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PREFACE

This exposition is for the use of first year graduate students pursuing advanced degrees in math-
ematics. In the United States, people in this position generally find themselves confronted with
a battery of examinations at the beginning of their second year, so if you are among them a good
part of your energy during your first year will be expended mastering the essentials of several
branches of mathematics, algebra among them.

While every doctoral program in mathematics sets its own expectations, there is a fair consensus
on those parts of algebra that should be part of a mathematician’s repertoire. I have tried to gather
here just those parts. So here you will find the basics of (commutative) rings and modules in Part
I. The basics of groups and fields, constituting the content of second semester, are in Part II. The
background you will need to make good use of this exposition is a good course in linear algebra
and another in abstract algebra, both at the undergraduate level.

As you proceed through these pages you will find many places where the details and sometimes
whole proofs of theorems will be left in your hands. The way to get the most from this presen-
tation is to take it on with paper and pencil in hand and do this work as you go. There are also
weekly problem sets. Most of the problems have appeared on Ph.D. examinations at various uni-
versities. In a real sense, the problems sets are the real heart of this presentation.

This work grew out of teaching first year graduate algebra courses. Mostly, I have done this at
the University of South Carolina (but the first time I did it was at Dartmouth College and I had
the delightful experience of teaching this material at the University of the Philippines). Many of
the graduate students in these courses have influenced my presentation here. Before all others,
I should mention Kate Scott Owens, who had the audacity to sit in to front row with her laptop,
putting my classroom discussions into LATEX on the fly. She then had the further audacity to post
the results so that all the flaws and blunders I made would be available to everyone. So this effort
at exposition is something in the way of self-defense. . . .

George F. McNulty
Columbia, SC
2014
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0
THE BASICS OF ALGEBRAIC SYSTEMS

0.1 ALGEBRAIC SYSTEMS

In your undergraduate coursework you have already encountered many algebraic systems. These
probably include some specific cases, like 〈Z,+, ·,−,0,1〉 which is the system of integers equipped
with the usual two-place operations of addition, multiplication, the one-place operation of form-
ing negatives, and two distinguished integers 0 and 1, which we will construe as zero-place op-
erations (all output and no input). You have also encountered whole classes of algebraic systems
such as the class of vector spaces over the real numbers, the class of rings, and the class of groups.
You might even have encountered other classes of algebraic systems such are Boolean algebras
and lattices.

The algebraic systems at the center of this two-semester course are rings, modules, groups, and
fields. Vector spaces are special cases of modules. These kinds of algebraic systems arose in the
nineteenth century and the most of the mathematics we will cover was well-known by the 1930’s.
This material forms the basis for a very rich and varied branch of mathematics that has flourished
vigorously over the ensuing decades.

Before turning to rings, modules, groups, and fields, it pays to look at algebraic systems from a
fairly general perspective. Each algebraic system consist of a nonempty set of elements, like the
set Z of integers, equipped with a system of operations. The nonempty set of elements is called
the universe of the algebraic system. (This is a shortening of “universe of discourse”.) Each of
the operations is a function that takes as inputs arbitrary r -tuples of elements of the universe and
returns an output again in the universe—here, for each operation, r is some fixed natural number
called the rank of the operation. In the familiar algebraic system 〈Z,+, ·,−,0,1〉, the operations
of addition and multiplication are of rank 2 (they are two-place operations), the operation of
forming negatives is of rank 1, and the two distinguished elements 0 and 1 are each regarded as
operations of rank 0.

Aside. Let A be a set and r be a natural number. We use Ar to denote the set of all r -tuples of
elements of A. An operation F of rank r on A is just a function from Ar into A. There is a curious
case. Suppose A is the empty set and r > 0. Then Ar is also empty. A little reflection shows that
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0.1 Algebraic Systems 2

the empty set is also a function from Ar into A, that is the empty set is an operation of rank r .
The curiosity is that this is so for any positive natural number r . This means that the rank of this
operation is not uniquely determined. We also note that A0 actually has one element, namely
the empty tuple. This means that when A is empty there can be no operations on A of rank 0.
On the other hand, if A is nonempty, then the rank of every operation of finite rank is uniquely
determined and A has operations of every finite rank. These peculiarities explain, to some extent,
why we adopt the convention that the universe of an algebraic system should be nonempty.

The notion of the signature of an algebraic system is a useful way to organize the basic notions
of our subject. Consider these three familiar algebraic systems:

〈Z,+, ·,−,0,1〉
〈C,+, ·,−,0,1〉

〈R2×2,+, ·,−,0,1〉
The second system consists of the set of complex numbers equipped with the familiar operations,
while the third system consists of the set of 2×2 matrices with real entries equipped with matrix
multiplication, matrix addition, matrix negation, and distinguished elements 0 for the zero ma-
trix, and 1 for the identity matrix. Notice that + has a different meaning on each line displayed
above. This is a customary, even well-worn, ambiguity. To resolve this ambiguity let us regard +
not as a two-place operation but as a symbol for a two-place operation. Then each of the three
algebraic systems gives a different meaning to this symbol—a meaning that would ordinarily be
understood from the context, but could be completely specified as needed. A signature is just a
set of operation symbols, each with a uniquely determined natural number called its rank. More
formally, a signature is a function with domain some set of operation symbols that assigns to each
operation symbol its rank. The three algebraic systems above have the same signature.

“Algebraic system” is a mouthful. So we shorten it to “algebra”. This convenient choice is in
conflict another use of this word to refer to a particular kind of algebraic system obtained by
adjoining a two-place operation of a certain kind to a module.

As a matter of notation, we tend to use boldface A to denote an algebra and the corresponding
normalface A to denote its universe. For an operation symbol Q we use, when needed, QA to
denote the operation of A symbolized by Q. We follow the custom of writing operations like +
between its inputs (like 5+2) but this device does not work very well if the rank of the operation is
not two. So in general we write things like QA(a0, a1, . . . , ar−1) where the operation symbol Q has
rank r and a0, a1, . . . , ar−1 ∈ A.

Each algebra has a signature. It is reasonable to think of each algebra as one particular way to
give meaning to the symbols of the signature.

Homomorphisms and their relatives

Let A and B be algebras of the same signature. We say that a function h : A → B is a homomor-
phism provided for every operation symbol Q and all a0, a1, . . . , ar−1 ∈ A, where r is the rank of Q,
we have

h(QA(a0, a1, . . . , ar−1)) =QB(h(a0),h(a1), . . . ,h(ar−1)).

That is, h preserves the basic operations. We use h : A → B to denote that h is a homomorphism
from the algebra A into the algebra B. For example, we learned in linear algebra that the deter-
minant det is a homomorphism from 〈R2×2, ·,0,1〉 into 〈R, ·,0,1〉. The key fact from linear algebra
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is
det(AB) = det A detB.

We note in passing that the multiplication on the left (that is AB) is the multiplication of matrices,
while the multiplication on the right is multiplication of real numbers.

In the event that h is a homomorphism from A into B that happens to be one-to-one we call it
an embedding and express this in symbols as

h : A�B.

In the event that the homomorphism h is onto B we say that B is a homomorphic image of A and
write

h : A�B.

In the event that the homomorphism h is both one-to-one and onto B we say that h is an iso-
morphism and we express this in symbols as

h : A��B

or as

A
h∼= B.

It is an easy exercise, done by all hard-working graduate students, that if h is an isomorphism
from A to B then the inverse function h−1 is an isomorphism from B to A. We say that A and B are
isomorphic and write

A ∼= B

provided there is an isomorphism from A to B.
The algebra 〈R,+,−,0〉 is isomorphic to 〈R+, ·,−1,1〉, where R+ is the set of positive real numbers.

There are isomorphisms either way that are familiar to freshman in calculus. Find them.
A homomorphism from A into A is called an endomorphism of A. An isomorphism from A to A

is called an automorphism of A.

Subuniverses and sublagebras

Let A be an algebra. A subset B ⊆ A is called a subuniverse of A provided it is closed with respect
to the basic operations of A. This means that for every operation symbol Q of the signature of
A and for all b0,b1, . . . ,br−1 ∈ B , where r is the rank of Q we have QA(b0,b1, . . . ,br−1) ∈ B . Notice
that if the signature of A has an operation symbol c of rank 0, then cA is an element of A and this
element must belong to every subuniverse of A. On the other hand, if the signature of A has no
operation symbols of rank 0, then the empty set ∅ is a subuniverse of A.

The restriction of any operation of A to a subuniverse B of A results in an operation on B . In
the event that B is a nonempty subuniverse of A, we arrive at the subalgebra B of A. This is the
algebra of the same signature as A with universe B such that QB is the restriction to B of QA, for
each operation symbol Q of the signature. B ≤ A symbolizes that B is a subalgebra of A.

Here is a straightforward but informative exercise for hard-working graduate students. Let N=
{0,1,2, . . . } be the set of natural numbers. Discover all the subuniverses of the algebra 〈N,+〉.
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Congruence relations

Let A be an algebra and h be a homomorphism from A to some algebra. We associate with h the
following set, which called here the functional kernel of h,

θ = {(a, a′) | a, a′ ∈ A and h(a) = h(a′)}.

This set of ordered pairs of elements of A is evidently an equivalence relation on A. That is, θ has
the following properties.

(a) It is reflexive: (a, a) ∈ θ for all a ∈ A.

(b) It is symmetric: for all a, a′ ∈ A, if (a, a′) ∈ θ,then (a′, a) ∈ θ.

(c) It is transitive: for all a, a′, a′′ ∈ A, if (a, a′) ∈ θ and (a′, a′′) ∈ θ, then (a, a′′) ∈ θ.

This much would be true were h any function with domain A. Because θ is a binary (or two-place)
relation on A it is useful to use the following notations interchangeably.

(a, a′) ∈ θ
a θ a′

a ≡ a′ mod θ

Here is another piece of notation which we will use often. For any set A, any a ∈ A and any
equivalence relation θ on A we put

a/θ := {a′ | a′ ∈ A and a ≡ a′ mod θ}.

We also put
A/θ := {a/θ | a ∈ A}.

Because h is a homomorphism θ has one more important property, sometimes called the sub-
stitution property:

For every operation symbol Q of the signature of A and for all a0, a′
0, a1, a′

1, . . . , ar−1, a′
r−1 ∈ A,

where r is the rank of Q,

if

a0 ≡ a′
0 mod θ

a1 ≡ a′
1 mod θ

...

ar−1 ≡ a′
r−1 mod θ

then

QA(a0, a1, . . . , ar−1) ≡QA(a′
0, a′

1, . . . , a′
r−1) mod θ.

An equivalence relation on A with the substitution property above is called a congruence re-
lation of the algebra A. The functional kernel of a homomorphism h from A into some other
algebra is always a congruence of A. We will see below that this congruence retains almost all the
information about the homomorphism h.

As an exercise to secure the comprehension of this notion, the hard-working graduate students
should try to discover all the congruence relations of the familiar algebra 〈Z,+, ·〉.
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A comment of mathematical notation

The union A∪B and the intersection A∩B of sets A and B are familiar. These are special cases of
more general notions. Let K be any collection of sets. The union

⋃
K is defined via

a ∈⋃
K ⇔ a ∈C for some C ∈K .

Here is the special case A∪B rendered in this way

a ∈ A∪B ⇔ a ∈⋃
{A,B} ⇔ a ∈C for some C ∈ {A,B} ⇔ a ∈ A or a ∈ B.

Similarly, the intersection
⋂

K is defined via

a ∈⋂
K ⇔ a ∈C for all C ∈K .

Notice that in the definition of the intersection, each set belonging to the collection K imposes
a constraint on what elements are admitted to membership in

⋂
K . When the collection K is

empty there are no constraints at all on membership in
⋂

K . This means
⋂∅ is the collection of

all sets. However, the having the collection of all sets in hand leads to a contradiction, as discov-
ered independently by Ernst Zermelo and Bertrand Russell in 1899. To avoid this, we must avoid
forming the intersection of empty collections. This situation is analogous to division by zero. Just
as when division of numbers comes up, the careful mathematician considers the possibility that
the divisor is zero before proceeding, so must the careful mathematician consider the possibility
that K might be empty before proceeding to form

⋂
K .

We also use the notation ⋃
i∈I

Ai and
⋂
i∈I

Ai

to denote the union and intersection of K = {Ai | i ∈ I }. The set I here is used as a set of indices.
In using this notation, we impose no restrictions on I (save that in forming intersections the set
I must not be empty). In particular, we make no assumption that the set I is ordered in any way.

The familiar set builder notation, for example {n | n is a prime number}, has a companion in the
function builder notation. Here is an example

f = 〈ex | x ∈R〉.

The function f is just the exponential function on the real numbers. We take the words “func-
tion”, “sequence”, and “system” to have the same meaning. We also use the notation f (c) and fc

interchangeably when f is a function and c is a member of its domain.
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0.2 PROBLEM SET 0

ALGEBRA HOMEWORK, EDITION 0

FIRST WEEK

HOW IS YOUR LINEAR ALGEBRA?

PROBLEM 0.
Classify up to similarity all the square matrices over the complex numbers with minimal polyno-
mial m(x) = (x −1)2(x −2)2 and characteristic polynomial c(x) = (x −1)6(x −2)5.

PROBLEM 1.
Let T : V → V be a linear transformation of rank 1 on a finite dimensional vector space V over
any field. Prove that either T is nilpotent or V has a basis of eigenvectors of T .

PROBLEM 2.
Let V be a vector space over a field K .

(a) Prove that if U0 and U1 are subspaces of V such that U0 *U1 and U1 *U0, then V 6=U0 ∪U1.

(b) Prove that if U0,U1, and U2 are subspaces of V such that Ui * U j when i 6= j and K has at
least 3 elements, then V 6=U0 ∪U1 ∪U2.

(c) State and prove a generalization of (b) for n subspaces.
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0.3 THE HOMOMORPHISM THEOREM FOR ALGEBRAS OF THE SIMPLEST SIGNATURE

The simplest signature is, of course, empty. It provides no operation symbols. In this setting,
algebras have nothing real to distinguish them from nonempty sets. Every function between
two nonempty sets will be a homomorphism. Every subset will be a subuniverse. Every equiv-
alence relation will be a congruence. Isomorphisms are just one-to-correspondences between
nonempty sets and two nonempty sets will be isomorphic just in case they have the same cardi-
nality. So doing algebra in the empty signature if a branch of combinatorics.

Nevertheless, there is an important lesson for us to learn here.
Suppose that A is a nonempty set. By a partition of A we mean a collection P of subsets of A

with the following properties:

(a) Each member of P is a nonempty subset of A.

(b) If X ,Y ∈P and X 6= Y , then X and Y are disjoint.

(c) Every element of A belongs to some set in the collection P .

There is a close connection between the notion of a function with domain A, the notion of an
equivalence relation on A, and the notion of a partition of A. You may already be familiar with
this connection. We present it in the following theorem:

The Homomorphism Theorem, empty version. Let A be a nonempty set, let f : A �B be a func-
tion from A onto B, let θ be an equivalence relation on A, and let P be a partition of A. All of the
following hold.

(a) The functional kernel of f is an equivalence relation on A.

(b) The collection A/θ = {a/θ | a ∈ A} is a partition of A.

(c) The map η that assigns to each a ∈ A the set in P to which it belongs is a function from A onto
P ; moreover P is the collection of equivalence classes of the functional kernel of η.

(d) If θ is the functional kernel of f , then there is a one-to-one correspondence g from A/θ to B
such that f = g ◦η.

Figure 0.3 displays something of what this theorem asserts.
The empty version of the Homomorphism Theorem is almost too easy to prove. One merely

has to check what the definitions of the various notions require. The map η is called the quotient
map. That it is a function, i.e. that =

{(a, X ) | a ∈ A and a ∈ X ∈P }

is a function, follows from the disjointness of distinct members of the partition. That its domain
in A follows from condition (c) in the definition of partition. The one-to-one correspondence g
mentioned in assertion (d) of the Homomorphism Theorem is the following set of ordered pairs:

{(a/θ, f (a)) | a ∈ A}.

The proof that this set is a one-to-one function from A onto B is straightforward, the most amus-
ing part being the demonstration that it is actually a function.
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Figure 0.1: The Homomorphism Theorem

0.4 DIRECT PRODUCTS

Just as you are familiar with A ∪B and A ∩B , you probably already know that A ×B denotes the
set of all ordered pairs whose first entries are chosen from A while the second entries are chosen
from B . Just as we did for unions and intersections we will extend this notion.

Let 〈Ai | i ∈ I 〉 be any system of sets. We call a function a : I →⋃
i∈I Ai a choice function for the

system 〈Ai | i ∈ I 〉 provided ai ∈ Ai for all i ∈ I . It is perhaps most suggestive to think of a as an
I -tuple (recalling that we are using function, tuple, system, and sequence interchangeably). The
direct product of the system 〈Ai | i ∈ I 〉 is just the set of all these choice functions. Here is the
notation we use:∏〈Ai | i ∈ I 〉 :=∏

i∈I
Ai := {a | a is a choice function for the system 〈Ai | i ∈ I 〉}.

The sets Ai are called the direct factors of this product. If any of the sets in the system 〈Ai | i ∈ I 〉
is empty, then the direct product is also empty. On the other hand, if I is empty then the direct
product is {∅}, since the empty set will turn out to be a choice function for the system. Notice
that {∅} is itself nonempty and, indeed, has exactly one element.

Observe that
∏〈A,B〉 = {〈a,b〉 | a ∈ A and b ∈ B}. This last set is, for all practical purposes, A×B .

Projection functions are associated with direct products. For any j ∈ I , the j th projection func-
tion p j is defined, for all a ∈∏〈Ai | i ∈ I 〉, via

p j (a) := a j .

The systems of projection functions has the following useful property: it separate points. This
means that if a, a′ ∈ ∏〈Ai | i ∈ T 〉 and a 6= a′, then p j (a) 6= p j (a′) for some j ∈ I . Suppose that
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〈Ai | i ∈ I 〉 is a system of sets, that B is some set, and that 〈 fi | i ∈ I 〉 is a system of functions such
that fi : B → Ai for each i ∈ I . Define the map h : B →∏〈Ai | i I 〉 via

h(b) := 〈 fi (b) | i ∈ I 〉.

Then it is easy that fi = pi ◦h for all i ∈ I . If the system 〈 fi | i ∈ I 〉 separates points, then the
function h defined just above will be one-to-one, as all hard-working graduate students will surely
check.

We form direct products of systems of algebras in the following way. Let 〈Ai | i ∈ I 〉 be a system
of algebras, all with the same signature. We take

∏〈Ai | i ∈ I 〉 to be the algebra P with universe
P :=∏〈Ai | i ∈ I 〉 and where the operations on P are defined coordinatewise. This means that for
each operation symbol Q and all a0, a1, . . . , ar−1 ∈ P , where r is the rank of Q we have

QP(a0, a1, . . . , ar−1) = 〈QAi (a0,i , a1,i , . . . , ar−1,i ) | i ∈ I 〉.

To see more clearly what is intended here, suppose that Q has rank 3, that I = {0,1,2,3}, and that
a,b,c ∈ P . Then

a
b
c

QP(a,b,c)

=
=
=
=

〈a0, a1, a2, a3〉
〈b0, b1, b2, b3〉
〈c0, c1, c2, c3〉

〈QA0 (a0,b0,c0), QA1 (a1,b1,c1), QA2 (a2,b2,c2), QA1 (a3,b3,c3)〉

In this way, the direct product of a system of algebras, all of the same signature, will be again an
algebra of the common signature and it is evident that each projection map is a homomorphism
from the direct product onto the corresponding direct factor. Even the following fact is easy to
prove.

