as an
underscore. While Maple has specific rules for deciding if a variable is
local or global by default (see the help worksheet for procedure), it is good
programming technique to explicitly declare all local and global variables.

Consider the following procedure:

> newname := proc()
> global _N;
> if not(assigned(_N)) then _N:=0 fi;
> for _N from _N+1 while assigned(C._N) do od;
> RETURN(C._N)
> end:
> _N := '_N':

There are two new commands in the definition of newname. The assigned
command is easily understood from the online help worksheet; . is the
concatenation or dot operator (see the help topic dot), which is used here
to append a number to the name C to form new Maple names.

Illustrating the Use of Global Variables

Suppose the following assignments are made:

> C2:=1: C4:=1.2: C5:=a: C8:=C2:

Explain the output produced when the following sequence of com-
mands is executed:

> _N;
> newname() * sin(x) + newname() * cos(x);
> _N;
> newname() * exp(x) + newname() * exp(-x);

EXAMPLE 7-15

212 MAPLE V FOR ENGINEERS

SOLUTION

> C2:=1: C4:=1.2: C5:=a: C8:=C2:

At the outset, _N is unassigned.

> _N;

_N

The first call to newname assigns _N the value 0, then returns C1 since this
name has not been assigned a value. The value of _N is now 1. The second
time newname is called, it takes two steps to find an unassigned name.

> newname() * sin(x) + newname() * cos(x);

C1 sin(x) + C3 cos(x)

The current value of _N is 3.

> _N;

3

The third and fourth calls to newname are similar. The final value for _N
should be 7.

> newname() * exp(x) + newname() * exp(-x);

C6 ex + C7 e(−x)

> _N;

■ ■

7

7-6 DIGGING DEEPER AND DEBUGGING
A complete description of Maple’s debugging system cannot be provided
within the scope of this module. The commands most commonly used dur-
ing the development of Maple procedures are debug, trace, printlevel,
and maplemint. The debug and trace commands can be used to see the
results of each command that is executed in a procedure; once enabled, this
feature is disabled with undebug or untrace (see the help worksheets for
debug). Each command is associated with a level. By default, the results of
all commands at level 1 are displayed; the results of commands at higher
levels can be displayed by increasing the value assigned to printlevel
(see the help worksheet for printlvl). The syntax checker, maplemint,
detects syntax errors and identifies potential problems with local and glo-
bal variables (see the online help for maplemint).

The Maple debugger is another tool which can be useful when program-
ming with Maple. With the debugger you can specify breakpoints and watch-
points within a procedure. A breakpoint is a line number, as reported by
showstat, where execution of the procedure pauses; a watchpoint interrupts

CHAPTER 7 INTRODUCTION TO MAPLE PROGRAMMING

213

execution of the procedure whenever a specified variable is assigned a
value or an error occurs. For specific information on the use of the Maple
debugger, or any of the other programming tools mentioned in this sec-
tion, consult the online help topics

debugger

 and

debug

.

SOLVENTS AND SOLUTES

Chemical engineers frequently combine different substances in reactors
and employ reactor models to synthesize and analyze a variety of prod-
ucts ranging from drugs to synthetic materials. This application will
show how the principle of conservation of mass can be used to develop
a model for a simple reactor in which a solute is combined with a sol-
vent to produce a new solution. The model, which leads to a differential
equation, will be analyzed graphically and qualitatively without explic-
itly finding a solution. The two quantities of particular interest in this
analysis are the concentration and mass of solvent in the reactor at any
time while the reactor is in operation. The amount of usable solution
that is produced by this reactor and other issues are discussed in Prob-
lems 10–14 at the end of this chapter.

Fundamentals

Figure 7-1 shows a reactor, with volume

V

 (m

3

), which is connected to
one inflow and one outflow pipe. The mass density of the solution
inside the reactor is denoted by

ρ

 (kg/m

3

). Thus, the total mass of the
solution, which includes both the component solute and the solvent, in
the reactor is

ρ

V

 (kg). The solute component flows into the reactor with
a concentration of

c

i

 (mg/m

3

) at a rate of

Q

i

 (m

3

/min) and the mixed
solution is drawn from the reactor at the rate

Q

o

. Typically,

c

i

 <<

ρ

. The
concentration,

c

 (mg/m

3

), of the solute in the outflow pipe is the same
as the concentration in the reactor. The reactor is said to be “com-
pletely mixed” because the mixing paddle ensures “instantaneous” mix-
ing of the solvent as soon as it is added to the reactor. (Note: This is a
modeling approximation that may not be appropriate when the time
scale for the mixing is comparable to the flow rates; in such a situation
it would be necessary to use a partial differential equation to analyze
the spatial variation of the concentration in the reactor model.)

