Exam 3 October 29, 2004 Name: Section: 001 002 (ctrcle one)

Instructions:

- 1. There are a total of 6 problems on 6 pages. Check that your copy of the exam has all of the problems.
- 2. Calculators may not be used for any portion of this exam.
- 3. You must show all of your work to receive credit for a correct answer.
- Your answers must be written legibly in the space provided. You may use the back of a page for additional space; please indicate clearly when you do so.

Problem	Points	Score
1	20	
2	30	
3	15	
4	15	
5	10	
6	10	
Total	100	

Happy Halloween!

1. (20 points)

(a) Rewrite
$$\ln\left(\frac{x^2 \sin^3 x}{\sqrt{x^2+1}}\right)$$
 in terms of $r = \ln x$, $s = \ln \sin x$, $t = \ln(x+1)$, and $v = \ln(x^2+1)$.

$$\ln\left(\frac{x^2 \sin^3 x}{\sqrt{x^2+1}}\right) = \ln\left(x^2\right) + \ln\left(\sin^3 x\right) - \ln\left(\sqrt{x^2+1}\right)$$

$$= 2\ln x + 3\ln\left(\sin x\right) - \frac{1}{2}\ln\left(x^2+1\right)$$

$$= 2r + 3s - \frac{1}{2}v$$

(b) Solve for
$$x$$
: $\ln(\frac{1}{x}) + \ln(2x^3) = \ln 8$. $\int \ln 8 = \ln(\frac{1}{x}) + \ln(2x^3) = \ln 8$

$$= \ln(\frac{2x^3}{x}) = \ln(2x^2)$$

$$- \ln x + \ln 2 + 3 \ln x = \ln 8$$

$$= \ln 2 + 2 \ln x = \ln 8$$

$$= \ln 8 - \ln 2 = \ln(\frac{8}{x}) = \ln 2$$

$$= \ln 8 - \ln 2 = \ln(\frac{8}{x}) = \ln 2$$

$$= \ln 2 = 2 \cdot \ln 8 = 2 \cdot \ln 2$$

$$= \ln 8 - \ln 2 = \ln(\frac{8}{x}) = \ln 2 \cdot \ln 2 = 2 \cdot \ln 2$$

(c) Find the exact value of $\sin^{-1}\left(\frac{1}{2}\right)$.

because $\sin^{-1}\left(\frac{1}{2}\right)$ we know $\sin^{-1}\left(\frac{1}{2}\right) = \frac{11}{6}$

(d) Use the "triangle method" to find an identity for $sec(tan^{-1}(x))$.

Let
$$\theta = tou'x$$

then $ton\theta = x$ Then $ton\theta = x$
Sec $(ton'x) = se(\theta = \sqrt{1+x^2} = \sqrt{1+x^2})$

(30 points) Find the derivative of each of the following functions.

(30 points) Find the derivative of each of the following functions.

(a)
$$f(x) = \ln\left(\frac{x}{1+x^2}\right) = \ln x - \ln(1+x^2)$$

or: $f'(x) = \frac{x}{1+x^2} = \frac{(+x^2)(1) - x}{(1+x^2)^2}$

$$f'(x) = \frac{1}{x} - \frac{1}{1+x^2} \cdot 2x = \frac{1}{x} - \frac{2x}{1+x^2}$$

$$= \frac{1+x^2}{x} \cdot \frac{1+x^2-2x^2}{(1+x^2)^2}$$

$$= \frac{1-x^2}{x}$$
(b) $f(x) = e^{\sin(x)}$

$$= \frac{1-x^2}{x(1+x^2)}$$

(c)
$$f(x) = 3^{-x}$$

(d)
$$f(x) = \sin^{-1}(x) + \cos^{-1}(x)$$

(e)
$$f(x) = \tan^{-1}(x^2)$$

 $f'(x) = \frac{1}{1 + (x^2)^2} \cdot \frac{d}{dx}(x^2) = \frac{2x}{1 + x^4}$

- 3. (15 points) Let $f(x) = \sqrt{x+4} + 1$ for $x \ge -4$.
 - (a) [8 points] Find a formula for $f^{-1}(x)$.

- (b) [2 points] What is the domain of f-1?

 Note that the ronge of f is y>1.

 Thus the domain of f-1 is x>1.
- (c) [5 points] Sketch graphs of y = f(x) and $y = f^{-1}(x)$ on the axes provided below.

4. (15 points) Evaluate the following limits. Identify each time l'Hôpital's Rule is applied, including the type of indeterminate form.

(a)
$$\lim_{x\to 2} \frac{x^3 - 2x - 4}{x^2 - x - 2}$$
 $\lim_{x\to 2} \frac{3x^2 - 2}{2x - 1} = \frac{10}{3}$

$$\lim_{x\to 2} \frac{x^3 - 2x - 4}{x^2 - x - 2} = 0$$

$$\lim_{x\to 2} x^2 - x - 2 = 0$$

$$\lim_{x\to 2} x^2 - x - 2 = 0$$

lin cosx=1 lin lux = -00

This is not an indeterminate form.

(c) $\lim_{x\to\infty} \left(1+\frac{3}{x}\right)^x = \lim_{x\to\infty} e^{\operatorname{la}\left(1+\frac{3}{x}\right)^x} = \lim_{x\to\infty} e^{\operatorname{la}\left(1+\frac{3}{x}\right)^x}$ $\lim_{x\to\infty} 1+\frac{3}{x}=1$ $\lim_{x\to\infty} x=\infty$ $\lim_{x\to\infty} x=\infty$ $\lim_{x\to\infty} x = \infty$ $\lim_{x\to\infty} x = \infty$

Thus, lin (1+3) = e lin x ln (1+3) = e3

 (10 points) A function f that is continuous for all real numbers has the following sign chart for its first and second derivatives.

interval	sign of $f'(x)$	sign of $f''(x)$
x < -1	-	+
-1 < x < 1	-	- //
1 < x < 2	+	-
2 < x < 4	+	+
4 < x		+

(b) On what intervals is
$$f$$
 decreasing? $\times < -1$, $-1 < \times < 1$, $\stackrel{f}{\approx} \times > 4$

$$x=-1 \neq x=2$$

6. (10 points) A spherical balloon is to be deflated so that its radius decreases at a constant rate of 15 cm/min. At what rate must air be removed when the radius is 3 cm? Remember to provide appropriate units for your final answer.

$$V=\frac{4}{3}\pi r^3$$
 $\frac{dr}{dt}=-15$ cm/min