Fact. Let 〈Ai | i ∈ I 〉 be a system of algebras, all of the same signature. Let B be an algebra of the
same signature as A and let 〈 fi | i ∈ I 〉 be a system of homomorphisms so that fi : B → Ai for all
i ∈ I . Then there is a homomorphism h : B → ∏

i∈I Ai so that fi = pi ◦h for all i ∈ I . Moreover, if
〈 fi | i ∈ I 〉 separates points, then h is one-to-one.
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THE ISOMORPHISM THEOREMS

The four theorems presented today arose over a period of perhaps forty years from the mid 1890’s
to the mid 1930’s. They emerged from group theory and the theory of rings and modules chiefly
in the work of Richard Dedekind and Emmy Noether and it was Noether who gave their first clear
formulation in the context of module theory in 1927. You have probably already seen versions of
these theorems for groups or rings is an undergraduate abstract algebra course.

We will frame them is the broader context of algebras in general. That way it will not be neces-
sary to do more than add a comment or two when applying them in the context of groups, rings,
and modules (these being our principal focus). In addition, you will be able to apply them in the
context of lattices, Boolean algebras, or other algebraic systems.

At the center of this business is the notion of a quotient algebra. Let A be an algebra and let
θ be a congruence of A. Recall that for each a ∈ A we use a/θ to denote the congruence class
{a′ | a′ ∈ A and a ≡ a′ mod θ}. Moreover, we use A/θ to denote the partition {a/θ | a ∈ A} of A
into congruence classes. We make the quotient algebra A/θ by letting its universe be A/θ and, for
each operation symbol Q of the signature of A, and all a0, a1, . . . , ar−1 ∈ A, where r is the rank of
Q, we define

QA/θ(a0/θ, a1/θ, . . . , ar−1/θ) :=QA(a0, a1, . . . , ar−1)/θ.

Because the elements of A/θ are congruence classes, we see that the r inputs to QA/θ must be
congruence classes. On the left side of the equation above the particular elements ai have no
special standing—they could be replaced by any a′

i provided only that ai ≡ a′
i mod θ. Loosely

speaking, what this definition says is that to evaluate QA/θ on an r -tuple of θ-classes, reach into
each class, grab an element to represent the class, evaluate QA at the r -tuple of selected repre-
sentative to obtain say b ∈ A, and then output the class b/θ. A potential trouble is that each time
such a process is executed on the same r -tuple of congruence classes, different representatives
might be selected resulting in, say b′ instead of b. But the substitution property, the property that
distinguishes congruences from other equivalence relations, is just what is needed to see that
there is really no trouble. To avoid a forest of subscripts, here is how the argument would go were

10



Lecture 1 The Isomorphism Theorems 11

Q to have rank 3. Suppose a, a′,b,b′,c,c ′ ∈ A with

a/θ = a′/θ
b/θ = b′/θ
c/θ = c ′/θ

So a and a′ can both represent the same congruence class—the same for b and b′ and for c and
c ′. Another way to write this is

a ≡ a′ mod θ

b ≡ b′ mod θ

c ≡ c ′ mod θ

What we need is QA(a,b,c)/θ =QA(a′,b′,c ′)/θ. Another way to write that is

QA(a,b,c) ≡QA(a′,b′,c ′) mod θ.

But this is exactly what the substitution property provides. Hard-working graduate students will
do the work to see that what works for rank 3 works for any rank.

The theorem below, sometimes called the First Isomorphism Theorem, is obtained from its
version for the empty signature replacing arbitrary functions by homomorphisms and arbitrary
equivalence relations by congruence relations.

The Homomorphism Theorem. Let A be an algebra, let f : A � B be a homomorphism from A
onto B, and let θ be a congruence relation of A. All of the following hold.

(a) The functional kernel of f is an congruence relation of A.

(b) A/θ is an algebra of the same signature as A.

(c) The map η that assigns to each a ∈ A the congruence class a/θ is a homomorphism from A onto
A/θ and its functional kernel is θ.

(d) If θ is the functional kernel of f , then there is an isomorphism g from A/θ to B such that f =
g ◦η.

The proof of this theorem has been, for the most part, completed already. We just saw how to
prove part (b) and part (a) was done when the notions of congruence relation and functional ker-
nel were introduced. Even parts (c) and (d) were mostly established in the version of the theorem
for algebras with empty signature. It only remains to prove that the quotient map η in part (c) and
the map g in part (d) are actually homomorphisms. With the definition of how the operations in
the quotient algebra work, this only requires checking that the basic oeprations are preserved by
η and by g . This work is left to the diligent graduate students.

From parts (a) and (c) of the Homomorphism Theorem we draw the following corollary.

Corollary 1.0.1. Let A be an algebra. The congruence relations of A are exactly the functional
kernels of homomorphisms from A into algebras of the same signature as A.
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It will be necessary, as we develop the theory of rings, modules, and groups, to determine
whether certain equivalence relations at hand are in fact congruence relations. Of course, we
can always check the conditions defining the concept of congruence relation. But sometimes it
is simpler to show that the relation is actually the functional kernel of some homomorphism.

Now let us suppose that θ is a congruence of A and that B is a subalgebra of A. By θ �B we mean
the restriction of θ to B . That is

θ �B := θ∩ (B ×B).

Now θ partitions A into congruence classes. Some of these congruence classes may include ele-
ments of B while others may not. We can inflate B using θ to obtain the set θB of all elements of
A related by θ to some element of B . That is

θB := {a | a ≡ b mod θ for some b ∈ B}.

The diagram below illustrates the inflation of B by θ, where we have drawn lines to indicate the
partition of A into θ-classes.

A B

Figure 1.1: The Inflation θB of B by θ

The Second Isomorphism Theorem. Let A be an algebra, let θ be a congruence of A, and let B be
a subalgebra of A. Then each of the following hold.

(a) θ �B is a congruence relation of B.

(b) θB is a subuniverse of A.

(c) θB/(θ � θB) ∼= B/θ �B.

Proof. For part (a) we have to see that θ � B is an equivalence relation on B and that it has the
substitution property. Hard-working graduate students will check that it is indeed an equiva-
lence relation. To see that the substitution property holds, let Q be an operation symbol. Just for
simplicity, let us suppose the rank of Q is 3. Pick a, a′,b,b′,c,c ′ ∈ B so that

a ≡ a′ mod θ �B

b ≡ b′ mod θ �B

c ≡ c ′ mod θ �B.

We must show that QB(a,b,c) ≡ QB(a′,b′,c ′) mod θ � B . Because all those elements come from
B we see that

a ≡ a′ mod θ

b ≡ b′ mod θ

c ≡ c ′ mod θ,
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and that both QB(a,b,c) =QA(a,b,c) and QB(a′,b′,c ′) =QA(a′,b′,c ′). It follows from the substitu-
tion property for θ that QA(a,b,c) ≡QA(a′,b′,c ′) mod θ. But since both QA(a,b,c) =QB(a,b,c) ∈
B and QA(a′,b′,c ′) =QB(a′,b′,c ′) ∈ B , we draw the desired conclusion that QB(a,b,c) ≡QB(a′,b′,c ′)
mod θ �B .

For part (b) we have to show that θB is closed under all the basic operations of A. So let Q be
an operation symbol, which without loss of generality we assume to have rank 3. Let a,b,c ∈ θB .
Our goal is to show that QA(a,b,c) ∈ θB . Using the definition of θB pick a′,b′,c ′ ∈ B so that

a ≡ a′ mod θ

b ≡ b′ mod θ

c ≡ c ′ mod θ.

Because B is a subuniverse, we see that QA(a′,b′,c ′) ∈ B . Because θ is a congruence, we see that
QA(a,b,b) ≡QA(a′,b′,c ′). Putting these together, we find that QA(a,b,c) ∈ θB , as desired.

For part (c) we will invoke the Homomorphism Theorem. Define the map h from B to θB/(θ �
θB) via

h(b) := b/(θ � θB).

We have three contentions, namely that h is a homomorphism, that h is onto B/(θ � θB), and
that the functional kernel of h is θ � B . Given these, the Homomorphism Theorem provides that
desired isomorphism.

To see that h is a homomorphism we have to show it respects the operations. So again take Q
be to an operation symbol, of rank 3 for simplicity. Let a,b,c ∈ B . Now observe

h(QB(a,b,c)) =QB(a,b,c)/(θ � θB)

=QθB(a,b,c)/(θ � θB)

=QθB/(θ�θB)(a/(θ � θB),b/(θ � θB),c/(θ � θB))

=QθB/(θ�θB)(h(a),h(b),h(c)).

In this way we see that h respects Q. So h is a homomorphism.
To see that h is onto, let b′ ∈ θB . Pick b ∈ B so that b′ ≡ b mod θ. We assert that h(b) = b′/(θ �

θB). So what we have to demonstrate is that

b/(θ � θB) = b′/(θ � θB)

or what is the same
b ≡ b′ mod θ � θB.

Now both b and b′ belong to θB , so all that remains is to see that b ≡ b′ mod θ. But we already
know this.

Finally, we have to understand the functional kernel of h. Let a,b ∈ B and observe

h(a) = h(b) ⇔ a/(θ � θB) = b/(θ � θB)

⇔ a ≡ b mod θ � θB

⇔ a ≡ b mod θ �B.

The last equivalence follows since a and b both belong to B . So we see that θ �B is the functional
kernel of h, completing the proof.
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Let A be an algebra and let θ and ϕ be congruences of A with θ ⊆ϕ. Let

ϕ/θ := {(a/θ, a′/θ) | a, a′ ∈ A with a ≡ a′ modϕ}.

So ϕ/θ is a two place relation on A/θ.

The Third Isomorphism Theorem. Let A be an algebra and let θ and ϕ be congruences of A with
θ ⊆ϕ. Then

(a) ϕ/θ is a congruence of A/θ, and

(b) (A/θ)/(ϕ/θ) ∼= A/ϕ.

Proof. Define the function h from A/θ to A/ϕ so that for all a ∈ A we have

h(a/θ) := a/ϕ.

Here we have to worry again whether h is really a function—the definition above uses a repre-
sentative element a of the congruence class a/θ to say how to get from the input to the output.
What if a/θ = a′/θ? Then (a, a′) ∈ θ. Since θ ⊆ ϕ, we get (a, a′) ∈ ϕ. This means, of course, that
a/ϕ = a′/ϕ. So we arrive at the same output, even using different representatives. This means
our definition is sound.

Let us check that h is a homomorphism. So let Q be an operation symbol, which we suppose
has rank 3 just in order to avoid a lot of indices. Pick a,b,c ∈ A. Now observe

h(QA/θ(a/θ),b/θ,c/θ) = h(QA(a,b,c)/θ)

=QA(a,b,c)/ϕ

=QA/ϕ(a/ϕ,b/ϕ,c/ϕ)

=QA/ϕ(h(a/θ),h(b/thet a),h(c/θ))

In this way we see that h respects the operation symbol Q. We conclude that h is a homomor-
phism.

Notice that h is onto A/ϕ since any member of that set has the form a/ϕ for some a ∈ A. This
means that h(a/θ) = a/ϕ.

Now lets tackle the functional kernel of h. Let a,b ∈ A. Then observe

h(a/θ) = h(b/θ) ⇔ a/ϕ= b/ϕ⇔ a ≡ b modϕ.

So (a/θ,b/θ) belongs to the functional kernel of h if and only if a ≡ b modϕ. That is, the func-
tional kernel of h is ϕ/θ. From the Homomorphism Theorem we see that ϕ/θ is a congruence of
A/θ. Also from the Homomorphism Theorem we conclude that (A/θ)/(ϕ/θ) ∼= A/ϕ.

The set inclusion relation ⊆ is a partial ordering of the congruence relations of an algebra A.
Some of the secrets of about A can be discovered by understanding how the congruence rela-
tions are ordered. The next theorem, sometimes called the Fourth Isomorphism Theorem, is a
first and useful step along this road. To understand it we need the notion of isomorphism of rela-
tional structures (as opposed to algebras). Let A and B be nonempty sets and let v be a two-place
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relation on A and ¹ be a two-place relation on B . A function h from A to B is called an isomor-
phism between 〈A,v〉 and 〈B ,≺〉 provided h is one-to-one, h is onto B , and for all a, a′ ∈ A we
have

a v a′ if and only if h(a) ¹ h(a′).

As a matter of notation, let ConA be the set of congruence relations of A.

The Correspondence Theorem. Let A be an algebra and let θ be a congruence of A. Let P = {ϕ |ϕ ∈
ConA and θ ⊆ϕ}. Then the map from P to ConA/θ that sends eachϕ ∈ P toϕ/θ is an isomorphism
between the ordered set 〈P,⊆〉 and the ordered set 〈ConA/θ,⊆〉.
Proof. LetΨ denote the map mentioned in the theorem. So

Ψ(ϕ) =ϕ/θ

for all ϕ ∈ ConA with θ ⊆ϕ.
To see that Ψ is one-to-one, let ϕ,ρ ∈ ConA with θ ⊆ ϕ and θ ⊆ ρ. Suppose that Ψ(ϕ) =Ψ(ρ).

This means ϕ/θ = ρ/θ. Now consider for all a, a′ ∈ A

(a, a′) ∈ϕ⇔ (a/θ, a′/θ) ∈ϕ/θ

⇔ (a/θ, a′/θ) ∈ ρ/θ

⇔ (a, a′) ∈ ρ

So ϕ = ρ. Notice that the first equivalence depends of θ ⊆ ϕ while the last depends of θ ⊆ ρ. We
see thatΨ is one-to-one.

To see thatΨ is onto ConA/θ, let µ be a congruence of A/θ. Define

ϕ := {(a, a′) | a, a′ ∈ A and (a/θ, a′/θ) ∈µ}.

This two-place relation is our candidate for a preimage of µ. First we need to see that ϕ is indeed
a congruence of A. The checking of reflexivity, symmetry, and transitivity is routine. To confirm
the substituion property, let Q be an operation symbol (with the harmless assumption that its
rank is 3). Pick a, a′,b,b′,c,c ′ ∈ A so that

a ≡ a′ modϕ

b ≡ b′ modϕ

c ≡ c ′ modϕ.

We must see that QA(a,b,c) ≡ QA(a′,b′,c ′) modϕ. From the three displayed conditions we de-
duce

a/θ ≡ a′/θ mod µ

b/θ ≡ b′/θ mod µ

c/θ ≡ c ′/θ mod µ.

Because µ is a congruence of A/θ, we obtain

QA/θ(a/θ,b/θ,c/θ) ≡QA/θ(a′/θ,b′/θ,c ′/θ) mod µ.
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But given how the operations work in quotient algebras, this gives

QA(a,b,c)/θ ≡QA(a′,b′,c ′)/θ mod µ.

Then the definition of ϕ supports the desired conclusion that QA(a,b,c) ≡ QA(a′,b′,c ′) modϕ.
So ϕ is a congruence of A. But we also need to see that θ ⊆ ϕ to get that ϕ ∈ P . So suppose that
a, a′ ∈ A with (a, a′) ∈ θ. Then a/θ = a′/θ. This entails that (a/θ, a′/θ) ∈ µ since µ is reflexive. In
this way, we see that (a, a′) ∈ϕ. So θ ⊆ϕ and ϕ ∈ P . Now consider

Ψ(ϕ) =ϕ/θ

= {(a/θ, a′/θ) | a, a′ ∈ A and (a, a′) ∈ϕ}

= {(a/θ.a′/θ) | a, a′ ∈ A and (a/θ, a′/θ) ∈µ}

=µ.

In this way, we see thatΨ is onto ConA/θ.
Last, we need to show that Ψ respects the ordering by set inclusion. So let ϕ,ρ ∈ ConA with

θ ⊆ϕ and θ ⊆ ρ. Let us first suppose that ϕ⊆ ρ. To see thatΨ(ϕ) ⊆Ψ(ρ), let a, a′ ∈ A and notice

(a/θ, a′/θ) ∈Ψ(ϕ) =⇒ (a/θ, a′/θ) ∈ϕ/θ

=⇒ (a, a′) ∈ϕ
=⇒ (a, a′) ∈ ρ
=⇒ (a/θ, a′/θ) ∈ ρ/θ

=⇒ (a/θ, a′/θ) ∈Ψ(ρ)

So we find if ϕ ⊆ ρ, thenΨ(ϕ) ⊆Ψ(ρ). For the converse, supposeΨ(ϕ) ⊆Ψ(ρ). Let a, a′ ∈ A and
notice

(a, a′) ∈ϕ =⇒ (a/θ, a′/θ) ∈ϕ/θ

=⇒ (a/θ, a′/θ) ∈Ψ(ϕ)

=⇒ (a/θ, a′/θ) ∈Ψ(ρ)

=⇒ (a/θ, a′/θ) ∈ ρ/θ

=⇒ (a, a′) ∈ ρ.

So we find that ifΨ(ϕ) ⊆Ψ(ρ), then ϕ⊆ ρ. So we have for all ϕ,ρ ∈ P

ϕ⊆ ρ if and only ifΨ(ϕ) ⊆Ψ(ρ).

Finally, we can conclude thatΨ is an isomorphism between our two ordered sets of congruences.
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1.1 PROBLEM SET 1

ALGEBRA HOMEWORK, EDITION 1

SECOND WEEK

JUST SOME GENERAL NOTIONS

PROBLEM 3.
Prove that the congruence relations of A are exactly those subuniverses of A×A which happen to
be equivalence reations on A.

PROBLEM 4.
Prove that the homomorphisms from A to B are exactly those subuniverses of A×B which are
functions from A to B .

PROBLEM 5.
Prove that the projection functions associated with A×B are homomorphisms.
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COMPREHENDING PLUS AND TIMES

2.1 WHAT A RING IS

The notion of a ring arose in the nineteenth century by generalizing a collection of specific al-
gebraic systems built around various examples of addition and multiplication. Certainly our un-
derstanding of addition and multiplication of positive integers is very old. Eudoxus of Cnidus,
a contemporary of Plato, put—in modern terms—the notions of addition and multiplication of
positive real numbers on a sound basis. His work can be found in Book V of Euclid’s elements.
Negative numbers emerged in India and China about the time of Archimedes, but met with lit-
tle welcome in the Hellenistic world. This attachment of mathematical illegitimacy to negative
numbers persisted in Europe into the eighteenth century. However, by the end of the eighteenth
century not only negative real numbers but complex numbers in general were well in hand. Euler
was a master of it all.

In the nineteenth century we had algebraic systems built around addition of multiplication of
all of the following:

• integers

• rational numbers

• real numbers

• complex numbers

• algebraic numbers

• constructible numbers

• n ×n matrices with entries selected from the systems listed above.

• polynomials with coefficients selected from the systems listed above.

18
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• functions from the reals to the reals (and similarly with the reals replaced by some other
systems)

• many other examples of addition and multiplication

As that century progressed, mathematicians realized that to develop the theories of each of these
particular cases, one had to duplicate more or less a lot of effort. The examples had many prop-
erties is common. So it was a matter of convenience to develop the details of many of these
common properties just once, before pursuing the more specialized theory of, say, the complex
numbers. This led to the notion of a ring.