Application 7

Figure 7-1

Reactor with one inflow
and one outflow pipe

V

Q c

Q c

ii

o

214 MAPLE V FOR ENGINEERS

1. Define the problem

The principle of conservation of mass states that the total mass of the
solute must be constant. Thus, the instantaneous rate of change of the
solute mass with respect to time (that is, the accumulation of mass)
within the reactor must exactly balance the the difference between the
mass entering and leaving the reactor through the two pipes (per unit
time). When the tank has a single inflow pipe the (instantaneous) rate at
which mass enters the reactor is Qici (m

3/min × mg/m3 = mg/min). Sim-
ilarly, the (instantaneous) rate at which mass is drawn off via the out-
flow pipe is M = Qoc; the total mass produced during the first t minutes is

 .

Compare the concentration and mass during the first 4 hours of
operation in two different reactors. Both reactors have an inflow con-
centration of 50 mg/m3, an inflow rate of 5 m3/min, and an initial
(t = 0) volume of 100 m3. Both reactors start with the same concentra-
tion of solute in the tank; the initial accumulation rate is 200 mg/min
for the first reactor. The only difference between the reactors is the out-
flow rates, which are 5 m3/min and 5.5 m3/min, respectively.

2. Gather information

The total mass in the reactor at time t (min) is M(t) = V(t)c(t) (m3 × mg/m3 =
mg). Conservation of solute mass is, therefore, expressed as

or, in terms of the concentration,

Note that, in general, the volume is a function of time. If, as in the
first reactor to be analyzed in this problem, the inflow and outflow
rates are the same (i.e., Qi = Qo), then the volume is constant and the
differential equations for the solute mass and concentration reduce to

 and

When the inflow and outflow rates are different, the volume in the
reactor is time-dependent. If the flow rates are constant, the volume
after t minutes is V(t) = V0 + (Q i − Q o)t. The corresponding differential
equations will be derived in Step 3.

p ct Q do

t

() = ()∫ τ τ
0

′() = −
()

()M
M

V
t Q c

Q t

t
i i

o

d
dt

t t Q c Q ti i oV c c() ()() = − ()

′() = −
()

M
M

V
t Q c

Q t
i i

i

0

′() = −
()

()M
M

V
t Q c

Q t

t
i i

o

CHAPTER 7 INTRODUCTION TO MAPLE PROGRAMMING 215

The last piece of information needed to complete the mathematical
description of the reactor is the initial condition. Since only the initial
accumulation rate is provided, some work is needed to compute the ini-
tial concentration or initial mass. In general, if the initial accumulation

rate is A mg/min, that is, (at t = 0), then, using the differen-

tial equation for the mass evaluated at t = 0, . From

here it is not difficult to obtain an expression for the initial mass in
terms of known quantities; dividing the initial mass by the initial vol-
ume yields the initial concentration.

The common parameter values for the two reactors are the initial vol-
ume, initial accumulation rate, inflow concentration, and inflow rate:
V0 = 100 m3, A = 200 mg/min, Qi = 5 m3/min, and ci = 50 mg/m3. The
first reactor has an outflow rate of Qo = 5 m3/min while the drain from
the second tank flows at a rate of 5.5 m3/min.

3. Generate and evaluate potential solutions

The problem asks for a qualitiative description of the mass and concen-
tration during a four hour time period. Since you have two different
reactors to analyze—and might reasonably expect to be asked to ana-
lyze more in the future—a good approach is to create a general proce-
dure for producing plots of the mass and concentration over a given
time interval.

The procedure, which will be called plotCM, will use DEplot to create
plots of the mass and concentration and display to place the plots
side by side. The arguments to DEplot must contain the differential
equation, the name of the dependent variable (either M or c), the range
of the independent variable (for example, t = 0 .. 240), and the initial
condition; all other arguments are optional. If conservation of mass is
encoded directly into plotCM, the arguments to plotCM will need to
supply the volume (as a function of time), values for all other parame-
ters, and the time interval on which the solutions should be plotted.
This suggests that plotCM can be divided into three steps: verification
of the arguments, derivation of the differential equations and initial
conditions, and creation and display of the plots.

