PROBLEMS FROM RING THEORY

In the problems below, $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$, and \mathbb{C} denote respectively the rings of integers, rational numbers, real numbers, and complex numbers. R generally denotes a ring, and I and J usually denote ideals. $R[x], R[x, y], \ldots$ denote rings of polynomials. rad R is defined to be $\{r \in R : r^n = 0 \text{ for some positive integer } n\}$, where R is a ring; rad R is called the *nil radical* or just the *radical* of R.

Problem 0.

Let b be a nilpotent element of the ring R. Prove that 1+b is an invertible element of R.

Problem 1.

Let R be a ring with more than one element such that aR = R for every nonzero element $a \in R$. Prove that R is a division ring.

Problem 2.

If (m,n) = 1, show that the ring $\mathbb{Z}/(mn)$ contains at least two idempotents other than the zero and the unit.

Problem 3.

If a and b are elements of a commutative ring with identity such that a is invertible and b is nilpotent, then a + b is invertible.

Problem 4.

Let R be a ring which has no nonzero nilpotent elements. Prove that every idempotent element of R commutes with every element of R.

Home Page

Page 1 of 14

Go Back

Full Screen

Print

Close

• •

Home Page
•• ••
• •
Page 2 of 14
Go Back
Full Screen
Print

Problem 5.

Let A be a division ring, B be a proper subring of A such that $a^{-1}Ba \subseteq B$ for all $a \neq 0$. Prove that B is contained in the center of A.

Problem 6.

Let R denote a ring. Prove that, if $x, y \in R$ and x - y is invertible, then $x(x-y)^{-1}y = y(x-y)^{-1}x$.

Problem 7.

- a. If I and J are ideals of a commutative ring R with I + J = R, then prove that $I \cap J = IJ$.
- b. If I, J, and K are ideals in a principal ideal domain R, then prove that $I \cap (J + K) = (I \cap J) + (I \cap K)$.

Problem 8.

Let R be a principal ideal domain, and let I and J be ideals of R. IJ denotes the ideal of R generated by the set of all elements of the form ab where $a \in I$ and $b \in J$. Prove that if I + J = R, then $I \cap J = IJ$.

Problem 9.

Let R be a commutative ring with identity, and let I and J be ideals of R. Define IJ to be the ideal generated by all the products xy with $x \in I$ and $y \in J$; that is IJ is the set of all finite sums of such products.

a. Prove that $IJ \subseteq I \cap J$.

- b. Prove that $IJ = I \cap J$ if R is a principal ideal domain and I + J = R.
- c. We say that R has the descending chain condition if given any chain $I_1 \supseteq I_2 \supseteq I_3 \supseteq \ldots$, there is an integer k such that $I_k = I_{k+1} = I_{k+2} = \ldots$. Prove that if R has the descending chain condition, then R has only finitely many maximal ideals.

Close

Home Page	
44	PROBLEM 10. Let R be a c a prime ideal in P has a m
 ▲ ▶ 	PROBLEM 11. Let R be a c satisfies the d
Page 3 of 14	PROBLEM 12. Let R be a concept R/K is a field
Go Back	PROBLEM 13. Let R be a c a prime ideal
Full Screen	PROBLEM 14. Let R be a J, I_0, \ldots, I_{n-1} that $J \subseteq I_0 \cup$
Print	PROBLEM 15. Let X be a of real numbe element $a \in Z$
Close	

R be a commutative ring. Suppose that I is an ideal of R which is contained in rime ideal P. Prove that the collection of prime ideals containing I and contained P has a minimal member.

OBLEM 11.

R be a commutative ring with unit. Let I be a prime ideal of R such that R/Iisfies the descending chain condition on ideals. Prove that R/I is a field.

OBLEM 12.

R be a commutative ring with 1 and let K be a maximal ideal in R. Show that K is a field.

oblem 13.

R be a commutative ring with one. Prove that every maximal ideal of R is also rime ideal of R.

oblem 14.

R be a commutative ring with unit and let n be a positive integer. Let V_0, \ldots, I_{n-1} be ideals of R such that I_k is a prime ideal for all k < n and t $J \subseteq I_0 \cup \cdots \cup I_{n-1}$. Prove that $J \subseteq I_k$ for some k < n.

OBLEM 15.

X be a finite set and R be the ring of all functions from X into the field \mathbb{R} real numbers. Prove that an ideal M of R is maximal if and only if there is an ment $a \in X$ such that

$$M = \{ f : f \in R \text{ and } f(a) = 0 \}$$

Problem 16.

Let I be an ideal in a commutative ring R and let \mathfrak{S} be a set of ideals of R defined by the property that $J \in \mathfrak{S}$ if and only if there is an element $a \in R$ such that $a \notin I$ and $J = \{r \in R : ra \in I\}$. Prove that every maximal element of \mathfrak{S} is a prime ideal in R.