The signature we use to present this notion consists of a two-place operation symbol · to name
multiplication, a two-place operation symbol + to name addition, a one-place operation symbol
− to denote the formation of negatives, and two constant symbols 0 and 1. A ring is an algebraic
system of this signature in which the following equations hold true.

x + (y + z) = (x + y)+ z x · (y · z) = (x · y) · z

x +0 = x x ·1 = x

x + y = y +x 1 · x = x

−x +x = 0 x · (y + z) = x · y +x · z

(x + y) · z = x · z + y · x

This collection of equations is some times called the axioms of ring theory.
You see here the familiar associative, commutative, and distributive laws, as well as equations

giving the behavior of 0 and 1. It is important to realize that while the commutative law for addi-
tion is included, the commutative law for multiplication is not. The absence of the commutative
law for multiplication has compelled me to include two forms of the distributive law as well as
two equations to capture the behavior of 1. The ring a 2×2 matrices with real entries is an exam-
ple of a ring where the commutative law for multiplication fails. A ring in which the commutative
law for multiplication holds as well is called a commutative ring. While there is a rich theory of
rings in general, in our course almost all rings will be commutative rings.

Because the axioms of ring theory are all equations it is easy to see that every subalgebra of
a ring must be a ring itself, that every homomorphic image of a ring must also be a ring, and
that the direct product of any system of rings is again a ring. Because the commutative law for
multiplication is also an equations, the same observations apply to commutative rings.

You should also realize that in a ring the elements named by 0 and 1 might be the same. In this
event, by way of a fun exercise, you can deduce from the ring axioms that such a ring can have
only one element. Evidently, all one-element rings are isomorphic and, of themselves, not very
interesting. They are called trivial rings.

According to the definition above, every ring must have an element named by the constant sym-
bol 1 and this element must behave as described by the equations in our list. This has been the
most common convention since the 1970’s. However, some considerable part of the older liter-
ature and some of the contemporary literature use a different somewhat wider notion that lacks
the constant symbol 1. For example, the even integers under ordinary addition and multiplica-
tion would constitute a ring in this manner, but not in the sense that I have but forward here. In
that style of exposition, what we have called “rings” are referred to as “rings with unit”. Nathan
Jacobson, one of the great ring theorists of the twentieth century used the notion of ring I have
adopted and referred to these other old-fashion algebraic systems as “rngs”.
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2.2 CONGRUENCES AND IDEALS ON RINGS

Let R be a ring and let θ be a congruence on R. Recall that

0/θ = {a | a ∈ R and a ≡ 0 mod θ}

is the θ-congruence class containing 0. Observe that the set 0/θ has each of the following prop-
erties

(a) 0 ∈ 0/θ.

(b) If a,b ∈ 0/θ, then a +b ∈ 0/θ.

(c) if a ∈ 0/θ and r ∈ R, then r a, ar ∈ 0/θ.

To obtain (b) reason as follows

a ≡ 0 mod θ

b ≡ 0 mod θ

a +b ≡ 0+0 mod θ

a +b ≡ 0 mod θ

The third step uses the key substitution property of congruence relations, whereas the fourth step
use the equation 0+0 = 0, which follows easily from the ring axioms.

To obtain (c) reason as follows

a ≡ 0 mod θ

r ≡ r mod θ

ar ≡ 0r mod θ

ar ≡ 0 mod θ

The second step uses the fact that congruence relations, being special equivalence relations, are
reflexive. The last step uses the equation 0x = 0, which can be deduced from the ring axioms. A
similar line of reasoning produces the conclusion

r a ≡ 0 mod θ.

Any subset I ⊆ R that has the three attributes listed above for 0/θ is called an ideal of the ring R.
This means that I is an ideal of R if and only if

(a) 0 ∈ I .

(b) If a,b ∈ I , then a +b ∈ I .

(c) if a ∈ I and r ∈ R, then r a, ar ∈ I .

So we have taken the definition of ideal to allow us the observe that in any ring R

If θ is a congruence relation of R, then 0/θ is an ideal of R.
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That is, every congruence relation gives rise to an ideal.
The converse is also true. Let R be a ring and let I be an ideal of R. Define

θI := {(a,b) | a,b ∈ R and a −b ∈ I }.

The eager graduate students should check that θI is indeed a congruence relation of R. Actually,
the theorem below tells a fuller tale and its proof, which only requires pursuing all the definitions
involved, is left to delight the graduate students.

Theorem on Ideals and Congruences. Let R be any ring, let θ be a congruence relation of R and
let I be any ideal of R. All of the following hold.

(a) 0/θ is an ideal of R.

(b) θI is a congruence relation of R.

(c) I = 0/(θI ).

(d) θ = θ0/θ.

(e) The collection of all ideals of R is ordered by ⊆ and the map I 7→ θI is an isomorphism of the
ordered set of all ideals of R with the ordered set of all congruence relations of R.

The significance of this theorem is that when dealing with rings we can replace the study of
congruence relations with the study of ideals. After all, each congruence θ is a set of ordered
pairs, that is θ ⊆ R ×R.; whereas each ideal I is merely a set of elements of R, that is I ⊆ R. Of
course, there are places, in ring theory, where congruence relations are more convenient than
ideals, so we need to remember both.

Here is some notation for using ideals in place of congruences. Let R be any ring and let θ and I
be a congruence relation and and ideal that correspond to each other, let a,b ∈ R and let J be an
ideal of R so that I ⊆ J .

R/I := R/θ

a + I := a/θ = {a +b | b ∈ I }

J/I := {b + I | b ∈ J } = 0/(θJ /θI )

a ≡ b mod I means a ≡ b mod θ

The graduate students should work out the details to see that these conventions really do the
job. Incidentally, the notation a + I is a special case of U +V := {u + v | u ∈U and v ∈ V }, where
U <V ⊆ R.

Suppose that R is a ring and h : R → S is a homomorphism. The kernel of h is the following set

kerh := {a | a ∈ R and h(a) = 0}.

The graduate students should check that if θ denotes that functional kernel of h, then

kerh = 0/θ.

So kerh is an ideal of R and the congruence corresponding to this ideal is the functional kernel of
h.
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2.3 THE ISOMORPHISM THEOREMS FOR RINGS

With this sort of lexicon in hand, all the isomorphism theorems can be rendered into ring theo-
retic versions, with no need for further proofs. Here they are.

The Homomorphism Theorem, Ring Version. Let R be a ring, let f : R � S be a homomorphism
from R onto S, and let I be an ideal of R. All of the following hold.

(a) The kernel of f is an ideal of R.

(b) R/I is a ring.

(c) The map η that assigns to each a ∈ R the congruence class a + I is a homomorphism from R
onto A/I and its kernel is I .

(d) If I is thel kernel of f , then there is an isomorphism g from R/I to S such that f = g ◦η.

The Second Isomorphism Theorem, Ring Version. Let R be a ring, let I be an ideal of R, and let
S be a subring of R. Then each of the following hold.

(a) I ∩S is an ideal of S.

(b) I +S is a subuniverse of R.

(c) I+S/I ∼= S/I ∩S.

The Third Isomorphism Theorem, Ring Version. Let R be a ring and let I and J be ideals of R
with I ⊆ J . Then

(a) J/I is an ideal of R/I , and

(b) (R/I )/(J/I ) ∼= R/J .

The Correspondence Theorem, Ring Version. Let R be a ring and let I be an ideal of R. Let P =
{J | J is an ideal of R and I ⊆ J }. Then the map from P to the ordered set of ideals of R/I that sends
each J ∈ P to J/I is an isomorphism between the ordered set 〈P,⊆〉 and the ordered set of ideals of
R/I .

2.4 DEALING WITH IDEALS

Let R be a ring. Then R and {0} will be ideals of R. (They might be the same ideal, but only if R is
a one-element ring. By a proper ideal of R we mean one that is different from R. By a nontrivial
ideal we mean one that is different from {0}. The collection of all ideals of R is ordered by ⊆.
Under this ordering, {0} is the unique least ideal and R is the unique largest ideal.

Let R be a ring and let K be any nonempty collection of ideals of R. It is a routine exercise
(why not put pen to paper?) that

⋂
K is also an ideal of R and this ideal is the greatest (in

the sense of ⊆) ideal included in every ideal belonging to K . So every nonempty collection
of ideals has a greatest lower bound in the ordered set of ideals. Let W ⊆ R and take K = {I |
I is an ideal of R and W ⊆ I }. Then

⋂
K is the smallest ideal of R that includes W . This ideal is

denoted by (W ) and is called the ideal generated by W .
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Unlike the situation with intersection, when K is a nonempty collection of ideals of the ring R
it is usually not the case that the union

⋃
K will turn out to be an ideal. However, (

⋃
K ) will be

an ideal—indeed, it is the least ideal in the ordered set of ideals that includes every ideal in K .
So the collection of all ideals of any ring is an ordered set with a least member, a great member,

and every nonempty collection of ideals has both a greatest lower bound and least upper bound.
Such ordered sets are called complete lattice-ordered sets.

While in general the union of a collection of ideals is unlikely to be an ideal, there are collections
for which the union is an ideal. A collection K of ideals is said to be updirected provided if
I , J ∈K , then there is K ∈K so that I ⊆ K and J ⊆ K .

Theorem 2.4.1. Let R be a ring and let K be a nonempty updirected collection of ideals of R. Then⋃
K is an ideal of R.

Proof. First observe that 0 ∈⋃
K , since K is nonempty and every ideal must contain 0.

Now suppose that a,b ∈ ⋃
K . Pick I , J ∈ K so that a ∈ I and b ∈ J . Because K is updirected,

pick K ∈K so that I ∪ J ⊆ K . So a,b ∈ K . Because K is an ideal, we see a +b ∈ K ⊆⋃
K .

Finally, suppose a ∈⋃
K and r ∈ R. Pick I ∈K so that a ∈ I . Then ar,r a ∈ I since I is an ideal.

Hence ar,r a ∈⋃
K

In this way, we see that
⋃

K is an ideal.

One kind of updirected set is a chain. The collection C is a chain of ideals provided for all
I , J ∈ C either I ⊆ J or J ⊆ I . As a consequence, we see that the union of any nonempty chain of
ideals is again an ideal.

A little reflection shows that this result is not particularly ring theoretic. In fact, for algebras
generally the union of any updirected collection of congruence relations is again a congruence
relation.

Now let R and a ring and W ⊆ R. The ideal (W ) that is generated by W was defined in what might
be called a shrink wrapped manner as the intersection of all the ideals containing W . It is also
possible to describe this ideal by building it up from W is stages using the following recursion.

W0 :=W ∪ {0}

Wn+1 :=Wn ∪ {r a | r ∈ R and a ∈Wn}∪ {ar | r ∈ R and a ∈Wn}∪ {a +b | a,b ∈Wn}

for all natural numbers n.

Notice W ⊆ W0 ⊆ W1 ⊆ W2 ⊆ . . . and each set along this chain repairs potential failures of the
earlier sets along the chain to be ideals. It does this by adding new elements. Unfortunately,
these new elements, while they repair earlier failures may introduce failures of their own. For
this reason the construction continues through infinitely many stages. Now let Wω := ⋃

n∈ωWn

be the union of this chain of sets. Our expectation is that all the failures have been fixed and that
Wω is an ideal. The eager graduate students are invited to write out a proof of this. But more is
true. Actually, Wω = (W ). Here are some suggestions for how to prove this. To establish Wω ⊆ (W )
prove by induction on n that Wn ⊆ I for every ideal I that includes W . Observe that (W ) ⊆ Wω

once we know that Wω is an ideal that includes W .
This process that shows that shrink wrapping and building up from the inside works not only

here in the context of ideals, but in several other contexts as well.
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A more transparent version of the building up from the inside is available in our particular con-
text. By a combination of W over R we mean an element of the form

r0w0s0 + r1w1s1 +·· ·+ rn−1wn−1sn−1

where n is a natural number, r0, s0,r1, s1, . . . ,rn−1, sn−1 ∈ R, and w0, w1, . . . , wn−1 ∈W . In case n = 0,
we take the element represented to be the zero of the ring. It is straightforward, with the help of
the distributive laws, to see that the set of all combinations of W over R is an ideal that includes
the subset W . An induction on the length of combinations shows that all these combinations
belong to (W ). So the set of all combinations of W over R must be the ideal (W ) generated be W .
In commutative rings it is only necessary to consider combinations of the form

r0w0 + r1w1 +·· ·+ rn−1wn−1.

In particular, if R is commuative , w ∈ R, and I is an ideal of R, then the ideal ({w}∪ I ) generated
by the element w and the ideal I consists of all elements of the form

r w +u where r ∈ R and u ∈ I .
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2.5 PROBLEM SET 2

ALGEBRA HOMEWORK, EDITION 2

THIRD WEEK

PRIME IDEALS

PROBLEM 6.

(a) Let I and J be ideals of a commutative ring R with I + J = R. Prove that I J = I ∩ J .

(b) Let I , J , and K be ideals of a principal ideal domain. Prove that I ∩ (J +K ) = I ∩ J + I ∩K .

PROBLEM 7.
Let R be a commutative ring and I be a proper prime ideal of R such that R/I satisfies the de-
scending chain condition on ideals. Prove that R/I is a field.

PROBLEM 8.
Let R be a commutative ring and I be an ideal which is contained in a prime ideal P . Prove that
the collection of prime ideals contained in P and containing I has a minimal member.

PROBLEM 9.
Let X be a finite set and let R be the ring of functions from X into the field R of real numbers.
Prove that an ideal M of R is maximal if and only if there is an element a ∈ X such that

M = { f | f ∈ R and f (a) = 0}.
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3
RINGS LIKE THE INTEGERS

3.1 INTEGRAL DOMAINS

The ring 〈Z,+, ·,−,0,1〉 of integers is one of the most familiar mathematical objects. Its investi-
gation lies at the heart of number theory that, together with geometry, is among the oldest parts
of mathematics. This ring is commutative and has a host of other very nice properties. Among
these is that the product of any two nonzero integers must itself be nonzero. This property may
fail, even in rings closely connected to the ring of integers. For example, let R be the direct square
of the ring of integers. The elements of this ring will be ordered pairs of integers which the ring
operations defined coordinatewise. That is

(a,b)+ (c,d) = (a + c,b +d)

(a,b) · (c,d) = (ac,bd)

−(a,b) = (−a,−b)

The zero of R is the pair (0,0) while the unit (the one) is (1,1). But observe that the product of
(1,0) with (0,1) is (1 ·0,0 ·1) = (0,0).

A ring D is called an integral domain provided

(a) D is a commutative ring,

(b) 0 and 1 name different elements of D , and

(c) If a,b ∈ D and a 6= 0 6= b, then ab 6= 0.

Integral domains used to be called by a more charming name: domains of integrity. Condition (b)
above is equivalent to the stipulation that integral domains must have at least two elements. Con-
dition (c) can be replaced by either of the following conditions.

(c′) If a,b ∈ D and ab = 0, then either a = 0 or b = 0.

(c′′) If a,b,c ∈ D with a 6= 0 and ab = ac, then b = c

26
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Condition (c′) is just a contrapositive form of Condition (c). Condition c′′) is the familiar can-
cellation law. The graduates student can find amusement by showing the equivalence of this
condition.

While, as observed above, the direct product of a system of integral domains need not be an
integral domain (is it ever?), every subring of an integral domain will be again an integral domain.
What about homomorphic images of integral domains? Well, the trivial one-element ring is a
homomorphic image of every ring, including every integral domain, and the trivial ring is not an
integral domain. But suppose D is an integral domain and h is a homomorphism mapping D
onto the nontrivial ring S. Must S be an integral domain? Certainly, conditions (a) and (b) hold
for S. Consider a concrete example. Let I be the set of integers that are multiples of 4. It is easy to
check that I is an ideal of the ring of integers. The quotient ring Z/I has just four elements:

0+ I 1+ I 2+ I and 3+ I .

In the quotient ring we have the product (2+ I ) · (2+ I ) = 2 · 2+ I = 4+ I = 0+ I . This violates
condition (c) in the definition of integral domain. So while some homomorphic images of some
integral domain will be integral domains, it is not true generally. Perhaps some property of the
ideal I would ensure that the quotient ring is an integral domain.

Let R be a commutative ring and let I be an ideal of R. I is said to be a prime ideal provided

• I is a proper ideal of R [that is, I 6= R], and

• if a,b ∈ R with ab ∈ I , then either a ∈ I or b ∈ I .

The graduate students can prove the following theorem by chasing definitions.

Theorem 3.1.1. Let R be a commutative ring and let I be an ideal of R. R/I is an integral domain
if and only if I is a prime ideal of R.

Suppose R is a ring. Consider the list of elements of R below:

1,1+1,1+1+1,1+1+1+1, . . . .

This looks like a list of the positive integers, but we mean something different. The element 1
is the unit of multiplication in R and + names the addition operation in R. The ring R may not
contain any integers at all. The list above might even be finite, depending on the ring R. If the
list is infinite we say that R has characteristic 0. If the list is finite, then (as pigeons know) two
distinct members of this list must actually be the same element. That is

1+·· ·+1︸ ︷︷ ︸
n times

= 1+·· ·+1︸ ︷︷ ︸
n times

+1+·· ·+1︸ ︷︷ ︸
k times

for some positive natural numbers n and k. This entails that

0 = 1+·· ·+1︸ ︷︷ ︸
k times

for some positive natural number k. In this case, we say that the characteristic of R is the small-
est such positive natural number. On reflection, it might have been better to say that rings of



3.2 Principal Ideal Domains 28

characteristic 0 had infinite characteristic. However, the use of characteristic 0 for this notion is
so well entrenched that we are stuck with it.

The characteristic of a ring R is a useful invariant of R. It will play a prominent role in the spring
semester during our development of the theory of fields. Observe that every finite ring must have
a characteristic that is not 0. Because 1 must belong to every subring of R, we see that all the
subrings of R have the same characteristic as R. On the other hand, the homomorphic images of
R may have characteristic differing from the characteristic of R. To begin with, trivial rings have
characteristic 1 (these are the only rings of characteristic 1) and trivial rings are homomorphic
images of every ring. The ring of integers has characteristic 0, but Z/(6) evidently has charac-
teristic 6. On the other hand, it is easy to verify (do it, why not?) that the characteristic of a
homomorphic image of R can be no larger than the characteristic of R (well, taking 0 to be larger
than all the positive natural numbers. . . ). We leave it to the eager graduate students to figure out
the characteristic of R×S when the characteristic of R is r and the characteristic of S is s.

Here is a useful fact.

Fact. Let D be an integral domain. The characteristic of D is either 0 or it is a prime number.

We won’t prove this, but here is a hint as to why an integral domain cannot have characteristic
6.

0 = 1+1+1+1+1+1 = 1 · (1+1+1)+1 · (1+1+1) = (1+1) · (1+1+1).

3.2 PRINCIPAL IDEAL DOMAINS

A route to a deeper understanding of the ring of integers is to investigate the congruence rela-
tions of this ring. This is the route chosen by Gauss in his 1801 masterpiece Disquistiones Arith-
meticæ. Of course, we see that the investigation of congruences of a ring amounts to the investi-
gation of its ideals. The notion of an ideal of a ring arose in the work of Kummer, Kronecker, and
Dedekind in the second half of the nineteenth century to be refined still later by Hilbert and by
Emmy Noether. Still, the discoveries of Gauss needed changes of only the most modest kind to fit
with the later theoretical apparatus.

We begin with an important observation that surely must have been known to Euclid.

A Key Fact About the Integers. Let d be any nonzero integer and let n be any integer. There are
unique integers q and r satisfying the following constraints:

(a) n = qd + r , and

(b) Either r = 0 or 0 < r < |d |.
Graduate students with itchy fingers who turn their hands to this are advised that there are two

things to show: the existence of integers q and r and the uniqueness of these integers. Here is a
hint. Consider the set {|n − xd | | x ∈ Z}. This is a set of natural numbers. It is nonempty (why?).
Every nonempty set of natural numbers has a least element.