The middle step requires the most thought and planning. It can be
helpful to interactively test the individual steps involved in the derivation
of the initial value problems. To see exactly how each differential equa-
tion and initial condition can be obtained from conservation of mass,
recall that the principle of conservation of mass can be expressed as

> restart;
> with(student):
> ConsMass := diff(M(t), t) = Q[i]*c[i] - Q[o]*M(t)/V(t);

′() =M t A

A Q c
Q

i i
o= − ()

()
M

V

0

0

ConsMass
t

t Q c
Q t

ti i
o: M

M

V
= () = − ()

()
∂
∂

216 MAPLE V FOR ENGINEERS

The specific differential equation for the mass of solute in a reactor is
obtained by specifying the volume and values for all other parameters.

> odeM := ConsMass;

The corresponding differential equation for the concentration can be
obtained by using the identity M(t) = c(t)V(t) in the conservation of mass
equation and forcing evaluation of the expression, and then solving for
the rate of change of the concentration:

> odeC := value(subs(M(t) = c(t)*V(t), ConsMass));

> odeC := op(solve(odeC, { diff(c(t), t) }));

The initial conditions for the two differential equations need to be
expressed in terms of the initial accumulation rate, A, of the solute, that

is, at t = 0. Forcing agreement between the data value and the

equation for conservation of mass yields the relation:

> InitAccum := A = subs(t=0, rhs(odeM));

Thus, the initial mass, M(0), must be given by

> icM := isolate(InitAccum, M(0));

and the corresponding initial concentration, c(0), is

> icC := isolate(subs(M(0)=c(0)*V(0), icM), c(0));

odeM
t

t Q c
Q t

ti i
o: M

M

V
= () = − ()

()
∂
∂

odeC
t

t t t
t

t Q c Q ti i o: c V c V c= ()

 () + () ()

= − ()∂
∂

∂
∂

odeC
t

t
t

t
t Q c Q t

t

i i o

: c
c V c

V
= () =

() ()

− − ()
()

∂
∂

∂
∂

′()M t

InitAccum A Q c
Q

i i
o:

M

V
= = − ()

()
0

0

icM
A Q c

Q
i i

o

: M
V

= () =
− +() ()

0
0

icC
A Q c

Q
i i

o

: c= () = − +
0

CHAPTER 7 INTRODUCTION TO MAPLE PROGRAMMING

217

Recall that the two reactors have different outflow rates but have the
same initial conditions. Since all other parameters are the same, the initial
accumulation rate must be different for the two reactors. In the current
context, it is easier to compute the initial mass and pass this value,
along with the values for

c

i

,

Q

i

, and

Q

o

, to

plotCM

. For this reason it
seems prudent to implement the initial conditions as

>

icM

:=

M(0)

=

M[0];

>

icC

:=

c(0)

=

M[0]/V(0);

Now that the specific set of parameters has been identified and an
algorithm for determining the initial value problems has been tested, it
is time to combine everything and write the

plotCM

 procedure.

>

plotCM

:=

proc(PARAM

::

{

set(

name=realcons

)

},

>

VOLUME

::

identical(V)={realcons,dependent(t)},

>

TRANGE

::

identical(t)=range(realcons)

)

>

local

odeM,

odeC,

icM,

icC,

ConsMass,

_pM,

_pC,

NAMES,

OPTS;

>

NAMES

:=

map(lhs,{op(PARAM)});

>

#

check

that

all

parameters

are

specified

>

if

evalb(

NAMES

<>

{c[i],Q[i],Q[o],M[0]}

)

then

>

ERROR(`must

specify

c[i],

Q[i],

Q[o]

and

 M[0]`)
> fi;
> # default DEplot options
> OPTS := arrows=NONE, linecolor=BLUE, stepsize=1;
> # user-specified DEplot options
> if nargs>3 then OPTS := OPTS, args[4..nargs] fi;
> # assemble initial value problems from conservation of mass
> ConsMass := diff(M(t), t) = Q[i] * c[i] - Q[o] * M(t) / V ;
> odeM := subs(VOLUME, PARAM, ConsMass);
> odeC := value(subs(M(t)=c(t)*V, VOLUME, PARAM, ConsMass));
> odeC := op(solve(odeC, { diff(c(t), t) }));
> icM := subs(PARAM, M(0) = M[0]);
> icC := subs(VOLUME, PARAM, t=0, c(0) = M[0]/V);
> # create separate plots, then display side by side
> _pM := DEtools[DEplot](odeM, M, TRANGE, [[icM]],
> title=`M (mg) vs. t (min)`, OPTS);
> _pC := DEtools[DEplot](odeC, c, TRANGE, [[icC]],
> title=`c (mg/m^3) vs. t (min)`, OPTS);
> plots[display](array([_pM,_pC]));
> end:

Text that comes after a # is ignored by Maple. These comments,
which are not displayed when the procedure is viewed by print or
showstat, are included as aids for anyone who wants to understand
plotCM, now or in the future. Note that, in addition to processing the
three required arguments, this implementation of plotCM uses nargs,
the number of arguments in the current procedure call, and args, the
list of arguments for the current procedure call, to forward any
optional arguments to the DEplot commands. The only other special
feature of this procedure is the explicit reference to the libraries to

icM M

icC
M

: M

: c
V

= () =

= () = ()

0

0
0

0

0

218 MAPLE V FOR ENGINEERS

which DEplot and display belong; this is done to ensure that plotCM
works even when the complete DEtools and plots packages have not
been loaded in the current session.

4. Refine and implement a solution

The two different reactors can be used to test plotCM. For the first reac-
tor, with ci = 50 mg/m3, Qi = Qo = 5 m3/min and an initial accumulation
rate of A = 200 mg/min, the initial mass of solute is determined from
the statement of conservation of mass at t = 0:

> InitAccum;

When the initial volume is V0 = 100 m3, the initial mass in the reactor
must be

> solve(subs(A=200, c[i]=50, Q[i]=5, Q[o]=5, V(0)=100, InitAccum),
{ M(0) });

{M(0) = 1000}

The set of parameter values for the first reactor is

> PARAM1 := { c[i]=50, Q[i]=5, Q[o]=5, M[0] = 1000 };

PARAM1 := {ci = 50, Qi = 5, Qo = 5, M0 = 1000}

and, as discussed in Step 2, the volume is always 100 m3. Thus, the
graphs of the mass and concentration during the first 4 hours (240
minutes) of operation can be obtained with the following call to
plotCM:

> plotCM(PARAM1, V = 100, t=0..240);

A Q c
Q

i i
o= − ()

()
M

V

0

0

c (mg/m^3) vs. t (min)M (mg) vs. t (min)

45.

40.

35.

30.

25.

20.

15.

10.

200.150.100.50.0

4500.

4000.

3500.

3000.

2500.

2000.

1500.

1000.

200.150.100.50.0

CHAPTER 7 INTRODUCTION TO MAPLE PROGRAMMING 219

Note that, except for the scales, these curves appear to have the same
qualitative behavior. From their initial values, both the mass and con-
centration increase rapidly to a constant level. The concentration
clearly approaches 50 mg/m3, which is the value of ci. Do you under-
stand why this must be the case? The mass approaches 100 times this
value, that is, 5 g.

The plots produced by plotCM are useful for understanding the
behavior of the solution to this one problem. One means of determining
if this behavior changes with different initial conditions is to include
the direction fields for each differential equation in the plot. Direction
fields are produced by DEplot when, for example, the arrows=SMALL
optional argument is specified. Since plotCM automatically forwards
optional arguments to DEplot, it suffices to include this optional argu-
ment after the three required arguments for plotCM. In the case of this
first reactor, you should see that all solutions with initial concentrations
below 50 mg/m3 have the same qualitative behavior. (See Problem 14 at
the end of this chapter.)

