Home Page	
	I
	0
	0
	Ĺ
	t t
	0.
Page 1 of 22	
	F
	Ι
Go Back	7
GO DACK	F
	F
	L
Full Screen	i
	d
	F
Print	Ι
Close	

PROBLEMS FROM LINEAR ALGEBRA

In the following \mathbb{R} denotes the field of real numbers while \mathbb{C} denotes the field of complex numbers. In general, \mathbf{U}, \mathbf{V} , and \mathbf{W} denote vector spaces. The set of all linear transformations from \mathbf{V} into \mathbf{W} is denoted by $\mathcal{L}(\mathbf{V}, \mathbf{W})$, while $\mathcal{L}(\mathbf{V})$ denotes the set of linear operators on \mathbf{V} . For a linear transformation T, the null space of T (also known as the kernel of T) is denoted by null T, while the range space of T (also known as the image of T), is denoted by range T.

PROBLEM 0.

Let \mathbf{V} be a finite-dimensional vector space and let T be a linear operator on \mathbf{V} . Suppose that T commutes with every diagonalizable linear operator on \mathbf{V} . Prove that T is a scalar multiple of the identity operator.

Problem 1.

Let **V** and **W** be vector spaces and let *T* be a linear transformation from **V** into **W**. Suppose that **V** is finite-dimensional. Prove $\operatorname{rank}(T) + \operatorname{nullity}(T) = \dim V$.

Problem 2.

Let A and B be $n \times n$ matrices over a field **F**

- (1) Prove that if A or B is nonsingular, then AB is similar to BA.
- (2) Show that there exist matrices A and B so that AB is not similar to BA.
- (3) What can you deduce about the eigenvalues of AB and BA. Prove your answer.

Home Page	
44 >>	PROBLEM 3. Let $A = \begin{pmatrix} D & E \\ F & G \end{pmatrix}$, where D and G are $n \times n$ matrices. If $DF = FD$ prove that $\det A = \det(DG - FE)$.
• •	PROBLEM 4. Let V be a finite dimensional vector space. Can V have three distinct proper subspaces W_0 , W_1 and W_2 such that $W_0 \subseteq W_1$, $W_0 + W_2 = V$, and $W_1 \cap W_2 = \{0\}$?
Page 2 of 22	PROBLEM 5. Let n be a positive integer. Define
Go Back	$G = \{A : A \text{ is an } n \times n \text{ matrix with only integer entries and } \det A \in \{-1, +1\}\},\$ $H = \{A : A \text{ is an invertible } n \times n \text{ matrix and both } A \text{ and } A^{-1} \text{ have only integer entries}\}.$ Prove $G = H$.
Full Screen	PROBLEM 6. Let V be the vector space over \mathbb{R} of all $n \times n$ matrices with entries from \mathbb{R} .
Print	 Prove that {I, A, A²,, Aⁿ} is linearly dependent for all A ∈ V. Let A ∈ V. Prove that A is invertible if and only if I belongs to the span of {A, A²,, Aⁿ}.
Close	PROBLEM 7. Is every $n \times n$ matrix over the field of complex numbers similar to a matrix of the form $D + N$ where D is a diagonal matrix, $N^{n-1} = 0$, and $DN = ND$. Why?

Home Page	
•• ••	PROBLEM 8. Let V and W 1 Suppose that V
• •	PROBLEM 9. Let $T \in L(V, V)$ operator S den (1) Prove th $\mathcal{N}(T^{k+2})$
Page 3 of 22	 (2) Prove th (3) Prove th (4) Prove th and exact
Go Back	PROBLEM 10. Let \mathbf{F} be a field
Full Screen	For $i, j = 1,$ entry 1 and all mat-ix with (1,
Print	Let S = [[NOTE: You can of $\mathbf{F}^{n \times n}$.]
Close	(1) Prove the the dime

be vector spaces and let T be a linear operator from V into W. is finite-dimensional. Prove $\operatorname{rank}(T) + \operatorname{nullity}(T) = \dim V$.