The uniquely determined integers q and r mentioned in this Key Fact are called the quotient of
n upon division by d and the remainder of n upon division by d , respectively. We will also call r
the residue of n upon division by d .

Let I be any nontrivial ideal of the ring of integers. Since I is not trivial, it must have a member
other than 0 and, because I is an ideal, there must be a positive integer in I . Hence there must be
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a least positive integer d in I . Now let n ∈ I be chosen arbitrarily. Using the Key Fact, pick integers
q and r so that

(a) n = qd + r , and

(b) Either r = 0 or 0 < r < |d |.
Then r = n − qd . Notice that n,d ∈ I because that’s the way we chose them. So r = n − qd ∈ I
because I is an ideal. But 0 < r < |d | = d is impossible, by the minimality of the choice of d . So we
conclude that r = 0 and therefore that n is a multiple of d . Thus

I = {qd | q ∈Z} = (d).

So we have the conclusion that every ideal of the ring of integers is generated by some one of its
members (and, in fact, by the smallest postive integer belonging to the ideal if the ideal in not
trivial).

A principal ideal domain is an integral domain for which every ideal is generated by some one
of its members. In an arbitrary ring, we will say an ideal is principal provided it is generated by
some one of its members. So a principal ideal domain is an integral domain for which every ideal
is principal.

The ring of integers is a principal ideal domain. Many interesting properties of the ring of in-
tegers also hold for principal ideal domains in general. This includes the powerful Fundamental
Theorem of Arithmetic:

Every nonzero integer, other than 1 and −1, can be written in a unique way as a prod-
uct of primes.

In order to formulate this result for rings more generally, we need to introduce some further no-
tions.

A unit in a commutative ring is an element u such that there is an element v is the ring so that
uv = 1 = vu. So a unit is just an element with a multiplicative inverse. The units of the ring of
integers are just 1 and −1. (Notice the appearance of these numbers in the statement above.) Two
elements a and b of a commutative ring are said to be associates provided au = bu for some unit
u. It is routine (and you know the routine when the word routine comes up in these notes. . . ) to
show that relation “is an associate of” is an equivalence relation on any commutative ring. We
will use a ∼ b to denote that a and b are associates. Do you think ∼ is a congruence relation on
the ring?

An element a of a commutative ring is said to be irreducible provided it is neither 0 nor a
unit and if a = bc for some elements b and c in the ring, then either b is a unit or c is a unit. So
irreducible elements of a ring are the ones that cannot be factored, except in some trivial manner.
(Observe that 2 = (−1) · (−1) ·1 is a factorization of the integer 2 is such a trivial manner.).

An integral domain D is said to be a unique factorization domain provided

(a) Every nonzero nonunit in D can be expressed as a (finite) product of irreducibles.

(b) If m and n are natural numbers and a0, a1, . . . , am−1 ∈ D and b0,b1, . . . ,bn−1 ∈ D are irre-
ducibles such that

a0a1 . . . am−1 ∼ b0b1 . . .bn−1,



3.2 Principal Ideal Domains 30

then m = n and there is a permutation σ of {0,1, . . . ,m −1} so that

ai ∼ bσ(i ) for all i with 0 ≤ i < m.

The point of the permutation σ is that we don’t really want to consider 2 · 3 and 3 · 2 as distinct
factorizations of 6. Observe that stipulation (a) asserts the existence of a factorization into irre-
ducibles, while stipulation (b) asserts the uniqueness of such factorization.

The Fundamental Theorem of Arithmetic asserts that the ring of integers is a unique factoriza-
tion domain. So is every principal ideal domain and that is what we tackle below.

You might wonder that we have used the word “irreducible” instead of “prime” in formulat-
ing these notions. (You might also be wondering now if prime ideals have anything to do with
primes. . . .) Euclid realized long ago that an irreducible (positive) integer p had the property

If p | ab, then either p | a or p | b.

Here p | a means that p divides a—-that is, a = pc for some integer c. The divisibility relation,
denoted by |, makes sense in any ring and we use it without further comment.

We will say that an element p of a commutative ring is prime provided p is neither 0 nor a unit
and for all a and b in the ring

If p | ab, then either p | a or p | b.

The primeness condition is just that every irreducible element is prime. Incidentally, the con-
verse is always true in any integral domain: a prime element is always irreducible. Indeed, if a is
prime and a = bc, then we see that either a | b or a | c. Consider, for instance, the first alternative.
Pick d so that b = ad . Then a ·1 = bc = adc. Now cancel a (we are in a integral domain) to obtain
1 = dc. This means that c is a unit. The second alternative is similar.

An attempt to factor a nonzero nonunit a into irreducibles might look like this:

a

a0

a00 a01

a1

a10 a11

This tree represents two steps in an attempt to factor a.

a = a0a1

a0 = a00a01

a1 = a10a11

So we have the factorization a = a00a01a10a11. The diagram displayed is a tree (look at it while
standing on your head) with three levels. Each node branches into two succeeding nodes (except
the nodes on the bottom level). This tree has four branches that start at the root (a) and extend
down to the bottom level. Now our intention is that all the nodes should themselves be nonzero
nonunits. So if we run into an irreducible then we will not attempt to factor it. Here is a tree
showing a factorization of the integer 24.
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24

4

2 2

6

2 3

Suppose we try again. Here is another way to factor 24.

24

3 8

2 4

2 2

These trees and their labellings reflect the actual processes of the factorizations. We see that
they are not unique. But the irreducibles (counting how often they appear but not the order of
their appearance) is unique. In each of these trees, every node has either 0 or 2 suceeding nodes,
since multiplication is a two-place operation. In any case, each node has only finitely many nodes
as immediate successors. We say the tree is finitely branching. There is a useful combinatorial fact
about trees that comes into play.

König’s Infinity Lemma. Any finitely branching tree with infinitely many nodes must have an
infinite branch.

Proof. We can build the desired infinite branch by the following recursion.
Let a0 be the root of the tree. There are only finitely many nodes immediately below a0. Every

node, apart from a0 lies somewhere below a0. Since the union of finitely many finite sets is always
finite, there must be a node immediately below a0 which itself has infinitely many nodes imme-
diately below it. Let a1 be such a node. Now apply the same reasoning to a1 to obtain a node
immediately below a1 that is above infinitely many nodes. Continuing in this way, we obtain a
branch a0, a1, a2, . . . that is infinite.

The graduate students should be a bit unhappy with the informality of this proof. For one thing,
it describes an infinite process. For another it is not terribly specific about how to pick any of the
nodes along the infinite branch, apart from a0. Producing the infinite branch requires making
infinitely many choices. These issues might be addressed in two stages. The first stage would se-
cure the validity of definition by recursion. To see what is at issue consider the following familiar
definition of the factorial function.

0! = 1

(n +1)! = n!(n +1) for all natural numbers n

The issue is two-fold: first, is there any function, here indicated by !, that fulfills the two condi-
tions laid out above? Second, is there exactly one such function? After all definitions should be,
well, definite. Here is a slightly more general situation. Suppose that a is a member of some set U
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and h is a function from U ×N into U . Is there exactly one function f from the natural numbers
to U satisfying the following constraints?

f (0) = a

f (n +1) = h( f (n),n +1) for all natural numbers n.

The answer to this question is YES. It is among the simplest cases of a theorem known as the
Recursion Theorem. You might try to prove this—remember there is an existence part and a
uniqueness part. Induction may help in your proof.

After securing some version of the Recursion Theorem in the first stage, the second stage of
cleaning up König’s Infinity Lemma is to remove the ambiguity about how to pick the “next ele-
ment of the infinite branch”. This amounts to producing a suitable function to play the role of h
in your definition by recursion. Here is what you need h to accomplish. Call a node in the tree
good provide there are infinitely many nodes beneath it. Given a good node c we see that the
set of good nodes immediately beneath it is always a nonempty set. We want h(c,n +1) to pick
some element of this nonempty set. (In our case, h turns out not to depend on its second input.)
Functions like h always exist. They are called choice functions.

A commutative ring has the divisor chain condition provided whenever a0, a1, a2, . . . are ele-
ments of the ring so that ak+1 | ak for all natural numbers k, then there is a natural number n
so that an ∼ an+k for all natural numbers k. This means that, ignoring the distinction between
associates, every descending divisor chain is finite.

Theorem Characterizing Unique Factorization Domains. Let D be an integral domain. D is a
unique factorization domain if and only if D has both the primeness condition and the divisor
chain condition.

Proof. First, suppose that D has the divisor chain condition and the primeness condition. Let
a ∈ D be any nonzero nonunit. Consider any factorization tree with root a. This tree is finitely
branching (in fact, the branching is bounded by 2) and it cannot have any infinite branch, ac-
cording the the divisor chain condition. By König the factorization tree is finite. So we see that a
can be written as a product of irreducibles.

Now let a0 . . . am−1 ∼ b0b1 · · ·bn−1 be products of irreducibles. We assume, without loss of gen-
erality, that n ≤ m. We will deduce the required uniqueness by induction on m. Leaving in the
hands of the capable graduate students the base step (m = 0) of the inductive argument, we turn
to the inductive step. Let m = k +1. Now since ak is irreducible, the primeness condition ensures
that it is also prime. Evidently, ak | b0 . . .bn−1. A little (inductive) thought shows us that since ak

is prime there must be j < n so that ak | b j . Since b j is irreducible, we find that ak ∼ b j . Using the
cancellation law (we are in an integral domain!) we see that

a0a1 . . . ak−1 ∼ b0 . . .b j−1b j+1 · · ·bn−1

or something easier if j = n−1. The left side as k = m−1 factors in the product whereas the right
side has n −1 factors. Applying the induction hypothesis, we find that m −1 = n −1 (and hence
that m = n) and we can pick a one-to-one map σ′ from {0,1, . . . ,m −2} onto {0,1, . . . , j −1}∪ { j +
1, . . . ,n −2} so that

ai ∼ bσ′(i ) for all i < m −1.

Now extend σ′ to the set {0,1,2, . . . ,m − 1} by putting σ(m − 1) = j . Then σ is a permutation of
{0,1,2, . . . ,m −1} that fulfills the uniqueness requirement. So D is a unqie factorization domain.
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Second, suppose for the converse, that D is a unique factorization domain. Let us check the
divisor chain condition. Let · · · | a2 | a1 | a0 = a be a divisor chain that is proper in the sense that
no entry in the chain is an associate of any other entry. We must show that this chain is finite.
For i less than the length of our chain, pick bi+1 so that ai = bi+1ai+1. (This will be a proper
factorization with neither ai+1 nor bi+1 being units.) Let a = c0 . . .cn−1 be a factorization of a into
irreducibles. Suppose, for contradiction, that our divisor chain has more than n entries. Notice

c0c1 . . .cn−1 = a = b0b1 . . .bn−1bn an .

Each of b0, . . . ,bn as well as an can be written as a product of irreducibles. Clearly the right side
of the equation above has more factors that the left side. This violates the unique factorization
property, providing the contradiction we seek. So we find that every unique factorization domain
has the divisor chain condition.

To see that primeness condition, suppose a,b,c ∈ D where a is irreducible and a | bc. Pick d ∈ D
so that bc = ad . Factor b = b0 . . .bm−1,c = c0 . . .cn−1 and d = d0 . . .d`−1 into irreducibles. This
gives

b0 . . .bm−1c0 . . .cn−1 = ad0 . . .d`−1

By the uniqueness of factorizations, there must be j so that either a ∼ b j (and j < m) or a ∼ c j

(and j < n). In the first alternative, we get a | b while in the second we get a | c.

Example. The ring Z[
p−5] is an integral domain that is not a unique factorization domain.

Proof. The ring Z[
p−5] is, by definition, the smallest subring of the field C of complex numbers

that includesZ∪{
p−5}. Since it is a subring of a field it must be an integral domain. You probably

see easily that
Z[

p−5] = {a +b
p−5 | a,b ∈Z}.

To see that Z[
p−5] is not a unique factorization domain consider the following factorizations of

9.
9 = 3 ·3 = (2+p−5)(2−p−5).

What we need is to show that each of 3,2+p−5, and 2−p−5 are irreducible and the none of
these is an associate of any other of them. We do this with the help of a function N :Z[

p−5] →N

defined by
N (a +b

p−5) = a2 +5b2 for all integers a and b.

This function has the following nice properties.

• N (0) = 0.

• N (1) = 1.

• N (r t ) = N (r )N (t ) for all r, t ∈Z[
p−5].

Functions with these nice properties are sometimes called norms.
First, let’s determine the units of Z[

p−5]. Suppose that u is unit and pick v so that uv = 1. Then

1 = N (1) = N (uv) = N (u)N (v).
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Since N outputs natural numbers, we see that N (u) = 1. Pick integers a and b so that u = a +
b
p−5. Then

1 = N (u) = N (a +b
p−5) = a2 +5b2.

Notice that 5b2 cannot be 1. It follows that b = 0 and a = 1 or a =−1. This means that our unit u
is either 1 or −1. So we find that the units ofZ[

p−5] are just 1 and −1. It follows at once that none
of 3,2+p−5, and 2−p−5 is an associate of any other of them.

It remains to see that our three members listed ofZ[
p−5] are irreducible. Below is an argument

for 2+p−5. I leave the other two listed elements in the capable hands of the graduate students.
Pick r, t ∈Z[

p−5] so that 2+p−5 = r t . We need to see that one of r and t is a unit. So consider

9 = 4+5 = N (2+p−5) = N (r t ) = N (r )N (t ).

The only possibilities for N (r ) are 1,3, and 9. If N (r ) = 1, then, as we saw above, r must be a unit.
Likewise, if N (r ) = 9, then N (t ) = 1 and t is a unit. So it only remains to consider the case that
N (r ) = 3. Pick integers a and b so that r = a +b

p−5. Then 3 = N (r ) = N (a +b
p−5) = a2 +5b2.

The only possibility for b is 0, since otherwise a2 +5b2 must be at least 5. But then 3 = a2. Since
there is no integer a whose square in 3, we reject the alternative that N (r ) = 3.

In this way, we see that 9 has two quite distinct factorizations into irreducibles in Z[
p−5]. So

Z[
p−5] is not a unique factorization domain.

The Fundemental Factorization Theorem for Principal Ideal Domains. Every principal ideal
domain is a unique factorization domain.

Proof. We just need to demonstrate that every principal ideal domain has both the primeness
condition and the divisor chain condition.

Let D be a principal ideal domain and suppose that a ∈ D is irreducible and that a | bc where
b,c ∈ D . We must argue that either a | b or a | c. So let us reject the first alternative: we assume
a - b. Let M = (a). My contention is that M is maximal among proper ideals. Certainly, M 6= D
since a is not a unit. So M is a proper ideal. Suppose that I is an ideal that includes M . Since I is
a principal ideal pick d to be a generator of of I . Now a ∈ M ⊆ I = (d). So a is a multiple of d . That
is, a = d w for some w . Since a is irreducible, either d is a unit, in which case I = D , or w is a unit,
in which case M = I . In this way, we see that M is maximal. Since we have a - b we see that b ∉ M .
So the ideal (a,b) generated by a and b must be all of D . This means 1 ∈ (a,b). So pick x, y ∈ D so
that

1 = xa + yb.

This yields c = xac + ybc. But bc ∈ M = (a) since a | bc and xac ∈ (a) as well. So c ∈ (a), since (a)
is an ideal. This means that a | c and so the primeness condition holds.

Now consider the divisor chain condition. Suppose that · · · | a2 | a1 | a0 = a is a proper divisor
chain in D. The

(a0) á (a1) á (a2) á . . .

is a properly increasing chain of ideals in D. Let I be the union of this chain. We know that the
union of any chain of ideals is again an ideal. So I is an ideal. Let d be a generator I . Pick a
natural number k so that d ∈ (ak ). Then I = (d) ⊆ (ak ) ⊆ I . Thus, I = (ak ) and the chain of ideals
displayed above must be finite. This means our original divisor chain must also be finite, proving
the divisor chain condition.
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So we have an immediate corollary.

The Fundamental Theorem of Arithmetic. The ring of integers is a unique factorization domain.

Actually, the line of reasoning we have just described is a kind of reorganization of the reasoning
in Gauss’s Disquisitiones.

We can extract from our proof of the Fundamental Factorization Theorem for Principal Ideal
Domains the following result:

In a principal ideal domain every prime ideal is maximal among all the proper ideals.

To see it, let P be a prime ideal of the principal ideal domain D and pick a so that P = (a). Observe
that b ∈ P if and only if a | b for all b ∈ D . This allows us to conclude that a is prime. By a
contention mentioned in the proof of the Fundamental Factorization Theorem, we see that P is
a maximal ideal.

The converse, that every maximal proper ideal is prime, holds in every commutative ring R. For
suppose M is a maximal proper ideal and ab ∈ M . In case b ∉ M we have (b, M) = R. So we can
pick u ∈ R and w ∈ M so that 1 = ub +w . It follows that a = uab + aw . Since both ab ∈ M and
w ∈ M we conclude that a ∈ M , as desired.

Of course, this more general business s is only interesting if there are significant examples of
principal ideal domains other than the ring of integers. There are and we will meet some others
soon.

3.3 DIVISIBILITY

We have already used divisibility above. Given a commutative ring R we say that an element a
divides an element b provided there is an element c so that ac = b. We denote this relation by
a | b. Observe that | is a two-place relation on R. Moreover, all the graduate students will see easily
that this relation is both reflex and transitive. It just misses being an order relation because it fails
the antisymmetry property—that is, a | b and b | a may hold even though a 6= b. For example,
1 | −1 and −1 | 1 in the ring of integers, but −1 6= 1. Suppose R is an integral domain and a | b and
b | a. Pick elements u and v so that au = b and bv = a. Then we have a(uv) = a. This means that
either a = 0 or uv = 1. In the first alternative we find that b = 0 as well, so that a = 0 = b, while
in the second alternative we see that a ∼ b. So in either case a and b are associates. The relation
of association is an equivalence relation on R and up to this equivalence relation, the divisibility
relation is an ordering.

Let us suppose that R is an integral domain and consider the divisibility ordering | on (the ∼-
classes of) R. The element 0 is the largest element in this ordering since a | 0 for all a (because
a·0 = 0). Likewise the element 1 is the least element of this ordering (well, actually we are ordering
the ∼-classes and we really mean the set of units is the least thing. . . ). The figure below sketches
part of the divisibility ordering on the natural numbers (these are the representatives of the ∼-
classes of the integers by taking the nonnegative member of each class).
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A Finite Fragment of the Divisibility Relation on the Natural Numbers

The set of natural numbers order by divisibility has some properties that may be discerned from
this diagram (or perhaps more easily if more of the diagram were to be filled in. . . ). As noted, it
has a least element and a greatest element. Also the elements are evidently organized into levels,
depending on the number of factors occurring in their decomposition into primes. So 8,12,18,
and 27 belong on the same level since they each have 3 factors in their decompositions:

8 = 2 ·2 ·2

12 = 2 ·2 ·3

18 = 2 ·3 ·3

27 = 3 ·3 ·3

In this way, 1 is the only element at level 0, which suggests we might think it has 0 factors in
its decomposition into primes. The primes themselves occupy level 1, and so on. There will be
countably many levels—one level for each natural number—and each level is itself countably
infinite (an extension of a famous result of Euclid: the graduate students are invited to prove this
extension).