The second reactor differs only in the output flow rate

> PARAM2 := { c[i]=50, Q[i]=5, Q[o]=11/2, M[0] = 1000 };

Because the input and output flow rates are not equal, the volume
is not constant. In this case the volume in the reactor decreases by
1/2 cubic meter per minute. The request for graphs of the mass and
concentration during the first 4 hours of operation is made with the
single command:

> plotCM(PARAM2, V=100-t/2, t=0..240);

Error, (in DEtools/DEplot/drawlines) Stopping integration
due to, division by zero

The error message indicates that DEplot has encountered division by
zero, but does not tell you exactly when or where this occurs. To
explain and, if possible, provide a resolution to this problem, recall
(from Step 3) that both differential equations include the volume in the
denominator of a rational expression:

> simplify(subs(PARAM2, V(t)=100-t/2, [odeC, odeM]));

Since the volume decreases by 1/2 m3/min, the tank is completely
empty after 200 minutes. Thus, the best that can be hoped for is to plot
the solution curves for any time ending before 200 minutes. For exam-
ple, the solutions (and direction fields) that terminate one minute
before the singularity is encountered are:

PARAM Q c Q Mo i i2
11
2

50 5 10000: , , , = = = = =

∂
∂

∂
∂t

t
t

t t
t

t t

t
c

c
, M

M() = () −
− +

() =
− + + ()

− +

10

50

200

50000 250 11

200

220 MAPLE V FOR ENGINEERS

> plotCM(PARAM2, V=100-t/2, t=0..199, arrows=SMALL,
> dirgrid=[15,15]);

The concentration looks essentially the same as in the first reactor. The
mass, however, is quite different and will be explored further in the
final stage of the five-step process.

5. Verify and test the solution

The analysis concludes by verifying that the graphical solutions are
consistent with properties of the differential equations. (Note that
although these differential equations are not difficult to solve, the
explicit solutions are not used at any stage of the analysis. This is typi-
cal of qualitative analysis.)

> simplify(subs(PARAM1, V(t) = 100, [odeM, odeC]));

The fact that the volume is always 100 cubic meters means that
M(t) = V(t)c(t) = 100c(t) and so the mass and concentration should have
the same qualitative behavior, scaled by a factor of 100.

If the concentration of solute in the reactor is to be constant, then

 and the concentration must be a zero of the right-hand side of

the corresponding differential equation, that is, . This con-

stant solution, c(t) = 50 mg/m3, is often called the steady-state solution.
The corresponding constant mass solution is M(t) = 5000 mg = 5 g.
These results are consistent with both the equation and the plots cre-
ated with plotCM. The solutions reach these levels 10 to 20 minutes
before the end of the second hour of operation, and remain at these lev-
els as long as the reactor continues to operate.

c (mg/m^3) vs. t (min)

50.

40.

30.

20.

10.

200.150.100.50.0

.350e4

.300e4

.250e4

.200e4

.150e4

.100e4

.50e3

0

200.150.100.50.0

M (mg) vs. t (min)

∂
∂

∂
∂t

t t
t

t tM M , c c() = − () () = − ()

250
1

20
5
2

1
20

′() =c t 0

5
2 20

0− () =
c t

CHAPTER 7 INTRODUCTION TO MAPLE PROGRAMMING 221

The analysis is somewhat different for the reactor with different
inflow and outflow rates.

> simplify(subs(PARAM2, V(t)=100-t/2, [odeM, odeC]));

While the steady-state concentration is still c(t) = 50 mg/m3, there are
no constant solutions to the mass equation. Since the outflow rate
exceeds the inflow rate by 1/2 m3/min, it is not surprising that the
reactor eventually becomes dry—this is the source of the singularity
after 200 minutes. At this time the reactor ceases to function. This
problem is not numerical; it is intimately connected with the specific
design of this reactor.

In some situations it is necessary to control the concentration and/or
amount of solute in the reactor. For example, if the solute is toxic, Occu-
pational Safety and Health Administration (OSHA) standards may require
the manufacturer to keep the concentration under 40 mg/m3. At the same
time, production guidelines may stipulate that the solution is usable only
when the concentration exceeds 15 mg/m3. Propose and critique a plan
for adapting the reactor to maintain a constant volume and to satisfy
these criteria.

One approach would be to start the reactor with the solute entering at
its normal rate and concentration. The first few minutes of outflow would
have to be discarded or recycled, and then a usable solution would be pro-
duced. Just before the concentration reaches the OSHA safety limit, the
source of solute would be interrupted. To maintain a constant volume in
the reactor, the inflow would be pure solution. Just before the concentra-
tion of the solution reaches the lower (production) threshold, the solute
would be added to the inflow solution. This process would then repeat for
the remainder of the production run. Try to implement this plan with a
sequence of calles to plotCM using different parameters and time intervals.