V), where V is a finite dimensional vector space. (For a linear note by $\mathcal{N}(S)$ the null space and by $\mathcal{R}(S)$ the range of S.)

- here is a least natural number k such that $\mathcal{N}(T^k) = \mathcal{N}(T^{k+1}) =$ (k) ... Use this k in the rest to this problem.
- hat $\mathcal{R}(T^k) = \mathcal{R}(T^{k+1}) = \mathcal{R}(T^{k+2}) \cdots$
- nat $\mathcal{N}(T^k) \cap \mathcal{R}(T^k) = \{0\}$.
- nat for each $\alpha \in V$ there is exactly one vector in $\alpha_1 \in \mathcal{N}(T^k)$ ctly one vector $\alpha_2 \in \mathcal{R}(T^k)$ such that $\alpha = \alpha_1 + \alpha_2$.

d of characteristic 0 and let

$$W = \left\{ A = [a_{ij}] \in \mathbf{F}^{n \times n} : \operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii} = 0 \right\}.$$

, n with $i \neq j$, let E_{ij} be the $n \times n$ matrix with (i, j)-th the remaining entries 0. For i = 2, ..., n let E_i be the $n \times n$ 1) entry -1, (i, i)-th entry +1, and all remaining entries 0.

$$S = \{E_{ij} : i, j = 1, \dots, n \text{ and } i \neq j\} \cup \{E_i : i = 2, \dots, n\}.$$

assume, without proof, that S is a linearly independent subset

hat W is a subspace of $\mathbf{F}^{n \times n}$ and that $W = \operatorname{span}(S)$. What is ension of W?

Home Page
4 4 • • •
1
Page 4 of 22
Go Back
Full Screen
Print
Close

(2) Suppose that f is a linear functional on F^{n×n} such that
(a) f(AB) = f(BA), for all A, B ∈ F^{n×n}.
(b) f(I) = n, where I is the identity matrix in F^{n×n}.

Prove that f(A) = tr(A) for all $A \in \mathbf{F}^{n \times n}$.

Problem 11.

Let V be a vector space over $\mathbb C$. Suppose that f and g are linear functionals on V such that the functional

$$h(\alpha) = f(\alpha)g(\alpha)$$
 for all $\alpha \in V$

is linear. Show that either f = 0 or g = 0.

PROBLEM 12. Let C be a 2×2 matrix over a field **F**. Prove: There exists matrices C = AB - BA if and only if tr(C) = 0.

Problem 13.

Prove that if A and B are $n \times n$ matrices from \mathbb{C} and AB = BA, then A and B have a common eigenvector.

Problem 14.

Let **F** be a field and let V be a finite dimensional vector space over **F**. Let $T \in L(V, V)$. If c is an eigenvalue of T, then prove there is a nonzero linear functional f in $L(V, \mathbf{F})$ such that $T^*f = cf$. (Recall that $T^*f = fT$ by definition.)

Home Page	
•• ••	PROBLEM 15. Let F be a field, $n \ge 2$ be an integer, and let V be the vector space of $n \times n$ matrices over F . Let A be a fixed element of V and let $T \in L(V, V)$ be defined by $T(B) = AB$.
• •	 Prove that T and A have the same minimal polynomial. If A is diagonalizable, prove, or disprove by counterexample, that T is diagonalizable. Do A and T have the same characteristic polynomial? Why or why not?
Page 5 of 22	PROBLEM 16. Let M and N be 6×6 matrices over \mathbb{C} , both having minimal polynomial x^3 .
Go Back	 Prove that M and N are similar if and only if they have the same rank. Give a counterexample to show that the statement is false if 6 is replaced by 7.
Full Screen	PROBLEM 17. Give an example of two 4×4 matrices that are not similar but that have the same minimal polynomial.
Print	PROBLEM 18. Let (a_1, a_2, \ldots, a_n) be a nonzero vector in the real <i>n</i> -dimensional space \mathbb{R}^n and let <i>P</i> be the hyperplane
Close	$\left\{ (x_1, x_2, \dots, x_n) \in \mathbb{R}^n : \sum_{i=1}^n a_i x_i = 0 \right\}.$

Home Page	
	Fi
• •	P: Le lin W
Page 6 of 22	P Le op
Go Back	of P: Le
Full Screen	nc wi
Print	P: E: ch
Close	P: Le di B

Find the matrix that gives the reflection across P.