Another thing to notice is that any two elements, for example 6 and 9, have a greatest lower
bound (in this case 3) and a least upper bound (in this case 18). Ordered sets in which every pair
of distinct elements as both a least upper bound and a greatest lower bound are called lattice-
ordered sets. It is important to realize that the words “greatest” and “least” refer to divisibility
and not to that other familiar order ≤. In rings, we issue special names. Given to elements a
and b of a commutative ring we say that an element d is a greatest common divisor of a and b
provided

• d | a and d | b, and
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• if e | a and e | b, then e | d .

You should notice that greatest common divisors are not unique—both 3 and −3 are greatest
common divisors of 6 and 9. However, in any integral domain, any two greatest common divisors
of a and b must be associates. Likewise, we say an element ` is a least common multiple of a
and b provided

• a | ` and b | `, and

• if a | m and b | m,then ` | m.

Like greatest common divisors, least common multiples need not be unique. In integral domains,
they are unique up to association. We say that the elements a and b are relatively prime provided
1 is a greatest common divisor of a and b.

While in the ring of integers, it is easy to see that greatest common divisors and least common
multiple always exist, this is less obvious for other rings. After some reflection, you can convince
yourselves that the existence of greatest common divisors and least common multiples can be
established with the help of the Fundamental Theorem of Arithmetic. Only a bit more reflection
leads us to be conclusion that greatest common divisors and least common multiples always exist
in unique factorization domains.

It takes a bit more work (but what else should the graduate students be doing?) to establish the
following fact.

Fact. Let D be an integral domain. If any two elements of D have a greatest common divisor, then
D has the primeness condition.

This means that in the Theorem Characterizing Unique Factorization Domains we can replace
the primeness condition with the condition that any pair of elements have a greatest common
divisor.

3.4 THE CHINESE REMAINDER THEOREM

The Chinese Remainder Theorem, the focus of this section, appeared in its earliest known form
in China in the 3rd century C.E. and after various refinements has taken its place among the most
widely known theorems of number theory. It actually holds in all commutative rings and even
in some much broader contexts. In its most familiar form, it deals with the simultaneous solu-
tion of certain congruences with respect to pairwise relatively prime moduli. To frame this for
commutative rings in general we will replace the integer moduli by ideals. Suppose that a and b
are relatively prime integers. Observe that the ideal (a)+ (b) must have a generator d since the
ring of integers in a principal ideal domain. Thus (a)+ (b) = (d). Because (a) ⊆ (d) we see that
d | a. Likewise, d | b. So d is a common divisor of a and b. It must be a greatest common divisor
of a and b since (d) is the least ideal that contains both (a) and (b). But recall that a and b are
relatively prime. Hence (d) = (1). So we can draw two conclusions:

1 = au +bv for some integers u and v

and that (a)+(b) =Z. Actually, either of these conclusions imply that a and b are relatively prime.
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The Chinese Remainder Theorem. Let R be a commutative ring and let I0, I1, . . . , In−1 be finitely
many ideals of R such that

I j + Ik = R for all j ,k < n with j 6= k.

Let a0, a1, . . . , an−1 ∈ R. There is b ∈ R such that

b ≡ a0 mod I0

b ≡ a1 mod I1

...

b ≡ an−1 mod In−1.

Proof. The first interesting case happens when n = 2. Let us examine it. Since I0 + I1 = R we can
pick r0 ∈ I0 and r1 ∈ I1 so that 1 = r0 + r1. Let us that b = r0a1 + r1a0. Then observe

b = r0a1 + r1a0 ≡ 0 ·a1 +1 ·a0 mod I0

≡ a0 mod I0

b = r0a1 + r1a0 ≡ 1 ·a1 +0 ·a0 mod I1

≡ a1 mod I1

So the stipulations of the theorem are strong enough to assert that each pair of the listed con-
gruences can be satisfied by some appropriately chosen element b.

Now for each j with 0 < j < n we have that I0+I j = R. So pick s j ∈ I0 and t j ∈ I j so that 1 = s j +t j .
Then we obtain

1 = (s1 + t1)(s2 + t2) . . . (sn−1 + tn−1).

Using the laws of commutative rings and the properties of ideals we can expand this to obtain

1 = s + t1t2 . . . tn−1

where s ∈ I0. Notice that t1t2 . . . tn−1 ∈⋂
0< j<n I j . This means that

I0 +
⋂

0< j<n
I j = R.

As we observed above, there is an element d0 ∈ R so that

d0 ≡ 1 mod I0

d0 ≡ 0 mod
⋂

0< j<n
I j .

Since
⋂

0< j<n I j ⊆ Ik for all k with 0 < k < n, we find that

d0 ≡ 1 mod I0

d0 ≡ 0 mod I j for all j with 0 6= j < n.

We can apply this reasoning that worked for the index 0 to any of the indices. In this way, for each
k < n we can have dk ∈ R such that

dk ≡ 1 mod Ik

dk ≡ 0 mod I j for all j with k 6= j < n.
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Now put b =∑
k<n dk ak . Then for all j < n we obtain

b = d0a0 +·· ·+d j−1a j−1 +d j a j +d j+1a j+1 +·· ·+dn−1an−1

b ≡ 0 ·a0 +·· ·+0 ·a j−1 +1 ·a j +0 ·a j+1 +·· ·+0 ·an−1 mod I j

b ≡ a j mod I j

as desired.

We can cast the Chinese Remainder Theorem as a structure theorem for commutative rings.
Recall that in § 1.3 we discussed direct products of algebraic systems in general. For commutative
rings we can enhance the fact at the end of that section.

The Chinese Remainder Theorem: Structural Version. Let R be a commutative ring and I0, I1, . . . , In−1

be a finite list of ideals of R. Then

R/
⋂
j<n

I j is embeddable into R/I0 ×·· ·×R/In−1.

Moreover, if I j + Ik = R for all j and k with j ,k < n and j 6= k, then the embedding is an isomor-
phism.

Proof. We need a map h from R into the direct product whose kernel is
⋂

j<n I j . Then we can
invoke the Homomorphism Theorem to obtain the desired embedding. The map is the one that
comes most easily to hand:

h(a) := (a + I0, a + I1, . . . , a + In−1) for all a ∈ R.

This map is assembled from the quotient maps. It is routine to demonstrate that it is a homo-
morphism and that its kernel is

⋂
j<n I j . An appeal to the Homomorphism Theorem gives us the

desired embedding. So the first part of this theorem just rests on general considerations. The
power resides in the “moreover” part of the statement. For that, what is needed is to see that h
maps R onto the direct product.

Consider any element of the direct product. It has the form

(a0 + I0, a1 + I1, . . . , an−1 + In−1).

We must see that there is a b ∈ R so that

h(b) = (a0 + I0, a1 + I1, . . . , an−1 + In−1).

Given the definition of h, we see that this is the same as finding a b ∈ R so that

b + I j = a j + I j for all j < n.

In other words, that
b ≡ a j mod I j for all j < n.

Of course, this is precisely what the Chinese Remainder Theorem does for us.
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3.5 PROBLEM SET 3

ALGEBRA HOMEWORK, EDITION 3

FOURTH WEEK

MORE IDEALS

PROBLEM 10.
Let R be a commutative ring and let n be a positive integer. Let J , I0, I1, . . . , In−1 be ideals of R so
that Ik is a prime ideal for every k < n and so that J ⊆ I0 ∪ ·· ·∪ In−1. Prove that J ⊆ Ik for some
k < n.

PROBLEM 11.
Let R be a nontrivial commutative ring and let J be the intersection of all the maximal proper
ideals of R. Prove that 1+a is a unit of R for all a ∈ J .

PROBLEM 12.
Let R be a commutative ring. Define

N := {a | a ∈ R and an = 0 for some positive integer n}.

a. Prove that N is an ideal of R.

b. Prove that N ⊆ P for every prime ideal P of R.

PROBLEM 13.
Let R be a commutative ring and I be an ideal of R. Prove each of the following:

a. Suppose P0 and P1 are ideals of R. If I ⊆ P0 ∪P1, then either I ⊆ P0 or I ⊆ P1.

b. Suppose P0,P1, and P2 are prime ideals of R. if I ⊆ P0 ∪P1 ∪P2, then either I ⊆ P0 or I ⊆ P1 or
I ⊆ P2.
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4
ZORN’S LEMMA

Zorn’s Lemma is a transfinite existence principle which has found a number of useful and infor-
mative applications in algebra and analysis. While the Lemma bears the name of Max Zorn, equal
credit should be extended to Felix Hausdorff and Kazimierz Kuratowski who found closely related
results decades before Zorn.

A chain or linearly ordered set is just a partially ordered set in which any two elements are
comparable. We also refer to any subset of a partially ordered set as a chain when it is linearly
ordered by the ordering inhereted from the larger ordered set. This means that, where a and b
are elements of the chain and ≤ denotes the order relation, we have either a ≤ b or b ≤ a. Let C
be a subset of a partially ordered set P and b ∈ P . We say that b is an upper bound of C provided
a ≤ b for all a ∈C . We say b is a strict upper bound provided a < b for all a ∈C . An element d is
maximal in C if d ∈C and whenever d ≤ a ∈C it follows that d = a.

Zorn’s Lemma. Let P be a partially ordered set and suppose that every chain in P has an upper
bound in P. Then P has a maximal member.

Proof. Let g be a function which chooses an element from each nonempty subset of P . That is the
domain of g is the collection of nonempty subsets of P and g (D) ∈ D for each nonempty subset
D ⊆ P . The function g , which is called a choice function, exists according to the Axiom of Choice.

Denote the ordering on P by ≤. For each set C ⊆ P let Ĉ denote the set of all strict upper bounds
of C . Notice that the empty set ∅ is a chain in P . According to our hypothesis it must have an
upper bound in P . Since∅ is empty this upper bound must be a proper upper bound. This means
∅̂ is nonempty. (Hence, P is nonempty.)

We will say that K ⊆ P is a g -chain provided

• K is not empty.

• K is a chain.

• if C ⊆ K and C has a strict upper bound in K , then g (Ĉ ) is a minimal member of Ĉ ∩K .

Here is a useful fact about how elements in g -chains compare.

41
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Fact. Let K and J be g -chains so that a ∈ K − J and b ∈ J . Then b < a.

Proof. Let C = {d | d ∈ K ∩ J and d < a}. So C has a strict upper bound in K . Since K is a g -chain,
we have g (Ĉ ) is a minimal member of Ĉ ∩K . Also, g (Ĉ ) ≤ a. Now Ĉ ∩ J must be empty, since
otherwise g (Ĉ ) ∈ K ∩ J , putting g (Ĉ ) ∈C , which is impossible. So if b ∈ J then there is d ∈C with
b ≤ d < a. Hence, b < a.

Claim. The union of any nonempty collection of g -chains is a g -chain.

Proof. Let L be a union of some nonempty family F of g -chains. We first have to check that L
is linearly ordered. So suppose a,b ∈ L. Pick K , J ∈ F so that a ∈ K and b ∈ J . We need to show
that a and b are comparable. We might as well consider that a ∉ J , since if a ∈ J we see, J being
a chain, that a and b are comparable. But the Fact above then tells us that b < a, so a and b are
comparable. This means that L is a chain.

Of course, L is not empty since it is union of a nonempty collection of nonempty sets. So it
remains to verify the last condition in the definition of g -chain. To this end, let C ⊂ L such that
C has a strict upper bound b ∈ L. Pick J ∈ F so that b ∈ J . To see that C ⊆ J , pick a ∈ C and, for
contradiction, suppose a ∉ J . Pick K ∈ F so that a ∈ K . Now the Fact yields b < a. But here we
also have a < b. So we find C ⊆ J . Since J is a g -chain, we have g (Ĉ ) is a minimal member of Ĉ∩ J .
But we need to see that g (Ĉ ) is a minimal member of Ĉ ∩L. Suppose not. Pick a′ ∈ Ĉ ∩L so that
a′ < g (Ĉ ). To simplify notation, let g (Ĉ ) = b′. So a′ < b′. Now pick K ′ ∈F so that a′ ∈ K ′. Now the
Fact above again yields b′ < a′, which is contrary to a′ < b′. This verifies for L the last condition
in the definition of g -chain. So L is a g -chain, as claimed.

Now let M be the union of the collection of all g -chains. Were M̂ nonempty we could form
M ∪ {g (M̂)}, which would be a chain properly extending M . A routine check of the definition
shows that M ∪ {g (M̂)} would again be a g -chain. This produces g (M̂) ∈ M ∪ {g (M̂)} ⊆ M . But we
know g (M̂) ∉ M . So M̂ must be empty. So M has no strict upper bounds. But by the hypothesis,
every chain has an upper bound. So M must have a largest element m. That is a ≤ m for all a ∈ M .
As there is no strict upper bound of M , there can be no element which is strictly above m. That is
m is the maximal element we seek.

Zorn’s Lemma is proven.
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5
RINGS LIKE THE RATIONALS

5.1 FIELDS

In the commutative ring of rational numbers every nonzero element has a multiplicative inverse—
every nonzero element is a unit. Other rings you are acquainted with have this property as well.
A field is a nontrivial commutative in which every nonzero element has a multiplicative inverse.
Fields evidently satisfy the cancellation law. So every field is an integral domain. Moreover, since
every nonzero element is a unit we see that every nontrivial ideal of a field must actually be the
whole field. In other words, every field has exactly two ideals: the trivial ideal and the whole field.
Both of these ideals are principal ideals, so every field is a principal ideal domain. So every field
is also a unique factorization domain, but in itself, this is not too interesting since fields have no
nonzero nonunits to factor and there are no irreducible elements.

Theorem 5.1.1. Let R be a commutative ring and I be an ideal of R. Then

(a) R is a field if and only if R has exactly two ideals.

(b) R/I is a field if and only if I is a maximal among the proper ideals of R.

Proof. For part (a) we have already observed the implication from left to right. For the converse,
suppose R has exactly two ideals and let a ∈ R be nonzero. We have to show that a is invertible.
The ideal (a) must be the whole of R, so in particular 1 ∈ (a). This means we can (and do) pick
b ∈ R so that 1 = ab. So b is the desired inverse of a.

Part (b) is an immediate consequence of part (a) and the Correspondence Theorem.

To simplify the language we will say that I is a maximal ideal of the ring R provided

(a) I is a proper ideal of R, and

(b) Either I = J or J = R whenever J is an ideal of R with I ⊆ J .

So the theorem of above asserts, in part, that, for a commutative ring R, we have that R/I is a field
if and only if I is a maximal ideal of R.
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The Maximal Ideal Theorem.

(a) Every proper ideal of a ring is included in a maximal ideal of the ring.

(b) Every nontrivial commutative ring has a homomorphic image that is a field.

Proof. For part (a) let I be a proper ideal of the ring R. Let

F = {J | I ⊆ J and J is a proper ideal of R}.

Any maximal element of F will be a maximal ideal that includes I . We invoke Zorn’s Lemma to
see that F has a maximal member. Indeed, suppose C is a chain included in F . If C is empty,
then I will be an upper bound of C . So we suppose that C is not empty. Observe that

⋃
C is an

ideal of R since it is a union of a chain of ideals. Plainly, I ⊆⋃
C . Finally, were

⋃
C not proper we

would have 1 ∈⋃
C . But that would mean that 1 ∈ J for some J ∈C . However, the members of C

belong to F so they are proper ideals. So we find that
⋃

C is a proper ideal of R that includes I .
This means that

⋃
C belongs to F . That is, every nonempty chain in F has an upper bound in

F . According to Zorn, F must have maximal members. This establishes part (a).
Part (b) is an immediate consequence of part (a) and the first theorem in this section.

5.2 FIELDS OF FRACTIONS

In addition to the field of rational numbers, you are also acquainted with the field of real numbers,
as well as the field of complex numbers. We also have in hand finite fields like Z/(p), where p is
a prime number. This is because we know that (p) is a prime ideal of Z and we know that in
a principal ideal domain prime ideals are maximal. Some of these fields don’t seem much like
the field of rational numbers. We know there is a close connection between the integers and the
rationals. We can build the field of rationals from the ring of integers. An interesting thing is that
the same procedure can be applied to any integral domain to produce a closely associated field.
Here is how.

Fix an integral domain D throughout this section. The idea is to enhance D by adjoining all the
multiples of the multiplicative inverses of the nonzero elements of D . There is a little wrinkle in
this process. When we do this for the integers we have to throw in 1

4 to ensure that 4 will have a
multiplicative inverse and then we have to throw in 2

4 = 2 · 1
4 . Of course, we have to identify 2

4 and
1
2 . There is a two-step process to smooth out this wrinkle.

Let E = {(a,b) | a,b ∈ D with b 6= 0}. On E define the binary relation ³ be

(a,b) ³ (c,d) if and only if ad = bc

for all (a,b), (c,d) ∈ E . The eager graduate students will write out a proof that ³ is an equivalence
relation on E . As a second step, we name the equivalence classes in a convenient manner. For
a,b ∈ D with b 6= 0 we put

a

b
:= {(c,d) | (c,d) ∈ E and (a,b) ³ (c,d)}.

So we have
a

b
= c

d
if and only if ad = bc,
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for all a,b,c,d ∈ D with b 6= 0 6= d .
Let F ′ = { a

b | a,b ∈ D with b 6= 0}. Our plan is to make F ′ into a field by defining the ring opera-
tions in some appropriate manner. Here is how. For all a

b , c
d ∈ F let

a

b
+ c

d
:= ad + cb

bd
a

b
· c

d
:= ac

bd

−a

b
:= −a

b

0∗ := 0

1

1∗ := 1

1

The last two equations define the one and the zero of the ring of fractions. Of course, these def-
initions are very familiar from the days in school when we learned how to deal with fractions. It
is worth noting that the soundness to these definitions depends on the fact that D is an integral
domain—to ensure that bd 6= 0 when b 6= 0 6= d . Here is the question:

Is the algebra 〈F ′,+, ·,−,0∗,1∗〉 really a field?

Unfortunately, we seem to be forced to check all the equations defining commutative rings as well
as checking that every nonzero element has a multiplicative inverse. This checking is tedious but
must be done (by the graduate students!). The most strenuous case is checking the associative
law for addition. Here is a verification of a distributive law to show how it is done.

a

b

( c

d
+ e

f

)= a

b

c f +ed

d f

= a(c f +ed)

b(d f )

= a(c f )+a(ed)

b(d f )

= ((ac) f + (ae)d) ·1

((bd) f ) ·1

= (ac) f + (ae)d

(bd) f

1

1

= (ac) f + (ae)d

(bd) f

b

b

= (ac)(b f )+ (ae)(bd)

(bd)(b f )

= ac

bd
+ ae

b f

= a

b

c

d
+ a

b

e

f

In the reasoning above, we used 1
1 = b

b where we know b 6= 0. This is a little lemma that is helpful
in the other parts of the proof.
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Let D ′ = { a
1 | a ∈ D}. It is easy to check that D ′ is a subuniverse of the field 〈F ′,+, ·,−,0∗,1∗〉 and

that the map sending a 7→ a
1 for a ∈ D is an embedding of D into the field. But we would rather

regard D as a subring of its field of fractions, just as we regard Z as a subring ofQ. We accomplish
this by letting

F := D ∪ (F ′ \ {
a

1
mod a ∈ D}).