SUMMARY The final topic in this introduction to Maple has been the Maple program-
ming language, in particular, the definition of Maple procedures using
both the arrow operator (->) and proc ... end. The discussion included
issues relating to error handling, return values, type-based pattern matching,
and local and global variables. The conditional (if ... then ... else ... fi) and
repetition (for ... while ... do ... od) statements were used in a number of
examples. Other commands discussed included showstat, select, remove,
map, map2, interface, printlevel, debug, and maplemint. The applica-
tion utilized the principle of conservation of mass to analyze a mixing
problem, as a chemical engineer might do.

∂
∂

∂
∂t

t
t t

t t
t

t

t
M

M
, c

c() =
− + + ()

− +
() = () −

− +

50000 250 11

200
10

50

200

What If

?

222

MAPLE V FOR ENGINEERS

Key Words

Maple Commands

References

1. Chapra, S.C. and Canale, R.P.,

Introduction to Computing for Engineers

, 2nd Ed.,
New York: McGraw-Hill, 1994, pp. 664–672.

2. Lindeburg, M.R.,

Engineer-In-Training Reference Manual

, 8th Ed., Belmont, CA:
Professional Publications, pp. 10-7 and 10-10.

3. Monagan, M.B., Geddes, K.O., Labahn, G., and Vorkoetter, S.,

Maple V Program-
ming Guide

, Springer-Verlag, 1996.
4. Nicolaides, R., and Walkington, N.,

Maple: A Comprehensive Introduction

,
Cambridge, 1996.

breakpoints
built-in command
concatenation (dot) operator
conditional statement
debugger
environment variables
functional operator
global variables
local variables
Maple debugger

Maple programming language
procedure
random number generator
recursion
remember table
repetition statement
selection, removal
type-based pattern matching
watchpoints

->

 (arrow operator)

.

 (dot or concatenation operator)

::

 (type-based pattern matching)

args

,

nargs
assigned
debug

,

trace

,

printlevel

,

maplemint
ERROR
for

 ...

from

 ...

to

 ...

by

 ...

while

 ...

do

 ...

od
for

 ...

in

 ...

while

 ...

do

 ...

od
if

 ...

then

 ...

elif

 ...

else

 ...

fi
interface

,

verboseproc

isolate

 (from

student

 package)

local

,

global
map

,

map2
member
NULL

 (empty expression)

option

remember
print
proc

 ...

end
rand
RETURN
select

,

remove
showstat

CHAPTER 7 INTRODUCTION TO MAPLE PROGRAMMING 223

Concluding Remarks

You have now completed this module of the Engineer’s Toolkit series. If
you have worked through the majority of the Examples, Try It!’s, Applica-
tions, and Problems in each chapter, you should now have a good under-
standing of Maple and some of its uses in engineering. More importantly,
you should have the knowledge and confidence to know you can extend
your knowledge to tackle problems that might arise in areas and applica-
tions other than those presented here.

Congratulations, and good luck!

Exercises

1. (a) Write a Maple procedure, TIMING, that reports the time needed to
evaluate the argument, then returns a list whose first element is
the elapsed time and all subsequent elements are the results, if
any, of evaluating the argument. The input argument will need to
be specified in single quotes (') to prevent evaluation of the argu-
ment before the appropriate time in the body of the procedure.
(Note that there are several differences between TIMING and the
built-in time command; in fact, TIMING will use time.)

(b) Use TIMING to compare three implementations of a procedure that
selects all input arguments that are both a perfect square and a
perfect cube. Rank the implementations in terms of efficiency.
Does this ranking depend on the size of the numbers or number of
elements in the set?

> ispower := (NUMBER::integer,POWER::posint) ->
type(surd(NUMBER,POWER), integer):

> squares := (SET :: set(integer)) -> select(ispower, SET, 2):
> cubes := (SET :: set(integer)) -> select(ispower, SET, 3):
> SCselect1 := (SET::set(integer)) ->squares(SET) intersect

cubes(SET):
> SCselect2 := (SET::set(integer)) -> squares(cubes(SET)):
> SCselect3 := (SET::set(integer)) -> cubes(squares(SET)):

2. Write a Maple procedure, plotD, that plots a function (of one variable)
and each of its first two derivatives on separate graphs. In order to
make the three plots appear side-by-side, display a 1 × 3 array of
plots. Include appropriate titles for each plot.