Problem 19.

Let V and W be finite-dimensional vector spaces and let $T: V \to W$ be a inear transformation. Prove that that exists a basis \mathcal{A} of V and a basis \mathcal{B} of W so that the matrix $[T]_{\mathcal{A},B}$ has the block from $\begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix}$.

Problem 20.

Let V be a finite-dimensional vector space and let T be a diagonalizable linear operator on V. Prove that if W is a T invariant subspace then the restriction of T to W is also diagonalizable.

Problem 21.

Let T be a linear operator on a finite-dimensional vector. Show that if T has no cyclic vector then, then there exists an operator U on V that commutes with T but is *not* a polynomial in T.

Problem 22.

Exhibit two real matrices with no real eigenvalues which have the same characteristic polynomial and the same minimal polynomial but are not similar.

Problem 23.

Let V be a vector space, not necessarily finite-dimensional. Can V have three distinct proper subspaces A, B, and C, such that $A \subset B$, A + C = V, and $B \cap C = \{0\}$?

Home Page	
•••	PROBLEM 2 Compute th Is it diagona
Page 7 of 22	PROBLEM 2 (1) Provvect
Go Back	rank (2) For prov and
Full Screen	PROBLEM 2 (1) Prov $A(I)$ (2) Find not
Close	PROBLEM 2 If S is an prove that V^* .

24.he minimal and characteristic polynomials of the following matrix. alizable?

5	-2	0	0]
6	-2	0	0
0	0	0	6
0	0	1	-1

25.

- ve that if A and B are linear transformations on an n-dimensional for space with AB = 0, then $r(A) + r(B) \le n$ where $r(\cdot)$ denotes
- each linear transformation A on an n-dimensional vector space, we that there exists a linear transformation B such that AB = 0 $r(A) + r(B) = n \,.$

26.

- ve that if A is a linear transformation such that $A^2(I A) =$ $(-A)^2 = 0$, then A is a projection.
- d a non-zero linear transformation so that $A^2(I A) = 0$ but A is a projection.

27.

m-dimensional vector space of an n-dimensional vector space V, S° , the annihilator of S, is an (n-m)-dimensional subspace of

Home Page	
44 >>	P Lo
• •	
Page 8 of 22	P Le
Go Back	
Full Screen	in th or
Print	P St m
Close	

PROBLEM 28. Let A be the 4×4 real matrix

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 \\ -2 & -2 & 2 & 1 \\ 1 & 1 & -1 & 0 \end{bmatrix}$$

(1) Determine the rational canonical form of A.

(2) Determine the Jordan canonical form of A.

Problem 29.

Let T be the linear operator on \mathbb{R}^3 which is represented by

 $A = \left[\begin{array}{rrr} 1 & 1 & -1 \\ 1 & 1 & -1 \\ 1 & 0 & 0 \end{array} \right]$

n the standard basis. Find matrices B and C which represent respectively, in the standard basis, a diagonalizable linear operator D and a nilpotent linear operator N such that T = D + N and DN = ND.

Problem 30.

Suppose T is a linear operator on \mathbb{R}^5 represented in some basis by a diagonal matrix with entries -1, -1, 5, 5, 5 on the main diagonal.

- (1) Explain why T can not have a cyclic vector.
- (2) Find k and the invariant factors $p_i = p_{\alpha_i}$ in the cyclic decomposition $\mathbb{R}^5 = \bigoplus_{i=1}^k Z(\alpha_i; T)$.
- (3) Write the rational canonical form for T.