We have to define the operations on F . Here is how to define addition for u, v ∈ F .

u + v :=


u + v if u, v ∈ D

u + v if u, v ∈ F ′
ub+a

b if u ∈ D and v = a
b ∈ F ′

a+vb
b if v ∈ D and u = a

b ∈ F ′

The first two lines of this may look a bit strange. The + in the first case refers to the addition
in D, whereas on the second line the + refers to the addition defined above over F ′. The other
operations can be defined in a similar fashion. In effect, what we have done is a bit of transplant
surgery. We have sliced out D ′ and put D in its place making sure to stitch things up so the
operations work right. The result is a field F that has D has a subring. This field F is called the
field of fractions of the integral domain D.

We have provided one construction that starts with an integral domain D and ends up with an
extension F that can be rightful called a “field of fractions”. However, it should be clear that this
construction is not really unique—it is possible to make small changes that will produce other
fields that could also be called fields of fractions but that are technically different from the one
we have just constructed. There is, however, a strong uniqueness result for fields of fractions.
field!field of fractions

Theorem on the Existence and Uniqueness of Fields of Fractions. Let D be any integral domain.
There is a field F such that D is a subring of F, and moreover, if S is any ring and K is any field so
that S is a subring of K and if h : D → S is any isomorphism from D onto S, then h has a unique
extension to an embedding of F into K.

Proof. We already established the existence of a field F of fractions. Suppose the field K and the
embedding h are given to us. We define the extension ĥ from F into K as follows. For any u ∈ F
let

ĥ(u) =
{

h(u) if u ∈ D

h(a)(h(b))−1 if u = a
b ∉ D

In the second alternative, h(b) will be a nonzero element of K and it will have a multiplicative
inverse in K , which we have denoted by (h(b))−1. It is a routine work for the delight of the grad-
uate students to demonstrate that ĥ is actually an embedding. Staring hard at the definition of ĥ
should suggest a proof that this is the only way to get such an extension.

So the field of fraction of an integral domain D is, in the sense described above, the smallest
field extending D.
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5.3 PROBLEM SET 4

ALGEBRA HOMEWORK, EDITION 4

FIFTH WEEK

FIELDS

PROBLEM 14.
Let F be a field and let p(x) ∈ F[x] be a polynomial of degree n. Prove that p(x) has at most n
distinct roots in F.

PROBLEM 15.
Let R be a commutative ring and let a ∈ R with an 6= 0 for every natural number n. Prove that R
has an ideal P such that each of the following properties holds:

i. an ∉ P for every natural number n, and

ii. for all ideals I of R, if P ⊆ I and P 6= I , then an ∈ I for some natural number n.

PROBLEM 16.
Let F be a field and let F∗ be its (multiplicative) group of nonzero elements. Let G be any finite
subgroup of F∗. Prove that G must be cyclic.

PROBLEM 17.
Suppose that D is a commutative ring such that D[x] is a principal ideal domain. Prove that D is
a field.
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6
RINGS OF POLYNOMIALS

6.1 POLYNOMIALS OVER A RING

5x3 + 3x2 − 7x + 1 is a polynomial with integer coefficients. Our experience in school and even
through calculus leads us to think of polynomials as functions, but here in algebra we take a
different view. We consider that polynomials are formal expressions that describe functions. We
regard polynomials as certain kinds of strings of symbols. We could also regard the polynomial
at the start of this paragraph has a polynomial over the ring Z

(8) . That ring has just 8 elements and

there are only 88 one-place operations on the underlying set {0,1,2,3,4,5,6,7}. However, there
is a countable infinity of polynomials, some of each degree, with coefficients in that ring. This
means that some (actually many) polynomials will name the same function.

The interesting thing about treating polynomials as strings of symbols is that we can define an
addition and a multiplication, as well as the formation of negatives and in this way produce a
ring. We know well how to add and multiply polynomials in a formal manner—having had lots
of drill in Algebra I. To help in formalizing addition and multiplication, it is convenient to write
polynomials backwards from how most of us were taught. In fact, it is reasonable to imagine each
polynomial as an infinitely long expression where after some point all the coefficients are 0 (and
so have been neglected. . . ).

Here is how addition works, of course.

a0 + a1x + a2x2 +·· ·+ an xn

b0 + b1x + b2x2 +·· ·+ bn xn

(a0 +b0) + (a1 +b1)x + (a2 +b2)x2 +·· ·+ (an +bn)xn

Notice that while this looks like we have assumed that the polynomials are both of degree n, we
have not made such an assumption. Some (or all) of the coefficients above can be 0. So this
description of addition works for all polynomials. It is important to realize that the +’s occurring
in the parentheses on the last line actually refer to the addition in the ring of coefficients. So
the idea is that, unlike the other +’s, which are formal symbols, those in the parentheses should

48
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actually be executed to produce elements of the ring of coefficients to get the coefficients of the
sum of the polynomials.

Multiplication is more complicated.

a0 + a1x + a2x2 +·· ·+ an xn

b0 + b1x + b2x2 +·· ·+ bn xn

(a0b0) + (a0b1 +a1b0)x + (a0b2 +a1b1 +a2b0)x2 +·· ·+ (
∑

i+ j=n ai b j )xn

In general, the kth coefficient is ∑
i+ j=k

ai b j .

Here is a smaller example

(a0 +a1x)(b0 +b1x +b2x2) = a0(b0 +b1x +b2x2)+a1x(b0 +b1x +b2x2)

= a0b0 +a0b1x +a0b2x2 +a1b0x +a1b1x2 +a1b3x3

= a0b0 + (a0b1 +a1b0)x + (a0b2 +a1b1 +a2b0)x2 + (a0b3 +a1b2 +a0b3)x3

This looks like a deduction, but isn’t really. Rather, it is the basis for the given definition of
multiplication. But this does show that while we didn’t allow the commutative law to sneak into
the calculation of the coefficients, we have somehow assumed here that the variable x commutes
with everything.

Given a ring R we make the ring R[x] of polynomials with coefficients from R by imposing
the addition and multiplication described above on the set of polynomials. The zero of the ring
of polynomials is the polynomials where all the coefficients are 0. The one of this ring is the
polynomial with constant coefficient 1 and all other coefficients 0. Form negatives of polynomials
we leave to the imagination of the graduate students.

Well, is R[x] really a ring? We need to check the equations that we used to define the notion of
a ring. The equations only involving =,− and 0 are easy. The associative law for multiplication
and the distributive laws are messy and best not displayed in public (but the disciplined graduate
students will not flinch from checking this stuff). Notice that R is a subring of R[x].

The zero polynomial is the one whose coefficients are all 0. Every nonzero polynomial

a0 +a1 +·· ·+an xn

has a rightmost coefficient that is not 0. This coefficient is the leading coefficient of the polyno-
mial and the exponent of the associated x is called the degree of the polynomial. It is convenient
to assign no degree to the zero polynomial.

If the sum of two polynomials is not the zero polynomial then the degree of the sum can be
no larger than the maximum of the degree of the summands. Likewise, if the product of two
polynomials is not the zero polynomial, then the degree of the product is no larger than the sum
of the degrees of two factors. If R is an integral domain, then the degree of the product of nonzero
polynomials in R[z] is the sum of the degrees of the factors.

Once we are convinced that R[x] is a ring we can repeat the construction to from the ring
R[x][y]. Here is a member of Z[x][y].

(1+2x +3x3)+ (2−x)y + (5+x3)y2
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Observe that the coefficients of this polynomial (namely, the parts in parentheses) are members
of R[x]. We identify this polynomial with

1+2x +2y −x y +5y2 +3x3 +x3 y2

Now notice that the polynomial below

(1+2y +5y2)+ (2− y)x + (3+ y2)x3

is a member of Z[y][x] that we also identify with

1+2x +2y −x y +5y2 +3x3 +x3 y2

By similar reasoning we identify Z[x][y] with Z[y][x]. We use the notation Z[x, y] to denote this
ring. More generally, we arrive at the polynomial ring R[x0, x1, . . . , xn] in any finite number of vari-
ables. It is even possible to consider rings of polynomials over infinite sets of variables, although
we will not pursue this.

Here are some easily deduced facts.

Fact. Let R be a ring. R[x] is a commutative ring if and only if R is a commutative ring.

Fact. Let R be a ring. R[x] is an integral domain if and only if R is an integral domain.

A very useful result about rings of polynomial is next.

The Homomorphism Extension Property for R[x]. Let R,S, and T be rings so that S is a subring of
T and let h be a homomorphism from R onto S. For any t ∈ T there is exactly one homomorphism
ĥ extending h that maps R[x] into T such that ĥ(x) = t .

This theorem is illustrated in Figure 6.1.

R S

x

t

R[x] T

h

ĥ

Figure 6.1: The Homomorphism Extension Property
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Proof. Consider an arbitrary polynomial

p(x) = a0 +a1x +·· ·+an xn .

Were there to be any extension ĥ of h as desired, then we would have to have

ĥ(p(x)) = ĥ(a0)+ ĥ(a1ĥ(x)+·· ·+ ĥ(an)(ĥ(x))n

= h(a0)+h(a1)t +·· ·+h(an)t n .

In this way we see that there can be at most one possibility for ĥ. Moreover, we can define the
desired extension by

ĥ(p(x)) := h(a0)+h(a1)t +·· ·+h(an)t n .

The only issue is whether this function is actually a homomorphism. This we leave in the capable
hands of the graduate students.

An interesting special case of this theorem is when R = S and h is just be identity map. In that
case the extension ĥ gives us

ĥ(p(x)) = ĥ(a0 +a1x +·· ·+an xn) = a0 +a1t +·· ·+an t n = p(t ).

Notice that the p(x) on this line is a polynomial whereas the p(t ) is an element of T . If we construe
the polynomial p(x) as a name for a function from T to T , then what ĥ does is evaluate the named
function at the input t . For this reason, ĥ, which depends on t , is called an evaluation map. In
this context, we say that t is a root of p(x) provided ĥ(p(x)) = 0; that is provided p(t ) = 0 in T.

We saw a key fact about the integers that had to do with quotients and remainders. This very
useful fact led us to the conclusion that the ring of integers is a principal ideal domain. Something
like this fact holds for polynomial rings.

Theorem on Quotients and Remainders for Polynomials. Let R be a commutative ring, letd(x) ∈
R[x] be a nonzero polynomial, and let b be the leading coefficient of d(x). Let f (x) ∈ R[x] be any
polynomial. There is a natural number k and polynomials q(x) and r (x) such that

(a) bk f (x) = q(x)d(x)+ r (x) and

(b) Either r (x) is the zero polynomial or degr (x) < degd(x).

Moreover, given such a k the polynomials q(x) and r (x) are unique, provided R is an integral do-
main.

Proof. Observe that if the degree of d(x) is larger than the degree of f (x) then we can take r (x) =
f (x) and q(x) = 0 and we can put k = 0. So the existence part of this theorem only needs a proof
when deg f (x) ≥ degd(x). We prove the existence part of the theorem by induction on deg f (x).

Base Step: deg f (x) = degd(x)
Let a be the leading coefficient of f (x). Put k = 1, q(x) = a, and r (x) = b f (x)−ad(x). This works.

Inductive Step
We suppose that deg f (x) = n +1 > degd(x). Let m be the degree of d(x). Once more let a be the
leading coefficient of f (x). Observe

f̂ (x) := b f (x)−axn1−m xd(x)

is a polynomial of degree no more than n. We can apply the induction hypothesis to obtain a
natural number ` and polynomials q̂(x) and r (x) so that
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(a) b` f̂ (x) = q̂(x)d(x)+ r̂ (x) and

(b) r (x) is the zero polynomial or degr (x) < degd(x).

But this entails

b`+1 f (x) = q̂(x)d(x)+axn+1−md(x)+ r (x)

= (q̂(x)+axn+1−m)d(x)+ r (x).

Taking q(x) := q̂(x) = axn+1−m establishes the inductive step.
So the existence part of the theorem is finished. For the uniqueness part, we suppose that R is

an integral domain and we take k to be a fixed natural number and f (x), q0(x), q1(x),r0(x), and
r1(x) to be polynomials such that

(a) bk f (x) = q0(x)d(x)+ r0(x),

(b) r0(x) is the zero polynomial or degr0(x) < degd(x),

(c) bk f (x) = q1(x)+ r1(x), and

(d) r1(x) is the zero polynomial or degr1(x) < degd(x).

It follows that
(q0(x)−q1(x))d(x) = r1(x)− r0(x).

Now the polynomial on the right is either the zero polynomial or it had degree less than the degree
of d(x). The polynomial on the left is either the zero polynomial or it has degree at least the
degree of d(x). It follows that both sides of this equation are the zero polynomial. In particular,
r0(x) = r1(x). (At this point we have yet to invoke the fact that R is an integral domain.) So we
have

(q0(x)−q1(x))d(x) = 0.

We know that d(x) is not the zero polynomial. Since R[x] is an integral domain, we find that
q0(x) = q1(x), as desired.

Here are three important immediate corollaries of this theorem.

Corollary 6.1.1. Let R be a commutative ring, letd(x) ∈ R[x] be a nonzero polynomial whose lead-
ing coefficient is a unit. Let f (x) ∈ R[x] be any polynomial. There are polynomials q(x) and r (x)
such that

(a) f (x) = q(x)d(x)+ r (x) and

(b) Either r (x) is the zero polynomial or degr (x) < degd(x).

Moreover, the polynomials q(x) and r (x) are unique, provided R is an integral domain.

Corollary 6.1.2. F[x] is a principal ideal domain provided F is a field. Hence F[x] is a unique
factorization domain, provided F is a field.

Corollary 6.1.3. Let R be a commutative ring, let f (x) ∈ R[x] be a polynomial with coefficients in
R and let r ∈ R. Then r is a root of f (x) if and only if (x − r ) | f (x).
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The second of the corollaries displayed above can be deduced in the same manner that we used
to establish that Z is a principal ideal domain.

There is one more general observation to make here.

The Binomial Theorem holds in every commutative ring.

This means that in any commutative ring we have

(x + y)n = ∑
k≤n

(
n

k

)
xk yn−k for all elements x and y of the ring.

This must be understood carefully. The binomial coefficient
(n

k

)
that appear here are positive nat-

ural numbers, not elements of the ring at hand. We must understand them as indicating repeated
additions within the ring. That is we take

(n
k

)
to be

1+·· ·+1︸ ︷︷ ︸
(n

k) times

.

With this in mind, it is routine to see that only the laws of commutative rings are needed to estab-
lish the Binomial Theorem. Now notice that n | (n

k

)
for all k such that 0 < k < n, while

(n
0

)= 1 = (n
n

)
.

This observation yields

Fact. Let R be a commutative ring of characteristic n. Then for all x, y ∈ R

(x + y)n = xn + yn .

Moreover, the map sending a 7→ an for all a ∈ R is a homomorphism.

This map, used in later parts of algebra, is called the Frobenius map.
Finally, we know that Z is an integral domain and so Z[x] is also an integral domain. However,

even though Z is a principal ideal domain, it turns out that Z[x] is not a principal ideal domain.
Establishing this fact is a task left to the graduate students in one of the Problem Sets. Even though
Z[x] is not a principal ideal domain, it turns out that it is still a unique factorization domain and
that while some of the ideals of Z[x] cannot be generated by some single element, it is never-
theless true that all the ideals of Z[x] can be generated by some finite set of elements. These are
consequences of more general theorems (of Gauss and Hilbert) that are the primary objectives of
this sequence of lectures.

6.2 POLYNOMIALS OVER A UNIQUE FACTORIZATION DOMAIN

We know that bothZ and F[x], where F is a field, are principal ideal domains, but that neitherZ[x]
nor F[x, y] are principal ideal domains. It is a theorem of Gauss thatZ[x] is nevertheless a unique
factorization domain. With little change to the proof of Gauss, we have the following theorem.

Unique Factorization Theorem for Polynomials over a Unique Factorization Domain. Let D be
a unique factorization domain. Then D[x] is also a unique factorization domain.
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D

F

D[x]

F[x]

x

Figure 6.2: Linking D and F[x]

The proof of this theorem depends on three lemmas. Let F be the field of fractions of the unique
factorization domain D. The diagram below may help to understand how the proof will work.

The information we start with is that D is a unique factorization domain, the F is the field of
fractions of D (and therefore closely linked to D), and that F[x] is also a unique factorization
domain. Observe that

D ⊆ D[x] ⊆ F[x].

When Gauss tackled this problem, he had Z in place of D andQ in place of F.
We will say that a polynomial in D[x] is primitive provided there is no irreducible of D that

divides all of the coefficients of the polynomial.

Lemma A.
Let D be a unique factorization domain and let F be its field of fractions. Let p(x) be a nonzero
polynomial with coefficients in F. There is an element c ∈ F and a primitive polynomial q(x) ∈
D[x] such that p(x) = cq(x). Moreover, up to multiplication by units of D, the element c and the
coefficients of q(x) are unique.

Proof. Pick a0,b0, a1,b1, . . . , an ,bn ∈ D so that

p(x) = a0

b0
+ a1

b1
x +·· ·+ an

bn
xn .

Let b = b0b1 · · ·bn . Then
bp(x) = c0 + c1x +·· ·+cn xn

for certain elements c0,c1, . . . ,cn ∈ D . Let d be a greatest common divisor of c0,c1, . . . ,cn . Factoring
d out of c0 + c1x +·· ·+cn xn leaves a primitive polynomial q(x) such that

bp(x) = d p1(x).

So that c = d
b . Then p(x) = cp1(x), establishing the existence part of Lemma A. This argument was

just clearing the denominators and factoring the remaining coefficients are must as possible.
Now consider the uniqueness assertion. Suppose c,c∗ ∈ F and q(x), q∗(x) ∈ D[x] with both q(x)

and q∗(x) primitive such that
cq(x) = p(x) = c∗q∗(x).

Pick r, s,r ∗, s∗ ∈ D so that c = r
s and c∗ = r∗

s∗ and so that r and s are relatively prime as are r ∗ and
s∗. So we have

s∗r q(x) = sr ∗q∗(x).
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Now let t be any prime in D so that t | s∗. We know that t cannot divide r ∗ and it cannot divide
each of the coefficients of q∗(x) since that polynomial is primitive. Therefore it must divide s. So,
factoring s∗ into primes, we see that s∗ | s. In a like manner, we can conclude that s | s∗. This
means that s and s∗ are associates. Pick a unit u of D so that s∗ = su. So we find after cancellation

r q(x) = ur ∗q∗(x).

Applying the same reasoning to r ∗ and r , we can find a unit v of D so that r ∗ = vr . This gives

q(x) = uvq∗(x) and c = r

s
= r u

su
= r u

s∗
= r vu

s∗v
= r ∗u

s∗v
= r ∗

s∗
u

v
= c∗

u

v
.

But both uv and u
v are units of D. This finishes the proof of uniqueness up to multiplication by

units of D.

An immediate consequence of Lemma A is that if p(x) and q(x) are primitive polynomials in
D[x] that are associates in F[x], then they are already associates in D[x].

Gauss’s Lemma. Let D be a unique factorization domain. The product of two primitive polyno-
mials in D[x] is again primitive.

Proof. Let f (x) and g (x) be primitive and put h(x) = f (x)g (x). Suppose, for the sake of contradic-
tion, that t is an irreducible of D that divides all the coefficients of h(x). So t is prime and the ideal
(t ) is a prime ideal. This means that D/(t ) is an integral domain. Let η denote the quotient map
from D to D/(t ). Using the Homomorphism Extension Theorem for Polynomials, we know there
is a unique homomorphism η̂ : D[x] → D/(t )[x] so that η̂(x) = x. What η̂ does is simply apply η to
each of the coefficients of the polynomial given as input.