Problem 17.

Let R be the following subring of the field of rational functions in 3 variables with complex coefficients:

$$R = \{\frac{f}{g}: f, g \in \mathbb{C}[x, y, z] \text{ and } g(1, 2, 3) \neq 0\}$$

Find 3 prime ideals P_1, P_2 , and P_3 in R with

$$0 \subsetneqq P_1 \subsetneqq P_2 \subsetneqq P_3 \subsetneqq R$$

PROBLEM 18.

Let $R = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}$. (Of course, R is a subring of the reals.) Let $M = \{a + b\sqrt{2} \in R : 5 | a \text{ and } 5 | b\}$.

- a. Show that M is a maximal ideal of R.
- b. What is the order of the field R/M? Verify your answer.

Problem 19.

Let R be commutative ring with 1. Let $p \in R$ and suppose that the principal ideal (p) is prime. If Q is a prime ideal and $Q \subsetneqq (p)$, show that $Q \subseteq \bigcap_n (p^n)$.

Problem 20.

Let $R = \mathbb{Z}[x]$. Give three prime ideals of R that contain the ideal (6, 2x), and prove that your ideals are prime.

Home Page
▲ ▲ ▶
Page 5 of 14
Go Back
Full Screen
Print
Close

Problem 21.

Let R be a commutative ring with 1, and let J be the intersection of all the maximal proper ideals of R. Prove that 1 + a is a unit of R for every $a \in J$.

Problem 22.

Let $I\,$ be an ideal of the commutative ring $\,R\,.$ Prove that $\,R/I\,$ is a field if and only if $I\,$ is a maximal ideal of $\,R\,.\,$

Problem 23.

Let R be a commutative ring with identity element 1, and let I be an ideal of R. Prove each of the following:

- a. R is a field if and only if R has exactly two ideals.
- b. R/I is a field if and only if I is a maximal proper ideal of R.

Problem 24.

Let R be a ring with identity element 1. Prove each of the following:

- a. Every proper ideal of R is included in a maximal proper ideal of R.
- b. R has exactly one maximal proper ideal if and only if the set of nonunits of R is an ideal of R.

Problem 25.

Let R be a principal ideal domain and $0 \neq r \in R\,.$ Let I be the ideal generated by $r\,.$ Prove:

- a. If r is prime, then R/I is a field.
- b. If r is not prime, then R/I is not an integral domain.

PROBLEM 26.

Show that a nonzero ideal in a principal ideal domain is maximal if and only if it is prime.

Quit

Home Page	
44 >>	
Page 6 of 14	
Go Back	
Full Screen	
Print	
Close	

Problem 27.

Let R be a commutative ring with identity. For $x \in R$, let $A(x) = \{r \in R : xr = 0\}$. Suppose $\theta \in R$ has the property that $A(\theta)$ is not properly contained in A(x) for any $x \in R$. Prove the $A(\theta)$ is a prime ideal of R.

Problem 28.

Show that any integral domain satisfying the descending chain condition on ideals is a field.

Problem 29.

Let R be a commutative ring with identity, and let I be a prime ideal of R. If R/I is finite, prove that I is maximal.

Problem 30.

Give an example of a commutative ring R with two maximal nonzero ideals M and N such that $M\cap N=\{0\}$.

PROBLEM 31. Is $y^3 - x^2y^2 + x^3y + x + x^4$ irreducible in $\mathbb{Z}[x, y]$?

PROBLEM 32. Prove that $y^4 + x^2y + 4xy + x_4y + 2$ is irreducible in $\mathbb{Q}[x, y]$.

PROBLEM 33. Prove that $x^4 + xy^2 + y$ is irreducible in $\mathbb{Q}[x, y]$.

PROBLEM 34. Let R be a unique factorization domain. Prove that $f(x, y, z) = x^5y^3 + x^4z^3 + x^3yz^2 + y^2z$ is irreducible in R[x, y, z].

Home Page	
	PROBLEM 35. Give the prime factorization of $x^5 + 5x + 5$ in each of $\mathbb{Q}[x]$ and $\mathbb{Z}_2[x]$.
44 >>	PROBLEM 36. Prove that the polynomial $x^3y + x^2y_xy^2 + x^3 + y$ is irreducible in $\mathbb{Z}[x, y]$.
Page 7 of 14	 PROBLEM 37. For each field F given below, factor x³¹ - 1 ∈ F[x] into a product of irreducible polynomials and justify your answer. a. F is the field of complex numbers. b. F is the field of rational numbers. c. F is the field with 31 elements. d. F is the field with 32 elements.
	PROBLEM 38. Prove that the polynomial $3x^4 + 2x^2 - x + 15$ is irreducible in both $\mathbb{Z}[x]$ and $\mathbb{Q}[x]$.
Go Back	PROBLEM 39. Prove that $y^3 + x^2y^2 + x^3y + x$ is irreducible in $R[x, y]$, if R is a unique factorization domain.
Full Screen	PROBLEM 40. Prove that $x^3 + 3x + 6$ is irreducible in $\mathbb{Z}[x]$.
Print	PROBLEM 41. Prove the following form of the Chinese Remainder Theorem: Let R be a commutative ring with unit 1 and suppose that I and J are ideals of R such that $I + J = R$. Then
Close	$\frac{R}{I \cap J} \cong \frac{R}{I} \times \frac{R}{J}.$

