Chapter 7 Solutions Math 300 – Spring 2014 Prepared by Alee Bowers

```
1a. Quantifier "there is"
        Object: real number y
        Certain Property: none
        Something Happens: for every real number x, f(x) \le y
                    Quantifier "for every"
                         Object: real number x
                         Certain Property: none
                         Something Happens: f(x) \le y
b. Quantifier "there is"
        Object: real number M
        Certain Property: M > 0
        Something Happens: for all elements x \in S, |x| < M
                   Quantifier "for all"
                         Object: element x
                         Certain Property: x∈S
                         Something Happens: |x|< M
c. Quantifier "for every"
        Object: real number ∈
        Certain Property: \in > 0
        Something Happens: there exists a real number \delta > 0 such that for all real numbers y with
        |x-y| < \delta, |f(x) - f(y)| < \epsilon
                   Quantifier "there exists"
                         Object: real number δ
                         Certain Property: δ>0
                         Something Happens: for all real numbers y with |x-y| < \delta, |f(x) - f(y)| < \epsilon
                                    Quantifier "for all"
                                          Object: real number y
                                          Certain Property: none
                                           Something Happens: if |x-y| < \delta then |f(x) - f(y)| < \epsilon
d. Quantifier "for all"
        Object: real number ∈
        Certain Property: ∈>0
        Something Happens: there exists an integer j \ge 1 such that for every integer k > j, |x_k - x| < \epsilon
                   Quantifier "there exists"
                         Object: an integer j
                         Certain Property: j ≥ 1
                         Something Happens: for every integer k>j, |x_k - x| < \in
                                    Quantifier "for all"
                                          Object: integer k
                                           Certain Property: none
```

Something Happens: if k>j, then $|x_k - x| < \in$

- 2 a. For a set S of real numbers, for all elements $x \in S$, there exists another element y, $y \in S$ with y > x b. A function f of one real variable has the property that there is a real number y such that for all numbers, |f(x)| < y
- 3 a. Both S1 and S2 are true.

When you apply the choose method to each statement, in both statements you will choose real numbers x and y with $0 \le x \le 1$ and $0 \le y \le 2$ for which you can then show that $2x^2 + y^2 \le 6$.

b. S1 and S2 are different.

The two statements describe different regions.

The difference is like horizontal and vertical slices for finding the value of a double integral.

- 4 a. The statements are both the same and they are both true because the statements use the quantifier "there is" for the same set of (x,y) values: There are real numbers x≥2 and y≥1 such that $x^2 + y^2 < 9$. For example: let x=2 and y=1 : $2^2+2(1)^2<9$, 4+2<9, 6<9
 - b. The statements are not equivalent because they quantifiers describe different regions in the plane: $0 \le y \le 2x$, $0 \le x \le 1$ and $0 \le x \le 2y$, $0 \le y \le 1$.
 - S1 is false: by replacing the y with 2x to maximize the outcome, $2x^2 + 4x^2 > 6$ or $6x^2 > 6$. When x=1, 6(1)>6 is false. There are no numbers that will make S1 true. A similar demonstration applies to S2.
- a. Recognizing the first quantifier "for all", the first step in the backward process is to choose an object X with a certain property P for which it must be shown that there is an object Y with property Q such that something happens. For the second quantifier "there is", we must then construct object Y with property Q such that something happens.
 - b. Recognizing the first quantifier "there is", the first step in the backward process is to construct an object X with property P. After X is constructed, the choose method is then used to show that for the constructed X, it is true that for all objects Y with property Q, that something happens. Then recognizing the quantifier "for all", we would then use the choose method to choose an object Y with property Q and show that something happens.
- 7 a. First: construct a real number M, M>0

Second: choose t∈T

b. First: choose a real number M, M>0

Second: construct t∈T

c. First: choose real number \in , \in >0 Second: construct real number δ , δ >0 Third: choose real number s and t

9 a. If S is a subset of a set T of real numbers and T is bounded, then S is bounded.

Key Question: How to show a set is bounded?

Definition: a set of real numbers S is bounded if and only if there is a real number M>0 such that for all elements $x \in S$, |x| < M

Answer: There exists a real number M>0 such that for all real numbers $x \in S$, |x| < M

H1: There exists a real number N>0 such that for all real numbers v∈T, |v|<N

A1: construct a real number N, N>0 such that |v| < N for all $v \in S$

A2: Let v be given arbitrarily (choose)

B2: For all $v \in S$, |v| < N

B1: There exists a real number M, M>0 such that for all $x \in S$, |x| < M

B: S is bounded

b. If the functions f and g are onto, then the function $f \circ g$ is onto where $(f \circ g) = f(g(x))$

Key Question: How to show a function is onto?

Definition: a function f from the set of real numbers to the set of real numbers is onto if and only if for real numbers y, there exists a real number x such that f(x)=y

Answer: For all real numbers y, there exists a real number x such that f(x) = y

H1: f is onto

H2: g is onto

A1: let a real number v be given arbitrarily (choose)

A2: construct u such that f(g(u)) = v

B2: There exists a real number u such that f(g(u)) = v

B1: For all real numbers y, there exists a real number x such that f(x)=y

B: fog is onto

c. If f and g are functions of one real variable for which $g \ge f$ on the set of real numbers and g is bounded above, then f is bounded above.

Key Question: How to show a function is bounded?

Definition: the function f of one real variable is bounded above if and only if there exists a real number x such that $f(x) \le y$

Answer: There must exist a real number x such that $f(x) \le y$

H1: f and g are functions of one real variable

H2: g≥f

H3: g is bounded above

A1: construct a real number y

A2: Let a real number t be given arbitrarily (choose)

B3: f(t)≤y

B2: For all t, f(t)≤y

B1: There exists a real number y such that for all real numbers x, $f(x) \le y$

B: f is bounded above

11. For all real numbers \in >0 and a>0, there exists an integer n>0 such that $(a/n) < \in$

A1: let real numbers ∈>0 and a>0 be given arbitrarily (choose)

A2: construct m>0 such that $(a/m) < \in$

B1: There exists an n>0 such that $(a/n) < \in$

B: For all $\in >0$ and a>0, $(a/n)<\in$

Proof: Let \in >0 and a>0 be real numbers. It is necessary to show that there exists an integer n>0 such that $(a/n) < \in$. Now we must construct an integer n>0 such that $(a/n) < \in$. Because n>0 we can multiply it on both sides resulting in a new inequality, a <n \in . Because \in >0 we can also divide both sides by \in resulting in (a/\in) <n. In other words, choose n to be the first positive integer strictly greater than a/ \in >0. Because \in and y were chosen arbitrarily, we know that for all \in and a, m>0, (a/\in) <m, in particular, for any \in >0 and a>0: a/n< \in .