Now observe in D/(t )[x] we have

0 = η̂(h(x)) since each coefficient of h(x) is divisible by t .

= η̂( f (x)g (x))

= η̂( f (x)η̂(g (x))

But t cannot divide all the coefficients of f (x) nor all the coefficients of g (x), since these polyno-
mials are primitive. So η̂( f (x)) 6= 0 6= η̂(g (x)) in D/(t )[x]. Since D/(t )[x] is an integral domain, we
have uncovered a contradiction. So h(x) must be primitive.

The proof just given is certainly in the fashion of the 20th century. Here is a proof that appeals
directly to basic principles. It is much more like the reasoning of Gauss.

A more basic proof of Gauss’s Lemma. Let

f (x) = a0 +a1x +·· ·+an xn

g (x) = b0 +b1x +·· ·+bm xm

be primitive polynomials. Put h(x) = f (x)g (x) = c0 + c1x +·· ·+cn+m xn+m . We know that

ck = ∑
i+ j=k

ai b j .
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Let t be a prime of D. Pick ` as small as possible so that t - a` and pick r as small as possible so
that t - br . We can do this since f (x) and g (x) are primitive. Then

c`+r = (a0b`+r +a1b`+r−1 +·· ·+a`−1br+1)+a`br + (a`+1br−1 +·· ·+a`+r b0) .

(Be generous in understanding this equation. Depending on the values of ` and r some terms in
the first and last pieces of the sum may be missing.) Then t divides the first and last pieces of this
sum, but not the middle term a`br . This means that t cannot divide c`+r . Hence, no prime can
divide all the coefficients of h(x). So h(x) must be primitive.

Lemma B.
Let D be a unique factorization domain and let F be its field of fractions. If f (x) ∈ D[x] is irreducible
and of positive degree, then f (x) is also irreducible in F[x]

Proof. Observe that f (x) must be primitive since it is of positive degree and irreducible in D[x].
Now suppose that f (x) = g (x)h(x) for some polynomials g (x),h(x) ∈ F [x]. According to Lemma
A, we can pick c ∈ F and primitive polynomials g∗(x) and h∗(x) so that f (x) = cg∗(x)h∗(x). Pick
a,b ∈ D so that a and b are relatively prime and c = a

b . Then

b f (x) = c
(
g∗(x)h∗(x)

)
.

Gauss’s Lemma tells us that g∗(x)h∗(x) is primitive. So the uniqueness assertion of Lemma A
gives us two unit u and v of D such that

ub = c and f (x) = v g∗(x)h∗(x).

Since f (x) is irreducible in D[x] it must be that one of g∗(x) and h∗(x) is a unit and thus has
degree 0. But then one of g (x) and h(x) must also have degree 0 and be, therefore, a unit of F.
This means that f (x) is irreducible in F[x].

Here is a proof of the Unique Factorization Theorem for Polynomials over a Unique Factoriza-
tion Domain.

Proof. Let f (x) ∈ D[x] be a nonzero polynomial. We begin by letting c be a greatest common
divisor of the coefficients of f (x) we obtain a primitive polynomial g (x) so that

f (x) = cg (x).

Either c is a unit of D or else we can factor it into irreducibles over D. Observe that apart from
units g (x) has no factors of degree 0 in D[x] since g (x) is primitive. Thus any proper factorization
of g (x) over D[x] must produce factors of properly smaller degree. In this way we see that f (x)
can be factored into irreducibles over D[x].

To see that the factorization of f (x) is unique suppose

f (x) = c0c1 · · ·cm g0(x)g1(x) · · ·gn(x)

f (x) = d0d1 · · ·dk h0(x)h1(x) · · ·h`(x)

are factorization of f (x) into irreducibles over D[x] so that c0,c1, . . . ,cm ,d0,d1, . . .dk are irreducibles
of degree 0 while the remaining irreducible factors have positive degree. Irreducibles in D[x] of
positive degree are primitive. Using Gauss’s Lemma and Lemma A, we see that
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(a) c0c1 · · ·cm and d0d1 · · ·dk are associates over D. Since D is a unique factorization domain,
we find that m = k and perhaps after some reindexing ci and di are associates for all i ≤ m.

(b) g0(x)g1(x) · · ·gn(x) and h0(x)h1(x) · · ·h`(x) are associates over D[x] and hence over F[x]. By
Lemma B, these polynomials are irreducible over F[x]. Because F[x] is a unique factoriza-
tion domain, we find that n = ` and, after a suitable reindexing, that g j (x) and h j (x) are
associates over F[x], for all j ≤ n. But the g j (x)’s and the h j (x)’s are primitive, so by Gauss’s
Lemma and Lemma A they must also be associates over D[x].

This establishes the uniqueness of the factorization.

An easy induction shows that

if D is a unique factorization domain, then so is D[x0, x1, . . . , xn−1].

Eisenstein’s Criteria. Let D be a unique factorization domain and let F be its field of fractions. Let
f (x) = a0 + a1x +·· ·+ an xn ∈ D[x] where an 6= 0 and n is positive. If there is an irreducible p ∈ D
such that

1. p | ai for all i < n,

2. p - an , and

3. p2 - a0,

then f (x) is irreducible in F[x]. If, in addition, f (x) is primitive, then f (x) is irreducible in D[x].

Proof. First suppose that f (x) is primitive and that it satisfies the given criteria. Suppose f (x) =
g (x)h(x) is a factorization of f (x) over D[x]. Let g (x) = b0 +b1x + . . . and h(x) = c0 + c1x +dot s.
Then a0 = b0c0. Now p | a0 = b0c0 but p2 - b0c0. So p divides exactly one of b0 and c0. It is
harmless to suppose that p | b0 but p - c0. Now p cannot divide all the coefficients of g (x) since
then it would divide all the coefficients of f (x), even an . Pick k as small as possible so that p - bk .
Observe that

ak = b0ck +b1ck−1 +·· ·+bk−1c1 +bk c0.

Now p | b0ck +b1ck−1 + ·· · +bk−1c1 but p - bk and p - c0. Since p is prime we get p - bk c0. But
this implies that p - ak . We conclude that k = n. But this means that deg f (x) = deg g (x) and that
degh(x) = 0. So h(x) ∈ D . Since f (x) = g (x)h(x) and f (x) is primitive, we find that h(x) must
actually be a unit of D. So f (x) is irreducible in D[x]. By Lemma B it is also irreducible in F[x].

Now consider the case when f (x) is not primitve. Let c be the greatest common divisor of the
coefficients of f (x). So f (x) = c f ∗(x) where f ∗(x) primitive. Now observe that p - c since c | an .
By the primeness of p, it follows that f ∗(x) satisfies Eisenstein’s Criteria for the prime p. Hence
f ∗(x) is irreducible in D[x] and hence in F[x] by Lemma B. But c is a unit of F[x] so f (x) is an
associate over F[x] of an irreducible. This makes f (x) irreducible over F[x], as desired.

Here is an example of what is at stake. The polynomial 6+ 3x has integer coefficients and it
satisfies Eisenstein’s Criteria with p = 2. So it is irreducible over Q[x] by Eisenstein (but really,
every polynomial of degree 1 is irreducible over Q[x]). However, 6 + 3x = 3(2 + x) is a proper
factorization over Z[x] since 3 is not a unit for Z[x]. Of course, 6+3x is also not primitive.

Eisenstein’s Criteria is one of a large assortment of techniques for show that polynomials are
irreducible—especially polynomial is rings like Z[x],Z[x, y], . . . .
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6.3 HILBERT’S BASIS THEOREM

Now we know that if D is a principal ideal domain, then D[x] is a unique factorization domain,
even though it might not be a principal ideal domain. Here we will see that, in some measure,
D[x] retains some features of a principal ideal domain.

We will call a ring R Noetherian provided every ideal of R is finitely generated. So every principal
ideal domain is Noetherian.

Theorem Characterizing Noetherian Rings. Let R be a ring. The following are logically equiva-
lent.

(a) R is a Noetherian ring.

(b) Every ascending chain of ideals of R is finite.

(c) Every nonempty collection of ideals of R has a maximal member with respect to the ordering
by inclusion.

Proof.

(a)⇒(b)
Suppose I0 ⊆ I1 ⊆ I2 ⊆ . . . is an ascending chain of ideals of R. Then

⋃
i∈N Ii is also an ideal of R.

Because R is Noetherian there is a finite set X so that (X ) = ⋃
i∈N Ii . Because X is finite and the

ideals form a chain, there must be a natural number k so that X ⊆ Ik . But then

Ik ⊆ ⋃
i∈N

Ii = (X ) ⊆ Ik .

It follows that Ik = Ik+1 = Ik+2 = . . . . So the ascending chain of ideals is finite.

(b)⇒(c)
Let F be a nonempty family of ideals of R. Since every ascending chain of ideals of R is finite, it
follows that every chain of ideals in F has an upper bound in F . By Zorn’s Lemma, F must have
maximal members.

(c)⇒(a)
Let I be an ideal of R. Let F = {J | J ⊆ I and J is a finitely generated ideal}. Let M be a maximal
member of F . Then M ⊆ I . Were M 6= I we could pick a ∈ I \ M . But then M á (M ∪ {a}) ⊆ I .
Since (M ∪ {a}) is finitely generated, this violate the maximality of M . So I = M , which is finitely
generated.

Hilbert’s Basis Theorem. If R is a commutative Noetherian ring, then so is R[x].

Proof. Let I be any ideal of R[x] and let m be any natural number. Define

I (m) := {a | a is the leading coefficient of a polynomial of degree m that belongs to I }∪ {0}

The graduate students should routinely check that I (m) is always an ideal of R. It should also be
clear that I (m) ⊆ I (m +1).

Fact. Suppose I and J are ideals of R[x] with I ⊆ J . If I (m) = J (m) for all natural numbers m, then
I = J .
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To establish this fact one should consider f (x) ∈ J with the object of proving that f (x) ∈ I . This
can be done by induction on the degree of f (x). This induction is left for the pleasure of the
graduate students.

Now consider an ascending chain I0 ⊆ I1 ⊆ I2 ⊆ . . . of ideals of R[x]. There is an associated grid
of ideals on R.

...
...

...
∪ ∪ ∪

I0(2) ⊆ I1(2) ⊆ I2(2) ⊆ ·· ·
∪ ∪ ∪

I0(1) ⊆ I1(1) ⊆ I2(1) ⊆ ·· ·
∪ ∪ ∪

I0(0) ⊆ I1(0) ⊆ I2(0) ⊆ ·· ·
The family F = {Ii ( j ) | i j ∈N} displayed on this grid is a nonempty family of ideals of R. It must
have a maximal member, say In(m). Each of the finitely many rows associated an argument j
with j ≤ m is an ascending chain and can only extend to the right finitely far. Let ` be a natural
number large enough so that none of these finitely many rows extends beyond ` steps. Notice
that n ≤ `. Then I`(i ) = I`+k (i ) for all i ≤ m for all natural numbers k, while I`i = In(m) = I`+k (i )
whenever i > m. Now the Fact asserted above tells us that I` = I`+k for all natural numbers k. So
the ascending chain I0 ⊆ I1 ⊆ I2 ⊆ ·· · is finite, as desired.

It follows that if R is any commutative Noetherian ring, then R[x0, x1, . . . , xn−1] is also a com-
mutative Neotherian ring. This theorem has a fundamental role to play in commutative algebra
and algebraic geometry. The proof I gave above has the charm of an illuminating diagram, but it
doesn’t allow us to lay our hands directly on a finite generating set for an ideal I of R[x]. Coupled
with the proof of the Fact embedded in our proof, some headway could be made in this direction.
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6.4 PROBLEM SET 5

ALGEBRA HOMEWORK, EDITION 5

SIXTH WEEK

RINGS OF POLYNOMIALS

PROBLEM 18.
Is the polynomial y3 −x2 y2 +x3 y +x +x4 irreducible in Z[x, y]?

PROBLEM 19.
Let R be a principal ideal domain, and let I and J be ideals of R. I J denotes the ideal of R gener-
ated by the set of all elements of the form ab where a ∈ I and b ∈ J . Prove that if I + J = R, then
I ∩ J = I J .

PROBLEM 20.
Let D be a unique factorization domain and let I be a nonzero prime ideal of D[x] which is mini-
mal among all the nonzero prime ideals of D[x]. Prove that I is a principal ideal.

PROBLEM 21.
Let D be a subring of the field F. An element r ∈ F is said to be integral over D provided there is
a monic polynomial f (x) ∈ D[x] such that r is a root of f (x). For example, the real number

p
2 is

integral over the ring of integers since it is a root of x2 −2.
Now suppose D is a unique factorization domain and F is its field of fractions. Prove that the set

of elements of F that are integral over D coincides with D itself.

PROBLEM 22.
Let R be a commutative ring and let S be a subring of R so that S is Noetherian. Let a ∈ R and let
S′ be the subring of R generated by S ∪ {a}. Prove that S′ is Noetherian.
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7
MODULES, A GENERALIZATION OF VECTOR

SPACES

7.1 MODULES OVER A RING

A vector space over a field F is a set of vectors, including a zero vector, that has a two-place op-
eration for vector addition, a one-place operation for form the negative of a vector, a one-place
operation for each element of F that can be used to scale vectors. Most of us were brought up
to consider a kind of two-place operation from multiplying a vector by a scalar. For example, in
the standard 2-dimensional vector space over the reals, the when the vector (2,6) is multiplied
by the scalar 0.5 the resulting vector is (1,3), a vector pointing in the same direction as (2,6) but
it is scaled down—it is only half as long. The one-place operation that sends each real pair (a,b)
to (0.5a,0.5b) precisely captures the effect of multiplication by the scalar 0.5. Of course, the ad-
vantage to us of construing scalar multiplication as a system of one-place operations is that then
vector spaces fit into our overall view of algebraic systems in general.

Let F be a field. We say that 〈V ,+, ,−,0,r ·〉r∈F is a vector space over F provided all of the equation
below hold.

x + (y + z) = (x + y)+ z (r + s) ·x = r x + sx

x + y = y +x r (x + y) = r x + r y

−x +x = 0 (r s)x = r (sx)

x +0 = x 1x = x

for all x, y, z ∈V and r, s ∈ F .
We have followed the customary practice of using the same symbol + to denote both the addi-

tion in the field of scalars and the addition in the vector space. Really, they are different in all but
a few cases. The same might be said for using juxtaposition to denote the multiplication in the
ring a the (one-place functional) action of a scalar on a vector. In the equations above r s is the
product in the ring whereas r (sx) means the action, consecutively, of two scalings.
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We obtain the notion of a module over a ring by replacing the field F with an arbitrary ring R.
So let R be a ring. We say that 〈V ,+, ,−,0,r ·〉r∈R is a module over R provided all of the equation
below hold.

x + (y + z) = (x + y)+ z (r + s) ·x = r x + sx

x + y = y +x r (x + y) = r x + r y

−x +x = 0 (r s)x = r (sx)

x +0 = x 1x = x

for all x, y, z ∈ V and r, s ∈ R. Some people would say left unitary R-module for this notion. The
“left” comes from writing the scalars on the left—there is a companion notion of right modules.
The “unitary” comes from the stipulation 1x = x. Many of the most striking properties of vector
spaces, rely on the fact that every nonzero element of a field in a unit. Still, modules in general
retain some of the nice features of vector spaces.

There is another source of modules. Let I be an ideal of R. Then 〈I ,+,−,0,r ·〉r∈R is clearly
an R-module. This would even be true if I were a “left” ideal of R. Indeed, the left ideals of R are
essentially the same as the sub R-modules of R. Below we will only be concerned with R-modules
when R is a commutative ring. In this case, the ideals of R and the submodules of R coincide.

In fact, we will be almost exclusively concerned with modules whose underlying ring is a princi-
pal ideal domain. The familiar ring Z of integers and rings of the form F[x], where F is a field, are
examples of principal ideal domains. Reflect a moment on the Z-modules. Did you notice that
the investigation of the Z-modules differs in no important way from the investigation of Abelian
groups?

Let V be a finite dimensional vector space over a field F. The linear operators (alias endomor-
phisms) of V can be acted on in an obvious way by the polynomials in F[x]. Under this action,
the linear operators of V form a module over F[x]. Investigation of the structure of such modules
leads to some of the deeper results in linear algebra.

7.2 FREE MODULES

A module F over a nontrivial ring R is said to be free on a set B ⊆ F provided for every R-module
M and every function ϕ : B → M there is a unique homomorphism ψ : F → M that extends ϕ. We
will say that F is a free R-module provided it is free on some set. In the context of vector spaces,
we know that every vector space has a basis B and that any map from B into another vector space
over the same field extends uniquely to a linear transformation. This means that every vector
space is free on any of its bases. This fails for modules in general. The free modules are much
more like vector spaces.

The Uniqueness Theorem for Free Modules. Let F be a module over a nontrivial ring R that is free
on B and let F∗ be a module over R that is free on B∗. If |B | = |B∗|, then F and F∗ are isomorphic.

Proof. Let ϕ be a one-to-one map from B onto B∗. Let ψ extend ϕ to a homomorphism from
F into F∗. Likewise let ψ∗ extend ϕ−1 to a homomorphism from F∗ into F. Then ψ ◦ψ∗ is an
endomorphism of F extending the identity map on B . The identity on F is also such an endomor-
phism. By the uniqueness of such extensions, we find ψ◦ψ∗ is that identity map on F . Likewise,
ψ∗◦ψ is the identity map on F∗. Soψ is an isomorphism from F onto F∗ andψ∗ is its inverse.
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Observe that R is an R-module that is free on {1} and that the trivial R-module is free on ∅. We
will see that free R-modules have a simple form. For this we employ the notion of direct sum of
modules. Let Mi be an R-module for each i ∈ I , where I is any set. We define the direct sum⊕

i∈I
Mi := {〈vi |i ∈ I 〉|vi ∈ Mi for all i ∈ I and all but finitely many of vi ’s are 0}

It is routine to check that this set is a subuniverse of
∏

i∈I Mi . So
⊕

i∈I Mi is an R-module.

The Structure Theorem for Free Modules. Suppose F is a module over a nontrivial ring that is
free on B. For each b ∈ B let Rb = R. Then F is isomorphic to

⊕
b∈B Rb .

Proof. All be need to do is prove that
⊕

b∈B Rb is free on a set of cardinality |B |. The set we are
after is the set of all B-tuples that have 1 in exactly one position and 0 is all other positions. This
is the “standard” basis familiar from linear algebra. The graduate students should enjoy filing in
the rest of this proof.

As in vector spaces, in modules generally we will say that a set X is linearly independent pro-
vided that for any finitely many distinct v0, v1, . . . , vn−1 ∈ X if a0v0+a1v1+·· ·+an−1vn−1 = 0, then
a0 = a1 = ·· · = an−1 = 0. In any module M, a linearly independent subset that generates M is said
to be a basis for M.

Theorem Characterizing Free Modules. Let R be a nontrivial ring and F be an R-module. F is a
free R-module if and only if F has a basis.

Proof. Suppose that F is a module over R that is free on B . Let M be the submodule of F gen-
erated by B . I leave it to the graduate students to check that M is also free on B . So there is an
isomorphism from M onto F that extends the identity map on B . But any such extension must fix
each element of M since M is generated by B . This means that M = F , and so we see that B gen-
erates F. Next, observe that the subset of

⊕
b∈B Rb consisting of those B-tuples with exactly one

entry 1 and the rest 0 is evidently linearly independent. But
⊕

b∈B Rb and F are isomorphic via an
isomorphism that sends our linear independent subset of the direct sum to B . As the image of
a linearly independent set under an isomorphism is again linearly independent, we find the B is
linearly independent. Therefore, B is a basis for F.