Home Page	
•• ••	PROBLEM 31. Suppose that V in an n-dimensional vector space and T is a linear map on V of rank 1. Prove that T is nilpotent or diagonalizable.
• •	PROBLEM 32. Let M denote an $m \times n$ matrix with entries in a field. Prove that
	the maximum number of linearly independent rows of M = the maximum number of linearly independent columns of M
Page 9 of 22	(Do not assume that $\operatorname{rank} M = \operatorname{rank} M^t$.)
Go Back	PROBLEM 33. Prove the Cayley-Hamilton Theorem, using only basic properties of determinants.
Full Screen	PROBLEM 34. Let V be a finite-dimensional vector space. Prove there a linear operator T on V is invertible if and only if the constant term in the minimal polynomial for T is non-zero.
Print	PROBLEM 35. (1) Let $M = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & -1 \end{bmatrix}$. Find a matrix T (with entries in C) such that $T^{-1}MT$ is diagonal, or prove that such a matrix does not exist.
Close	(2) Find a matrix whose minimal polynomial is $x^2(x-1)^2$, whose characteristic polynomial is $x^4(x-1)^3$ and whose rank is 4.

Home Page	
▲ ▲ ▶ ▶	PROBLEM 36. Suppose A and B are linear operators on the same finite-dimensional vector space V . Prove that AB and BA have the same characteristic values.
• •	PROBLEM 37. Let M denote an $n \times n$ matrix with entries in a field \mathbf{F} . Prove that there is an $n \times n$ matrix B with entries in \mathbf{F} so that $\det(M + tB) \neq 0$ for every non-zero $t \in \mathbf{F}$.
Page 10 of 22	PROBLEM 38. Let W_1 and W_2 be subspaces of the finite dimensional vector space V . Record and prove a formula which relates $\dim W_1$, $\dim W_2$, $\dim(W_1 + W_2)$, $\dim(W_1 \cap W_2)$.
Go Back	PROBLEM 39. Let M be a symmetric $n \times n$ matrix with real number entries. Prove that there is an $n \times n$ matrix N with real entries such that $N^3 = M$.
Full Screen Print	PROBLEM 40. TRUE OR FALSE. (If the statement is true, then prove it. If the statement is false, then give a counterexample.) If two nilpotent matrices have the same rank, the same minimal polynomial and the same characteristic polynomial, then they are similar.
Close	PROBLEM 41. Suppose that $T: V \to W$ is a injective linear transformation over a field \mathbf{F} . Prove that $T^*: W^* \to V^*$ is surjective. (Recall that $V^* = L(V, \mathbf{F})$ is the vector space of linear transformations from V to \mathbf{F} .)

PROBLEM 42. If M is the $n \times n$ matrix

$$M = \begin{bmatrix} x & a & a & \cdots & a \\ a & x & a & \cdots & a \\ a & a & x & \cdots & a \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a & a & a & \cdots & x \end{bmatrix}$$

then prove that $\det M = [x + (n-1)a](x-a)^{n-1}$.

Problem 43.

Suppose that T is a linear operator on a finite dimensional vector space V over a field **F**. Prove that T has a cyclic vector if and only if

$$\{U \in L(V, V) : TU = UT\} = \{f(T) : f \in \mathbf{F}[x]\}$$

Problem 44.

Let $T: \mathbb{R}^4 \to \mathbb{R}^4$ be given by

 $T(x_1, x_2, x_3, x_4) = (x_1 - x_4, x_1, -2x_2 - x_3 - 4x_4, 4x_2 + x_3)$

- (1) Compute the characteristic polynomial of T.
- (2) Compute the minimal polynomial of T.
- (3) The vector space \mathbb{R}^4 is the direct sum of two proper *T*-invariant subspaces. Exhibit a basis for one of these subspaces.

Problem 45.

Let V, W, and Z be finite dimensional vector spaces over the field \mathbf{F} and let $f: V \to W$ and $g: W \to Z$ be linear transformations. Prove that

 $\operatorname{nullity}(g \circ f) \leq \operatorname{nullity}(f) + \operatorname{nullity}(g)$

Home Page	
~	Pr Pr
• •	wh
Page 12 of 22	Pr Let B ⁿ a c
Go Back	\Pr_{Let}
Full Screen	Pr Let Pre
Print	Pr TF is f
Close	$\operatorname{and}_{\operatorname{line}}$ $\theta \circ$

ROBLEM 46. ove that

 $\det \begin{bmatrix} A & 0 & 0 \\ B & C & D \\ 0 & 0 & E \end{bmatrix} = \det A \det C \det E$

where A, B, C, D and E are all square matrices.

