Chapter 7 Solutions
Math 300 — Spring 2014
Prepared by Alee Bowers

la. Quantifier “there is”
Object: real numbery
Certain Property: none
Something Happens:for every real number x, f(x) <y
Quantifier “for every”
Object: real number x
Certain Property: none
Something Happens: f(x) <y
b. Quantifier “there is”
Object: real number M
Certain Property: M >0
Something Happens: for all elements x€S, |x|<M

Quantifier “for all”
Object: element x
Certain Property: x€S
Something Happens: [x|< M

c. Quantifier “for every”
Object: real number €
Certain Property: € >0
Something Happens: there exists a real number & > 0 such that for all real numbers y with
|x-y|<8, |f(x)—f(y)| <€
Quantifier “there exists”
Object: real number &
Certain Property: 6>0
Something Happens: for all real numbers y with |x-y|< 8, |f(x) —f(y)| < €
Quantifier “for all”
Object: real numbery
Certain Property: none
Something Happens: if |x-y|< & then |f(x) —f(y)]| < €
d. Quantifier ”"for all”
Object: real number €
Certain Property: €>0
Something Happens: there exists an integer j > 1 such that for every integer k>j, |x,—x|< €
Quantifier “there exists”
Object: an integer j
Certain Property:j>1
Something Happens: for every integer k>j, |x,—x|< €
Quantifier “for all”
Object: integer k
Certain Property: none
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Something Happens: if k>j, then |x,—x|< €

a. For a set S of real numbers, for all elements x€S, there exists another element y, yES with y>x
b. A function f of one real variable has the property that there is a real number y such that for all
numbers, |f(x)|<y

a. Both S1 and S2 are true.
When you apply the choose method to each statement, in both statements you will choose real
numbers x and y with 0 < x < 1 and 0<y<2 for which you can then show that 2x*+ y* < 6.

b. S1 and S2 are different.

The two statements describe different regions.
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The difference is like horizontal and vertical slices for finding the value of a double integral.

a. The statements are both the same and they are both true because the statements use the
quantifier “there is” for the same set of (x,y) values: There are real numbers x>2 and y>1 such that x

+y’< 9. For example: let x=2 and y=1 : 2%+2(1)’<9, 4+2<9, 6<9

b. The statements are not equivalent because they quantifiers describe different regions in the
plane: 0sy<2x, 0<x<1 and 0<x<2y, 0<y<1.

S1is false: by replacing the y with 2x to maximize the outcome, 2x* +4x”>6 or 6x>>6. When x=1,
6(1)>6 is false. There are no numbers that will make S1 true. A similar demonstration applies to S2.

a. Recognizing the first quantifier “for all”, the first step in the backward process is to choose an
object X with a certain property P for which it must be shown that there is an object Y with property
Q such that something happens. For the second quantifier “there is”, we must then construct object
Y with property Q such that something happens.

b. Recognizing the first quantifier “there is”, the first step in the backward process is to construct an
object X with property P. After X is constructed, the choose method is then used to show that for
the constructed X, it is true that for all objects Y with property Q, that something happens. Then
recognizing the quantifier “for all”, we would then use the choose method to choose an object Y
with property Q and show that something happens.

a. First: construct a real number M, M>0
Second: choose teT

b. First: choose a real number M, M>0
Second: construct tET

c. First: choose real number €, €>0
Second: construct real number 6, 6 >0
Third: choose real number s and t

a. See Exercise 7 (this section



9 a.IfSisasubset of asetT of real numbers and T is bounded, then S is bounded.

Key Question: How to show a set is bounded?

Definition: a set of real numbers S is bounded if and only if there is a real number M>0 such that for
all elements x€ S, |x|<M

Answer: There exists a real number M>0 such that for all real numbers x€S, |x|<M

H1: There exists a real number N>0 such that for all real numbers veT, |v|<N

A1l: construct a real number N, N>0 such that |v|<N for all veS
A2: Let v be given arbitrarily (choose)

B2: For all ves, |v|<N

B1: There exists a real number M, M>0 such that for all x€S, |x|<M
B: Sis bounded

b. If the functions f and g are onto, then the function f og is onto where (f og) = f(g(x))

Key Question: How to show a function is onto?

Definition: a function f from the set of real numbers to the set of real numbers is onto if and only if
for real numbers y, there exists a real number x such that f(x)=y

Answer: For all real numbers y, there exists a real number x such that f(x)=y

H1: fis onto

H2: g is onto

Al: let a real number v be given arbitrarily (choose)
A2: construct u such that f(g(u)) =v

B2: There exists a real number u such that f(g(u)) =v
B1: For all real numbers y, there exists a real number x such that f(x)=y

B: fog is onto

c. If f and g are functions of one real variable for which g>f on the set of real numbers and g is
bounded above, then f is bounded above.

Key Question: How to show a function is bounded?

Definition: the function f of one real variable is bounded above if and only if there exists a real
number x such that f(x)<y



Answer: There must exist a real number x such that f(x)<y

H1: f and g are functions of one real variable

H2: g>f

H3: g is bounded above

Al: construct a real numbery

A2: Let a real number t be given arbitrarily (choose)

B3: f(t)<y

B2: For all t, f(t)sy

B1: There exists a real number y such that for all real numbers x, f(x)<y
B: f is bounded above

11. For all real numbers €>0 and a>0, there exists an integer n>0 such that (a/n) <€

Al: let real numbers €>0 and a>0 be given arbitrarily (choose)
A2: construct m>0 such that (a/m)< €

B1: There exists an n>0 such that (a/n)< €
B: For all >0 and a>0, (a/n)< €

Proof: Let €>0 and a>0 be real numbers. It is necessary to show that there exists an integer n>0 such
that (a/n)< €. Now we must construct an integer n>0 such that (a/n)< €. Because n>0 we can
multiply it on both sides resulting in a new inequality, a <n€. Because €>0 we can also divide both
sides by € resulting in (a/€)<n. In other words, choose n to be the first positive integer strictly
greater than a/€>0. Because € and y were chosen arbitrarily, we know that for all € and a, m>0,
(a/€)<m, in particular, for any €>0 and a>0: a/n<€E.