Home Page
44 >>
▲ ▶
Page 8 of 14
Go Back
Full Screen
Print
Close

Problem 42.

Prove that there exists a polynomial $f \in \mathbb{R}[x]$ such that

- f-1 is in the ideal $(x^2-2x+1))$, and
- f-2 is in the ideal (x+1), and
- f-3 is in the ideal (x^2-9) .

Problem 43.

Does their exist a polynomial $f(x) \in \mathbb{R}[X]$ such that

- f(x) 1 is in the ideal $(x^2 + 2x + 1)$, and
- f(x) 2 is in the ideal (x 1), and
- f(x) 3 is in the ideal $(x^2 25)$?

Problem 44.

Let F be a field. Let f_1, \ldots, f_r be polynomials in the polynomial ring F[x]. Fill in the blank and prove the resulting statement: The natural map

$$F[x] \to \frac{F[x]}{(f_1)} \oplus \dots \oplus \frac{F[x]}{(f_r)}$$

is onto if and only if _____

Problem 45.

Fill in the blank and prove the resulting statement. If D is an integral domain, the D[x] is a principal ideal domain if and only if D is ______.

Problem 46.

Explain why each of the following represents or does not represent a maximal ideal in the ring $\mathbb{C}[x, y]/(y^2 - x^3 - x^2 - 4)$:

a.
$$(x-1, y+2)$$
.
b. $(x+1, y-2)$.
c. $(y^2 - x^3, x^2 + 3)$

Home Page
••
▲ ▶
Page 9 of 14
Go Back
Full Screen
Print
Close

Problem 47.

Let D be a commutative ring. Show that if D[x] is a principal ideal domain, then D must be a field.

Problem 48.

Let D be a unique factorization domain and let I be a nonzero prime ideal of D[x] which is minimal among all the nonzero prime ideals of D[x]. Prove that I is a principal ideal.

Problem 49.

Suppose that R is a commutative ring with 1 , and that I is an ideal of R . Show that $(R/I)[x]\cong R[x]/I[x]$.

PROBLEM 50. If F is a field, prove that F[x] is a principal ideal domain.

Problem 51.

- a. Prove that the ideal (2, x) in $\mathbb{Z}[x]$ is not a principal ideal.
- b. Prove that the ideal (3) in $\mathbb{Z}[x]$ is not a maximal ideal.

Problem 52.

Let I be the kernel of the ring homomorphism $\mathbb{Z}[x] \to \mathbb{R}$ induced by the substitution $x \mapsto 1 + \sqrt{2}$. Show that I is a principal ideal and find a generator for it.

Problem 53.

Let F be an infinite field and let $f(x, y) \in F[x, y]$. Prove that if $f(\alpha, \beta) = 0$ for all $\alpha, \beta \in F$, then f(x, y) = 0.

Problem 54.

Let F be a field. Prove that the rings F[x, y] and F[x] are not isomorphic.

Home Page
44 >>
Page 10 of 14
Go Back
Full Screen
Print
Close

Problem 55.

Let R be a commutative ring and let $f(x) \in R[x]$. Prove that f(x) is nilpotent in R[x] if and only if each coefficient of f(x) is a nilpotent element of R.

Problem 56.

Let R be a commutative ring. The nil radical of R is defined to be $N(R) = \{x \in R : x^n = 0 \text{ for some natural number } n\}$.

- a. Show that N(R) is an ideal of R.
- b. Show that N(R) is the intersection of all the prime ideals of R.

Problem 57.

Let F be a field, $p(x) \in F[x]$, and $R = \frac{F[x]}{(p(x))}$. The nil radical of R is equal to

 $\{r \in R : r^n = 0 \text{ for some positive integer } n\}$

Fill in the blank with some property of the polynomial p(x) and then prove the resulting statement: The nil radical of R is $\{0\}$ if and only if _____.

Problem 58.

Let R be a commutative ring with 1, and let J denote an ideal of R. The set $\{a \in R : a^n \in J \text{ for some } n\}$ is denoted by $\operatorname{rad}(J)$.