The following three commands should all produce the expected
results

> plotD(arcsin(x), x=-1..1);
> plotD(1/(1+x^2), x=-5..5, color=BLUE, style=POINT);
> plotD({sin(x),cos(x)}, x=0..2*Pi);

Note that only two arguments are required; additional arguments
should be passed directly to the plot commands (see ?args for more
information about argument lists).

224 MAPLE V FOR ENGINEERS

3. Consider the function Fib implemented in Example 7-11. The else
part of the conditional is executed the first time the function is called
with an argument of 1 or 0. The same effect can be achieved by
explicitly entering these results into the remember table (via standard
assignments). This suggests a third implementation for the
Fibonacci numbers:

> FIB := proc(n::nonnegint)
> option remember;
> RETURN(FIB(n-1) + FIB(n-2))
> end:
> FIB(0):=0:
> FIB(1):=1:

(a) Verify that FIB correctly computes the Fibonacci numbers.

(b) Which of fib, Fib, and FIB is most efficient? (Use TIMING to com-
pute f20.) See the forget help worksheet for information on reset-

ting remember tables.

(c) What happens if the two assignments are moved before the defini-
tion of FIB?

4. Write an alternate version of minpos (origanally defined in Example
7-14) that does not utilize the repetition command. Use TIMING to
compare the efficiency of the two implementations.

5. A shaft-position encoder provides a 3-bit signal indicating the posi-
tion of a motor shaft in steps of 45 degrees using the following code:

(a) Write a Maple procedure that produces the appropriate encoder
output for a shaft position, or list of shaft positions.

(b) Write separate Maple procedures that correspond to binary encod-
ers that are ON, that is, returns the value 1, when i) the shaft is in
the second half of its rotation cycle, ii) the motor shaft is not in the
first eighth of its cycle and iii) either in the first or third quarter of
its cycle.

Each encoder should contain all necessary type and error checking.
The rand command can be used to generate a random number gener-
ator of integers between 0 and 360. For example, one way to generate
data for this problem would be as follows:

Shaft Position Encoder Output

0–45 000

46–90 001

91–135 010

 136–180 011

 181–225 100

 226–270 101

 271–315 110

 316–360 111

CHAPTER 7 INTRODUCTION TO MAPLE PROGRAMMING 225

> signal := rand(0..360):
> pos := [seq(signal(), i=1..10)];

pos := [359, 165, 327, 194, 316, 251, 226, 90, 312, 66]

6. The Chebyshev polynomials of the first kind, Tn(x), satisfy the recur-

rence relations Tn(x) = 2xTn − 1(x) − Tn − 2(x) for n ≥ 2 with T0(x) = 1 and

T1(x) = x.

(a) Write a recursive definition of the Chebyshev polynomials.

(b) Find Maple’s built-in Chebyshev functions. How are these func-
tions implemented?

7. Implement a Maple procedure, bodeampplot, that creates the cor-
rected Bode amplitude plot for a frequency response function. Your
procedure should reproduce the corrected Bode amplitude plot for
the circuit in the Electric Filter application (Chapter 6) with L = 10 H,
C = 6 µF, and R = 1 kΩ with the following commands:

> PARAM := [L = 10, C = 6*10^(-6), R = 10^3];
> RESPONSE := j*R/(L^2*C*omega^3 - j*R*C*L*omega^2 - 2*L*omega + j*R);
> omega0 := subs(PARAM, 1/sqrt(L*C));
> bodeampplot(RESPONSE, omega=omega0/10..omega0*10, PARAM,
> axes=FRAMED, labels=['z','gain'],
> title='Corrected Bode Amplitude Plot');

8. (a) Fuzzy logic was introduced in problem 8 (Chapter 3). Write a

Maple function, mu, so that mu(A) = µA, where

is the membership function for the element A.

Hint: Use the arrow operator.

(b) Write Maple implementations of the three fuzzy logical operations
fuzzyNOT, fuzzyOR, fuzzyAND.

Hint: Use convert,piecewise to simplify the maximum and mini-
mum of a collection of functions.

(c) Use the procedures created in (a) and (b) to find the membership
functions for A = {10}, B = {15}, C = A, D = A ∪ B, E = A ∩ B,
F = { 5, 10, 15, 20 }, and G = { 5, 15, 20 }. Plot each of these member-
ship functions.