Problem 47.

Let A and B be $n \times n$ matrices with entries on the field **F** such that $A^{n-1} \neq 0$, $B^{n-1} \neq 0$, and $A^n = B^n = 0$. Prove that A and B are similar, or show, with a counterexample, that A and B are not necessarily similar.

Problem 48.

Let A and B be $n \times n$ matrices with entries from \mathbb{R} . Suppose that A and B are similar over \mathbb{C} . Prove that they are similar over \mathbb{R} .

Problem 49.

Let A be an $n \times n$ with entries from the field **F**. Suppose that $A^2 = A$. Prove that the rank of A is equal to the trace of A.

Problem 50.

TRUE OR FALSE. (If the statement is true, then prove it. If the statement is false, then give a counterexample.) Let W be a vector space over a field \mathbf{F} and let $\theta: V \to V'$ be a fixed surjective transformation. If $g: W \to V'$ is a linear transformation then there is linear transformation $h: W \to V$ such that $\theta \circ h = g$.

Home Page	
~	PROBLEM 51. Let V be a finite dimensional vector space and $A \in L(V, V)$. (1) Prove that there exists and integer k such that ker $A^k = \ker A^{k+1} = \cdots$ (2) Prove that there exists an integer k such that $V = \ker A^k \oplus \operatorname{image} A^k$.
 ▲ ▶ 	PROBLEM 52. Let V be the vector space of $n \times n$ matrices over a field F , and let $T: V \to V^*$ be defined by $T(A)(B) = tr(A^tB)$. Prove that T is an isomorphism.
Page 13 of 22	PROBLEM 53. Let A be an $n \times n$ matrix and $A^k = 0$ for some k. Show that $det(A+I) = 1$.
Go Back	PROBLEM 54. Let V be a finite dimensional vector sauce over a field F , and T a linear operator on V. Suppose the minimal and characteristic polynomials of of T are the same power of an irreducible polynomial $p(x)$. Show that no non-trivial T -invariant subspace of V has a T -invariant complement.
Full Screen Print	PROBLEM 55. Let V be the vector space of all $n \times n$ matrices over a field F , and let B be a fixed $n \times n$ matrix that ti not of the form cI . Define a linear operator T on V by $T(A) = AB - BA$. Exhibit a not-zero element in the kernel of the transpose of T.
Close	PROBLEM 56. Let V be a finite dimensional vector space over a field \mathbf{F} and suppose that S and T are triangulable operators on V. If $ST = TS$ prove that S and T have an eigenvector in common.

Home Page	
44 >>	PROBLEM 57. Let A be an $n \times n$ matrix over \mathbb{C} . If trace $A^i = 0$ for all $i > 0$, prove that A is nilpotent.
• •	PROBLEM 58. Let V be a finite dimensional vector space over a field \mathbf{F} , and let T be a linear operator on V so that $\operatorname{rank}(T) = \operatorname{rank}(T^2)$. Prove that V is the direct sum of the range of T and the null space of T.
Page 14 of 22	PROBLEM 59. Let V be the vector space of all $n \times n$ matrices over a field F , and suppose that A is in V. Define $T: V \to V$ by $T(AB) = AB$. Prove that A and B have the same characteristic values.
Go Back	 PROBLEM 60. Let A and B be n×n over the complex numbers. (1) Show that AB and BA have the same characteristic values. (2) Are AB and BA similar matrices?
Full Screen	PROBLEM 61. Let V be a finite dimensional vector space over a field of characteristic 0, and T be a linear operator on V so that $tr(T^k) = 0$ for all $k \ge 1$, where $tr(\cdot)$ denotes the trace function. Prove that T is a nilpotent linear map.
Print	PROBLEM 62. Let $A = [a_{ij}]$ be an $n \times n$ matrix over the field of complex numbers such that
Close	$ a_{ii} > \sum_{j \neq i} a_{ij} $ for $i = 1, \dots, n$.