- a. Prove that rad(J) is an ideal of R.
- b. Prove that if I is a finitely generated ideal included in rad(J), then $I^m \subseteq J$ for some positive integer m.

Problem 59.

Let R be a commutative ring with 1. The *nil radical* of R is the set $N = \{r \in R : r^k = 0 \text{ for some positive integer } k\}$.

a. Prove that N is an ideal of R.

Home Page
44 >>
• •
Page 11 of 14
Go Back
Full Screen
Print
Close

b. Let a be an element of R which is not an element of N, let $S = \{1, a, a^2, a^3, \ldots\}$, and let I be an ideal which is maximal among all ideals disjoint from S. Prove that I is a prime ideal of R.

PROBLEM 60. Let \mathbb{F} be a finite field and let $\mathbb{F}^* = \mathbb{F} - \{0\}$. Show that $\prod_{a \in \mathbb{F}^*} a = -1$.

PROBLEM 61. Construct a field with 8 elements.

PROBLEM 62.
Let F = { (a b -b a) : a, b ∈ Z₃ }.
a. Prove that F is a ring that contains Z₃.
b. Give a basis for F as a vector space over Z₃.
c. Show that the equation x² + 1 = 0 has a solution in F, and prove that F and Z₃[x]/(x² + 1) are isomorphic rings.
d. Prove that F is a field.

Problem 63.

Let F be a finite field, and let $g: F \to F$. Prove that there are infinitely many polynomials $f(x) \in F[x]$ such that f(a) = g(a) for all $a \in F$.

Problem 64.

- a. If R is a finite ring with exactly a prime number of elements, prove that R is commutative.
- b. Give an example of a finite noncommutative ring.

Home Page
•• ••
• •
Page 12 of 14
Go Back
Full Screen
Print
Close

Problem 65.

For any ring R, let Aut(R) denote the group of ring automorphisms of R.

- a. Show that $\operatorname{Aut}(\mathbb{R}) = \{1\}$.
- b. Find Aut($\mathbb{R}[x]$).

Problem 66.

The *D* be a commutative domain and *F* be its field of fractions. the domain *D* is said to be *neat* provided both f(x) and g(x) are in D[x] whenever f(x) and g(x) are monic polynomials in F[x] such that $f(x)g(x) \in D[x]$.

a. Prove that if D is a unique factorization domain, then D is neat.

b. Give an example of a domain that is not neat.

PROBLEM 67.

Let F be a field, R = F[x], and M be the ideal (x). If $I = (x^2)$ and $J = (x^2 - x^3)$, prove that $J \subseteq I$ in R, but $J_M = I_M$ in R_M . (As usual, R_M denotes the localization $S^{-1}R$, where S = R - M.)

PROBLEM 68.

Let R be the ring of 2×2 matrices over the field of complex numbers. Find two left ideals I and J of R such that I and J are isomorphic as left R-modules, but $I \neq J$.

Problem 69.

Let

be a commutative diagram of R-modules and R-module homomorphisms, with exact rows. Show that if α_1 is surjective, and α_2 and α_3 are injective, the α_3 is injective.

Home Page
Page 13 of 14
Go Back
Full Screen
Print
Print
Close

Problem 70.

Let R be a unique factorization domain and let K be the quotient field of R. An element $z \in K$ is said to be it integral over R if there exists a monic polynomial $F \in R[x]$ such that f(z) = 0. Prove that if z is integral over R, then $z \in R$.

Problem 71.

Let F be a field, let $n \ge 2$ be an integer, and let $R = M_n(F)$ be the ring of $n \times n$ matrices with entries from F.

- a. Give an example of a left ideal I in R with $I \neq \{0\}$ and $I \neq R$.
- b. Give an example of a simple left ideal I in R (i.e. a nontrivial ideal I such that $\{0\}$ is the only left ideal properly contained in I.)

Problem 72.

Let R be the ring of formal power series F[[x]], where F is any field. T typical element of R looks like $\sum_{i=0}^{\infty} \alpha_i x^i$, where $\alpha_i \in F$ for all i. The elements of R and added and multiplied in the obvious manner.

- a. Find all the units of R.
- b. Find all the ideals of R.
- c. Find all the maximal ideals of R.

Problem 73.

Let R be an integral domain of prime characteristic p, and define $\phi: R \to R$ by $\phi(x) = x^p$ for all $x \in R$.

- a. Show that ϕ is a homomorphism.
- b. Show by example that ϕ can be an isomorphism.
- c. Show by example that ϕ can fail to be an isomorphism.

Home Page
••
Page 14 of 14
Go Back
Full Screen
Print
Close

Problem 74.

Let R be a commutative ring with identity, let n be a positive integer, and let S be the ring of $n \times n$ matrices with entries from R. Prove that the center of S is the set of scalar matrices, namely $\{aI : a \in R\}$ where I denotes the identity matrix.