9. This is a continuation of the Try It! at the end of Section 3.2 and prob-
lem 9 of Chapter 3.

Write an analog-to-digital converter, d2a, that accepts an analog signal
from a specified range and returns the appropriate digital code as a
binary number. The three input arguments to the procedure should
be: the analog signal (either a single number or a list of numbers), the
range of valid signals, and the number of digital codes to be used to
represent the code. All output codes should have the same length.

Be sure that your procedure includes all appropriate error checking.
Select, and implement, a reasonable way of handling data that is out-
side the range of expected signals. (It is not acceptable for the proce-
dure to simply report an error and quit.)

µA x
x A

() =
+ −

1
1 2()

226 MAPLE V FOR ENGINEERS

Test this procedure using the following sets of commands:

> analog := rand(0 .. 5000) / 1000: # random numbers between 0 and 50
> signal := map(evalf, [seq(analog(), k=1..100)]):
> d2a(signal, 0..50, 128);
>
> noisy := rand(-100 .. 600) / 10: # random numbers between -10 and 60
> badsignal := map(evalf, [seq(noisy(), k=1..10)]):
> d2a(noisy, 0..50, 128);
> d2a(noisy, -10..60, 128);

10. Modify the plotCM procedure to accept an optional argument specify-
ing the specific plots to be included in the output. For example, speci-
fying plotlist = [M] would produce only the mass plot and
plotlist = [C] only the concentration plot; the default would be
equivalent to plotlist = [C,M]. Be sure to include appropriate error
checking.

11. As part of the process in manufacturing an eye wash product, a
boric acid solute enters a tank filled with purified water at time t = 0
minutes. In practice it is not possible to achieve a constant inflow
concentration. One way to model this is to assume the input concen-
tration varies sinusoidally with time. That is, instead of ci being a

constant, use

.

where the average inflow rate is ci = 50 mg/m3, the amplitude of the

inflow variation is ca = 40 mg/m3, and T = 50 min is the period.

(Assume all other parameters are the same as in the reactor with con-
stant volume.)

(a) Plot the concentration and total mass of boric acid produced by
this tank as a function of time.

(b) Does this reactor approach the original (constant inflow) reactor as
ca → 0?

(c) How much boric acid is in the tank after three hours? How much
boric acid has been produced during this time period?

12. The analysis of the reactor model conducted in the application
focused solely on the concentration levels in the reactor. Another
aspect of this problem is the quality and quantity of the solution
obtained from the reactor.

(a) Show that the total amount of solution produced during the first

t minutes, , satisfies each of the following

differential equations:

i)

ii)

(Assuming the volume in the reactor is held constant.)

c t c c
t

T
i i a() = +

sin

2π

p ct Q do

t

() = ()∫ τ τ
0

′() = ()p ct Q t0

′′() + ′() =p pt
Q
V

t
Q Q c

V
i o i i

0 0

CHAPTER 7 INTRODUCTION TO MAPLE PROGRAMMING 227

(b) Find appropriate initial conditions for each of the equations in (a).

(c) Once the concentration has essentially reached its steady-state
solution the production curve is essentially linear. What is the
slope of this line?

13. A tank with two input pipes and one output pipe contains 100 gallons
of pure water at time t = 0. Pure water enters the tank through one of
the input pipes at a flow rate of 0.5 gallons per minute. Sugared water
having concentration ci = 0.5 lbm/gal enters through the other input

pipe at a flow rate of 1 gallon per minute. The perfectly mixed solu-
tion drains from the tank at a flow rate such that the level of liquid in
the reactor is constant. Find the time when the concentration in the
drain mixture will be exactly 0.3 lbm of sugar per gallon. Without
doing any calculations, what is the steady-state concentration of the
drain mixture? At what approximate time will this occur? (This prob-
lem is based on a problem in Engineer-In-Training Reference Manual,
8th Ed.)

NOTE: 1 gallon of liquid is equivalent to 0.0037854 m3 and 1 lbm is
equivalent to 0.4536 kg.

(a) Use a direction field to verify the claim in step 4 of the solvent and
solute application that all solutions with initial concentration
below 50 mg/m3 exhibit the same qualitative behavior.

(b) Determine the qualitative behavior of the mass and concentration
of solute in the first reactor considered in the application when
the initial concentration exceeds 50 mg/m3.

(c) What is special about the initial concentration of 50 mg/m3?

228 MAPLE V FOR ENGINEERS