Home Page Let Page 15 of 22 Go Back If Full Screen Print Close

Then show that $\det A \neq 0$. (det denotes the determinant.)

PROBLEM 63.

Let A be an $n\times n$ matrix, and let ${\rm adj}(A)$ denote the adjoint of A. Prove the rank of ${\rm adj}(A)$ is either $0\,,\,1\,,$ or $\,n\,.$

PROBLEM 64.

$$A = \begin{bmatrix} 1 & 3 & 3 \\ 3 & 1 & 3 \\ -3 & -3 & -5 \end{bmatrix}$$

(1) Determine the rational canonical form of A.

(2) Determine the Jordan canonical form of A.

Problem 65.

$$A = \left[\begin{array}{rrr} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array} \right],$$

then prove that there does not exist a matrix with $N^2 = A$.

Problem 66.

Let A be a real $n\times n\,$ matrix which is symmetric, i.e. $A^t=A\,.$ Prove that A is diagonalizable.

Problem 67.

Give an example of two nilpotent matrices A and B such that

(1) A is not similar to B,

(2) A and B have the same characteristic polynomial,

Home Page	
•• ••	
• •	
Page 16 of 22	
Go Back	
Full Screen	
Print	
Close	

- (3) A and B have the same minimal polynomial, and
- (4) A and B have the same rank.

Problem 68.

Let A be an $n \times n$ matrix over a field **F**. Show that \mathbf{F}^n is the direct sum of the null space and the range of A if and only if A and A^2 have the same rank.

Problem 69.

Let A and B be $n \times n$ matrices over a field **F**.

- (1) Show AB and BA have the same eigenvalues.
- (2) Is AB similar to BA? (Justify your answer).

Problem 70.

Given an exact sequence of finite-dimensional vector spaces

$$0 \xrightarrow{T_0} V_1 \xrightarrow{T_1} V_2 \xrightarrow{T_2} \cdots \xrightarrow{T_{n-2}} V_{n-1} \xrightarrow{T_{n-1}} V_n \xrightarrow{T_n} 0$$

that is the range of T_i is equal to the null space of T_{i+1} , for all i. What is the value of $\sum_{i+1}^{n} (-1)^i \dim(V_i)$? (Justify your answer).

Problem 71.

Let ${\bf F}$ be a field with q elements and V be a n -dimensional vector space over ${\bf F}$.

- (1) Find the number of elements in V.
- (2) Find the number of bases in of V.
- (3) Find the number of invertible linear operators on V.

Home Page	
••	
• •	
Page 17 of 22	
Go Back	
Full Screen	
Print	
Close	

Problem 72.

Let A and B be $n \times n$ matrices over a field **F**. Suppose that A and B have the same trace and the same minimal polynomial of degree n-1. Is A similar to B? (Justify your answer.)

Problem 73.

Let $A = [a_{ij}]$ be an $n \times n$ matrix with $a_{ij} = 1$ for all i and j. Find its characteristic and minimal polynomial.

PROBLEM 74.

Give an example of a matrix with real entries whose characteristic polynomial is $x^5 - x^4 + x^2 - 3x + 1$.

Problem 75.

TRUE or FALSE. (If true prove it. If false give a counterexample.) Let A and B be $n \times n$ matrices with minimal polynomial x^4 . If rank $A = \operatorname{rank} B$, and rank $A^2 = \operatorname{rank} B^2$, then A and B are similar.

PROBLEM 76.

Suppose that T is a linear operator on a finite-dimensional vector space V over a field \mathbf{F} . Prove that the characteristic polynomial of T is equal to the minimal polynomial of T if and only if

$$\{U \in L(V, V) : TU = UT\} = \{f(T) : f \in \mathbf{F}[x]\}.$$

PROBLEM 77.

- (1) Prove that if A and B are 3×3 matrices over a field **F**, a necessary and sufficient condition that A and B be similar over **F** is that that have the same characteristic and the same minimal polynomial.
- (2) Give an example to show this is not true for 4×4 matrices.

Home Page	
•• ••	PI Le is f(
• •	\Pr Su x^2
Page 18 of 22	P1 Le ha
Go Back	P1 Su
Full Screen	op lin
Print	Pr Le th
Close	Pr Le rat P:

Problem 78.

Let V be the vector space of $n \times n$ matrices over a field. Assume that f is a linear functional on V so that f(AB) = f(BA) for all $A, B \in V$, and f(I) = n. Prove that f is the trace functional.

Problem 79.

Suppose that N is a 4×4 nilpotent matrix over **F** with minimal polynomial x^2 . What are the possible rational canonical forms for n?

PROBLEM 80.

Let A and B be $n \times n$ matrices over a field **F**. Prove that AB and BA have the same characteristic polynomial.

Problem 81.

Suppose that \mathbf{V} is an *n*-dimensional vector space over \mathbf{F} , and T is a linear operator on \mathbf{V} which has *n* distinct characteristic values. Prove that if *S* is a linear operator on \mathbf{V} that commutes with *T*, then *S* is a polynomial in *T*.

Problem 82.

Let A and B be $n \times n$ matrices over a field **F**. Show that AB and BA have the same characteristic values in **F**.

Problem 83.

Let P and Q be real $n \times n$ matrices so that P + Q = I and rank $(P) + \operatorname{rank}(Q) = n$. Prove that P and Q are projections. (HINT: Show that if Px = Qy for some vectors x and y, then Px = Qy = 0.)

Home Page	
~	Prof Supp- expre n-1
• •	Proe Let
Page 19 of 22	Deter
Go Back	Proe (1
Full Screen	(2
Print	Proe This vecto g is a
Close	Proe This some

PROBLEM 84.

Suppose that A is an $n \times n$ real, invertible matrix. Show that A^{-1} can be expressed as a polynomial in A with real coefficients and with degree at most n-1.

Problem 85.

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}.$$

Determine the rational canonical form and the Jordan canonical form of A.

PROBLEM 86.

- (1) Give an example of two 4×4 nilpotent matrices which have the same minimal polynomial but are not similar.
- (2) Explain why 4 is the smallest value that can be chosen for the example in part (a), i.e. if $n \leq 3$, any two nilpotent matrices with the same minimal polynomial are similar.

PROBLEM 87.

This is a very basic and important fact. Let V be a finite dimensional vector space and f and g two linear functionals on V. If ker $f = \ker g$ show g is a scalar multiple of f.

Problem 88.

This problem makes explicit some facts that are used several times in solving some of the problems above.

Home Page
•• ••
▲ ▶
Page 20 of 22
Go Back
Full Screen
Print
Close

- (1) Prove that if V is a finite dimensional vector space over the field \mathbf{F} and $T \in L(V, V)$ and V is cyclic for T that any $S \in L(V, V)$ that commutes with T is a polynomial in T. That is ST = TS implies that S = p(T) for some $p(x) \in \mathbf{F}[x]$. HINT: Let dim V = n. Then because V is cyclic for T there is a vector $v_0 \in V$ so that $v_0, Tv_0, \ldots, T^{n-1}v_0$ is a basis for V. Thus there are scalars $a_0, a_1, \ldots, a_{n-1}$ so that $Sv_0 = a_0v_0 + a_1Tv_0 + a_2T^2v_0 + \cdots + a_{n-1}T^{n-1}v_0$. Then letting $p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1}$ we have $Sv_0 = p(T)v_0$. Now use that S commutes with T (and thus also p(T)) to show that $ST^iv_0 = p(T)T^iv_0$ for $i = 0, 1, \ldots, n-1$. Thus the two linear maps S and p(T) agree on a basis and hence are equal.
- (2) If the minimal polynomial f(x) of T has deg $f(x) = \dim V$ then V is cyclic for T. HINT: I don't know any particularly easy way to do this. The basic idea is to factor $f(x) = p_1(x)^{k_1} \cdots p_l(x)^{k_l}$ into powers of primes and consider the corresponding primary decomposition $V = \ker(p_1(T)^{k_1}) \oplus \cdots \oplus \ker(p_l(T)^{k_l})$ and show that if deg $f(x) = \dim V$ then each of the primary factors $\ker(p_i(T)^{k_i})$ is cyclic (this in turn uses that each of the $\ker(p_i(T)^{k_i})$ is a sum of cyclic subspaces). Now let v_i be a cyclic for T in $\ker(p_i(T)^{k_i})$ for $i = 1, \ldots, l$. Then show the vector $v_0 = v_1 + v_2 + \cdots + v_l$ is cyclic for T.

Problem 89.

Home Page Page 21 of 22 Go Back Full Screen Print Close

Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be distinct elements of the field **F**. Then the matrix

$$A = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ \lambda_1 & \lambda_2 & \cdots & \lambda_n \\ \lambda_1^2 & \lambda_2^2 & \cdots & \lambda_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_1^{n-1} & \lambda_2^{n-1} & \cdots & \lambda_n^{n-1} \end{bmatrix}$$

is invertible. HINT: If A is singular then it has rank less than n and thus there is a nontrivial linear relation between the rows of A. This would in turn imply that there is a nonzero polynomial p(x) of degree $\leq n-1$ than had the n scalars $\lambda_1, \lambda_2, \ldots, \lambda_n$ as roots. But this is impossible.

Problem 90.

This is another set of facts that anyone who has had a graduate linear algebra class should know. Let D be a diagonal matrix that has all its diagonal elements distinct. That is

$$D = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n) := \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} \quad \text{where } \lambda_i \neq \lambda_j \text{ for } i \neq j.$$

Then show

- (1) The only matrices that commute with D are diagonal matrices.
- (2) If A is any other diagonal matrix then A is a polynomial in D. That is there is a polynomial p(x) so that A = p(D).
- (3) If A is any matrix that commutes with D then A is a polynomial in D.

(4) There is a cyclic vector for D . HINT: Let e_1, \ldots, e_n be the standard
coordinate vectors. Then as D is diagonal $De_i = \lambda_i e_i$. Let
$v = a_1e_1 + a_2e_2 + \cdots + a_ne_n$. Then show that v is a cyclic vector
for D if and only if $a_i \neq 0$ for all i (One way to do this is use the last
problem). In particular $v = e_1 + e_2 + \cdots + e_n$ is a cyclic vector for T.

Problem 91.

This is another standard problem. Let V be a finite dimensional vector space over a field **F** and let $T \in L(V, V)$. Let λ be an eigenvalue of T and let $V_{\lambda} := \{v \in V : Tv = \lambda v\}$ be the corresponding eigenspace.

- (1) Let $S \in L(V, V)$ commute with T. Then show that V_{λ} is invariant under S. (That is show $v \in V_{\lambda}$ implies $Sv \in V_{\lambda}$.)
- (2) Show that if A and B are $n \times n$ matrices over the complex numbers that commute, then they have a common eigenvector. HINT: As A is a complex matrix it has at least one eigenvalue λ . Let V_{λ} be the corresponding eigenspace. Then by what we have just done V_{λ} is invariant under B. But then the restriction of B to V_{λ} has an eigenvector in V_{λ} .
- (3) This is a different way of looking at Problem 90(4) above. Assume V has an basis of eigenvectors e_1, e_2, \ldots, e_n of eigenvectors of T, that is $Te_i = \lambda_i e_i$. Also assume the eigenvalues are distinct: $\lambda_i \neq \lambda_j$ for $i \neq j$. Then show if S commutes with T then for some scalars c_i there holds $Se_i = c_i e_i$, and thus S is also diagonal in the basis e_1, \ldots, e_n . HINT: Let $V_{\lambda_i} := \{v : Te_i = \lambda_i v\}$. Then by the assumptions V_{λ_i} is one dimensional with basis e_i . Part (1) of this problem then implies that V_{λ_i} is invariant under S. As V_{λ_i} is one dimensional this in turn implies e_i is an eigenvector of S.

Quit

Close

Home Page

Page 22 of 22

Go Back

Full Screen

Print