Now suppose that B is a basis for F. Just as in linear algebra, we can show that every element
of F can be expressed uniquely as a linear combination of elements of B . Suppose that M is an
R-module and let ϕ : B → M . Define ψ : F → M via

ψ(w) := a0ϕ(v0)+·· ·+anϕ(vn)

for all w ∈ F , where a0v0+·· ·+an vn is the unique linear combination of distinct elements v0, . . . , vn ∈
B that represents w . It is routine to prove that ψ is a homomorphism. So F is free on B .

One of the most useful features of vector spaces is that any two bases of the same space have
the same cardinality. This gives us a notion of dimension in vector spaces. This property is lost in
some free modules. On the other hand, it is often true.

The Dimension Theorem for Free Modules. Let R be a ring that has a division ring has a homo-
morphic image. Any two bases of a free R-module have the same cardinality.
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Proof. Let I be an ideal of R so that R/I is a division ring. Let F be a free R with basis B . Let E be
the collection of all elements that can be written as linear combinations of elements of F using
only coefficients from I . You should check that E is closed under the module operations, so E is
a submodule of F.

Observe that F/E can be construed as an R/I -module in a natural way. (Hint: define (a+I )(v+E)
to be av +E . Be sure to check that this definition is sound.) Now let B∗ = {v +E | v ∈ B}.

We want to demonstrate that B∗ is linearly independent for the R/I -module F/E . Suppose v0 +
E , v1 +E , . . . , vn +E are distinct members of B∗ = B/E . Take a0, . . . , an ∈ R. Observe the following
sequence of steps.

0+E = ∑
i≤n

(ai + I )(vi +E)

= ∑
i≤n

(ai vi +E)

=
(∑

i≤n
ai vi

)
+E

This means that if 0+E =∑
i≤n(ai + I )(vi +E), then

∑
i≤n ai vi ∈ E . By the definition of E , there are

w0, . . . , wm ∈ F and c0, . . . ,cm ∈ I so that∑
i≤n

ai vi =
∑

j≤m
c j w j .

Now because B generates F we see that each of the w j ’s can be written as a linear combination of
elements of B . This entails that

∑
j≤m c j w j can be rewritten as a linear combination of elements

of B with the coefficients all belonging to I . Let
∑

k≤`dk uk be such a linear combination. But now

0 = ∑
i≤n

ai vi −
∑
k≤`

dk uk .

The expression on the right can be rewritten as a linear combination of distinct elements of B .
The coefficients of the linear combination can be of three forms:

ai −dk or ai or −dk

depending on whether vi = uk . All of these coefficients must be 0. Notice that in the first alterna-
tive that we get ai ∈ I and in the second ai = 0 ∈ I . So we find that ai ∈ I for all i . This means that
ai + I = 0+ I for all i and concludes the proof that B∗ is linearly independent.

That B∗ generates F/E follows easily from the fact that B generates F. So B∗ is a basis of F/E .

Contention. |B | = |B∗|.
In fact, the quotient map that send v 7→ v + E for v ∈ B is one-to-one. To see this, suppose

v, v ′ ∈ B and v +b = v ′+E . Then v −v ′ ∈ E . By the same device we used above, we can write v −v ′

as a linear combination of distinct elements of B with coefficients drawn from I . Let
∑

k≤`dk uk

be such a linear combination. This gives

0 = v ′− v + ∑
k≤`

dk uk .
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Notice that v ′ and v might well appear among the uk ’s, but none of the dk ’s is a unit of R since
I must be a proper ideal. Nevertheless, rewriting the right side as a linear combination of dis-
tinct elements of B must result in all the coefficients being 0. This can only happen if v ′ = v ,
establishing our contention.

At this point we know that every basis of F is the same cardinality has some basis of F/E . So
the last thing we need is that any two bases of a free module over a division ring have the same
cardinality. Proving this only requires a careful examination of any standard proof that any two
bases of a vector space have the same cardinality. One must see that the commutative property
of multiplication in the field plays no role in such a proof. It also pays to notice the role division
has to play in such a proof. So commit due diligence on some linear algebra book to complete
this proof.

The unique dimension guaranteed by the theorem above is called the rank of the free modules.
By the Maximal Ideal Theorem, we know that any nontrivial commutative ring R has a maximal

ideal I and so R/I is actually a field. So we have the following corollary.

Corollary 7.2.1. Let R be a nontrivial commutative ring. Any two bases of the same free R-module
must have the same cardinality.

Suppose R is a nontrivial commutative ring and F is a free R-module. By the rank of F we mean
the cardinality of any base of F.
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7.3 PROBLEM SET 6

ALGEBRA HOMEWORK, EDITION 6

SEVENTH WEEK

IDEALS YET AGAIN

PROBLEM 23.

(a) Prove that (2, x) is not a principal ideal of Z[x].

(b) Prove that (3) is a prime ideal of Z[x] that is not a maximal ideal of Z[x].

PROBLEM 24.
Show that any integral domain satisfying the descending chain condition on ideals is a field.

PROBLEM 25.
Prove the following form of the Chinese Remainder Theorem: Let R be a commutative ring with
unit 1 and suppose that I and J are ideals of R such that I + J = R. Then

R

I ∩ J
∼= R

I
× R

J
.

PROBLEM 26.
Prove that there is a polynomial f (x) ∈R[x] such that

(a) f (x)−x belongs to the ideal (x2 +2x +1);

(b) f (x)−x2 belongs to the ideal (x −1), and

(c) f (x)−x3 belongs to the ideal (x2 −4).
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8
SUBMODULES OF FREE MODULES OVER A PID

The objective here is to prove that, over a principal ideal domain, every submodule of a free is
also a free module and that the rank of a free module is always at least as large of the ranks of its
submodules.

So let R be a (nontrivial) principal ideal domain. We know that R is a free R-module of rank 1.
What about the submodules of R? Suppose E is such a submodule. It is clear that E is an ideal
and, in fact, that the ideals of R coincide with the submodules of R. In case E is trivial (that is the
sole element of E is 0) we see that E is the free R-module of rank 0. So consider the case that E is
nontrivial. Since R is a principal ideal domain we pick w 6= 0 so that E is generated by w . That is
E = {r w | r ∈ R}. Since we know that R has {1} as a basis, we see that the map that sends 1 to w
extends to a unique module homomorphism from R onto E. Indeed, notice h(r ·1) = r ·h(1) = r w
for all r ∈ R. But the homomorphism h is also one-to-one since

h(r ) = h(s)

r h(1) = sh(1)

r w = sw

r = s

where the last step follows because integral domains satisfy the cancellation law and w 6= 0. In
this way we see that E is isomorphic to the free R-module of rank 1. We also see that {w} is a basis
for E.

So we find that at least all the submodules of the free R-module of rank 1 are themselves free
and have either rank 0 or rank 1. We can also see where the fact that R is a principal ideal domain
came into play.

The Freedom Theorem for Modules over a PID.
Let R be a principal ideal domain, let F be a free R-module and let E be a submodule of F. Then E

is a free R-module and the rank of E is no greater than the rank of F.

Proof. Since trivial modules (those whose only element is 0) are free modules of rank 0, we sup-
pose below that E is a nontrivial module. This entails that F is also nontrivial.
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Let B be a basis for F and C ⊆ B . Because F is not the trivial module, we see that B is not empty.
Let FC be the submodule of F generated by C . Let EC = E∩FC . Evidently, C is a basis for FC . To
see that EC is free we will have to find a basis for it.

Suppose, for a moment, that C has been chosen so that EC is known to be free and that w ∈ B
with w ∉C . Put D :=C ∪ {w}. Consider the map defined on D into R that sends all the elements
of C to 0 and that sends w to 1. This map extends uniquely to a homomorphism ϕ from FD onto
R and it is easy to check (as hardworking graduate student will) that the kernel of ϕ is just FC . By
the Homomorphism Theorem, we draw the conclusion that FD /FC is isomorphic to R and that it
is free of rank 1. What about ED /EC ? Observe that EC = E ∩FC = E ∩FD ∩FC = ED ∩FC . So we can
apply the Second Isomorphism Theorem:

ED /EC = ED /ED ∩FC
∼= ED +FC /FC .

But ED +FC /FC is a submodule of FD /FC . This last is a free R-module of rank 1. We saw above
that every submodule of a free R-module of rank 1 must be itself a free R-module and have rank
either 0 or 1. In this way, we find that either ED = EC (in the rank 0 case) or else ED /EC is a free
R-module of rank 1. Let us take up this latter case. Let X be a basis for EC , which we assumed, for
the moment, was free. Pick u ∈ ED so that {u/EC } is a basis for ED /EC .

We contend that X ∪{u} is a basis for ED . To establish linear independence, suppose x0, . . . , xn−1

are distinct element of X , that r0, . . . ,rn ∈ R and that

0 = r0x0 +·· ·+ rn−1xn−1 + rnu.

First notice that

rn(u/EC ) = rnu/EC = (r0x0 +·· ·+ rn−1xn−1 + rnu)/EC = 0/EC .

Since {u/EC } is a basis for ED /EC , we must have rn = 0. This leads to

0 = r0x0 +·· ·+ rn−1xn−1.

But now since X is a basis for EC we see that 0 = r0 = ·· · = rn−1. So we find that X ∪ {u} is linearly
independent.

To see that X ∪ {u} generates ED , pick z ∈ ED . Since {u/EC } is a basis for ED /EC , pick r ∈ R so
that

z/EC = r u/EC .

This means that z − r u ∈ EC . But X is a basis of EC . So pick x0, . . . , xn−1 ∈ X and r0, . . . ,rn−1 ∈ R so
that

z − r u = r0x0 +·· ·+ rn−1xn−1.

Surely this is enough to see that z is in the submodule generated by X ∪ {u}. So this set generates
ED and we conclude that it must be a basis of ED .

In this way we see that for C ⊆ D ⊆ B where D arises from adding an element to C , if EC is
free, then so is ED and that either ED = EC or a basis for ED can be produced by adding just one
element to a basis for EC .

With this in mind, we can envision a procedure for showing that E is free and its rank cannot be
larger than that of F. Notice that E = E ∩F = E ∩FB . So E = EB . The idea is simple. We will start
with ∅ ⊆ B . We observe that F∅ = E∅ is the module whose sole element is 0. It is free of rank 0.
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Next we select an element w ∈ B and form ∅∪{w} = {w}. We find that E{w} is free of rank 0 or rank
1. We select another element and another and another. . . until finally all the elements of B have
been selected. At this point we would have EB is free and its rank can be no more than the total
number of elements we selected, namely |B | which is the rank of F.

To carry out this program, in case B were finite or even countable, we could mount a proof by
induction. You can probably see how it might be done. But we want to prove this for arbitary sets
B . We could still pursue this inductive strategy openly by well-ordering B and using transfinite
induction. By using the well-ordering we would always know what was meant by “pick the next
element of B .”

Instead, we will invoke Zorn’s Lemma to short-circuit this rather long induction.
Let F = { f | f is a function with dom f ⊆ B and range f a basis for Edom f }. Recalling that func-

tions are certain kinds of sets of order pairs, we see that F is paritally ordered by set inclusion.
Maybe it helps to realize that to assert f ⊆ g is the same as asserting that g extends f . We note
that F is not empty since the empty function (the function with empty domain) is a member of
F . To invoke Zorn’s Lemma, let C be any chain included in F . Let h =⋃

C . Evidently f ⊆ h for all
f ∈ C . So h is an upper bound of C . We contend that h ∈ F . We ask the hard-working graduate
students to check that the union of any chain of functions is itself a function. Once you do that bit
of work, it should be evident that domh =⋃

{dom f | f ∈C } and that rangeh =⋃
{range f | f ∈C }.

So it remains to show that rangeh is a basis for Edomh . To see that rangeh is a generating set,
let z be an arbitrary element of Edomh = E ∩Fdomh . Hence z must be generated by some finitely
many elements belong in domh. This means there are finitely many functions f0, . . . , fn−1 ∈C so
that z is generated by finitely many elements of dom f0∪·· ·∪dom fn−1. But dom f0, . . . ,dom fn−1,
rearranged in some order, forms a chain under inclusion. So z ∈ Fdom f` for some ` < n. Hence
z ∈ Edom f` . But range f` is a basis for Edom f` . Because range f` ⊆ rangeh we find that rangeh
has enough elements to generate z. Since z was an arbitrary element of Edomh we conclude that
rangeh generates Edomh . It remains to show that rangeh is linearly independent. But rangeh is
the union of the chain {range f | f ∈ C }. I ask the hard-working graduate students to prove that
the union of any chain of linearly independent sets must also be linearly independent. Once you
have done this you will be certain that h belongs to F . By Zorn, let g be a maximal element of F .

We would be done if dom g = B , since then E = E ∩F = E ∩FB = EB = Edom g . In which case,
range g would be a basis for E and rankE = |range g | ≤ |dom g | = |B | = rankF.

Consider the possibility that dom g is a proper subset of B . Put C = dom g and put X = range g .
Let w ∈ B with w ∉ dom g . Put D = C ∪ {w}. As we have seen above, either ED = EC or X ∪ {u}
is a basis for ED , for some appropriately chosen u. We can now extend g to a function g ′ by
letting g ′(w) be any element of range g in the case when ED = EC and by letting g ′(w) = u is
the alternative case. In this way, g ′ ∈ F , contradicting the maximality of g . So we reject this
possibility.

This completes the proof.

Corollary 8.0.1. Let R be a principal ideal domain. Every submodule of a finitely generated R-
module must itself be finitely generated.

Proof. Suppose M is an R-module generated by n elements. Let N by a submodule of M.
Now let F be the free R-module with a basis of n elements. There is a function that matches this

basis with the generating set of M. So, appealing to freeness, there is a homomorphism h from F
onto M. Let E = {v | v ∈ F and h(v) ∈ N }. It is straightforward to check (will you do it?) that E is
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closed under the module operations. So we get a submodule E of F. Moreover, the restriction of h
to E is a homomorphism from E onto N. But by our theorem E is generated by a set with no more
than n elements. Since the image, under a homomorphism, of any generating set for E must be a
generating set of N (can you prove this?), we find that N is finitely generated.
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8.1 PROBLEM SET 7

ALGEBRA HOMEWORK, EDITION 7

EIGHTH WEEK

MORE ON POLYNOMIALS AND THEN SOME

PROBLEM 27.
Let D be an integral domain and let c0, . . . ,cn−1 be n distinct elements of D . Further let d0, . . . ,dn−1

be arbitrary elements of D . Prove there is at most one polynomial f (x) ∈ D[x] of degree n−1 such
that f (ci ) = di for all i < n.

PROBLEM 28.
Let F be a field and let c0, . . . ,cn−1 be n distinct elements of F . Further let d0, . . . ,dn−1 be arbitrary
elements of F . Prove there is at least one polynomial f (x) ∈ F [x] of degree n such that f (ci ) = di

for all i < n.

PROBLEM 29.
Let R be the following subring of the field of rational functions in 3 variables with complex coef-
ficients:

R =
{

f

g
: f , g ∈C[x, y, z] and g (1,2,3) 6= 0

}
Find 3 prime ideals P1,P2, and P3 in R with

0 á P1 á P2 á P3 á R.

PROBLEM 30.
Let R be a commutative ring. An R-module P is said to be projective provided for all R-modules
M and N and all homomorphisms f from M onto N, if g is a homomorphism from P into N, then
there is a homomorphism h from P into M so that f ◦h = g .

Prove that every free R-module is projective.
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9
DIRECT DECOMPOSITION OF FINITELY

GENERATED MODULES OVER A PID

9.1 THE FIRST STEP

The objective here is to show how to obtain a direct decomposition of a finitely generated module
over a principal ideal domain. We would like that the direct factors admit no further nontrivial
direct decomposition.

The operations of modules work in a direct product of modules in a coordinatewise manner.
So knowing how to perform the operations in each direct factor leads immediately to a knowl-
edge of how the operations work in the direct product. One point of inconvenience with direct
products is that very few modules actually arise as direct products—simply because the elements
of your favorite module are not tuples of any kind. So our direct decompositions make use of
isomorphisms.

For the task at hand, our direct decompositions turn out to have only finitely many direct fac-
tors. In this situation, it is easy to replace the direct product with the notion of a direct sum.
Suppose that we have the following direct decomposition of the R-module M:

M ∼= N×L.

Then composing the isomorphism with the projection functions on the direct product, we find
two homomorphisms f : M � N and g : M � L and these homomorphisms have the following
properties:

(a) For every v ∈ N and w ∈ L there is u ∈ M so that f (u) = v and g (u) = w .

(b) For every u ∈ M , if f (u) = 0 and g (u) = 0, then u = 0.

Another way to frame these two properties is in terms of the kernels of these homomorphism.
Let N′ be the submodule that is the kernel of g and let L′ be the submodule that is the kernel of f .

(a’) For every u ∈ M there are v ∈ N ′ and w ∈ L′ so that u = v +w .

72
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(b’) The intersection of N ′ and L′ is trivial.

Here is how to derive (a’) from (a) and (b). Use (a) to get w ∈ M such that f (w) = 0 and g (w) =
g (u). The g (u − w) = g (u)− g (w) = 0. Now observe that u = (u − w)+ w and u − w ∈ ker g =
N ′ and w ∈ ker f = L′ as desired. I leave it to the hard-working graduate students to show that
these two views (one from homomorphisms and one from kernels) are logically equivalent. The
Homomorphism Theorem, after just a bit of work, yields that N ∼= N′ and L ∼= L′. This leads to the
following definition. Let N′ and L′ be submodules of M that satisfy (a’) and (b’). We say that M is a
direct sum of N′ and L′ and we write M = N′⊕L′. Evidently, N′⊕L′ ∼= N′×L′.

We can extend this notion to three submodules N0,N1, and N2. Here is what works.

(a’) For every u ∈ M there are v0 ∈ N0, v1 ∈ N1, and v2 ∈ N2 so that u = v0 + v1 + v2.

(b’) The intersection N0 ∩ (N1 +N −2), N1 ∩ (N0 +N2), and N2 ∩ (N0 +N1) are all trivial.

The hard-working graduate students should verify that this works and also that the obvious ex-
tension to any finite number of direct summands also succeeds.

Now let us turn to our task of decomposing modules. Here is a first step.

Fact. Let R be a nontrivial integral domain. As an R-module R is directly indecomposable.

Proof. We know that R can be itself construed as an R-module and as such it is a free R-module of
rank 1. To see that this module is directly indecomposable, suppose that M and N are R-modules
and that ϕ is an isomorphism from R onto M×N. Let M ′ = {r | ϕ(r ) = (u,0) for some u ∈ M }.
Likewise, let N ′ = {r | ϕ(r ) = (0, v) for some v ∈ N }. Plainly, M ′ and N ′ are ideals in R and M ′∩
N ′ = {0} since ϕ is one-to-one. Since R is nontrivial, we see that M and N cannot both be trivial.
Suppose, without loss of generality, that M is nontrivial. So M ′ is nontrivial. Pick r ∈ M ′ with
r 6= 0. We want to see that N must be a trivial module, or, what is the same, the N ′ is a trivial ideal.
Let s be an arbitrary element of N ′. Then r s ∈ M ′∩N ′ = {0}. That is, r s = 0. Since r 6= 0 and R
is an integral domain, we conclude that s = 0. Since s was an arbitrary element of N ′, we have
that N ′, and hence N, is trivial. This means that R is a directly indecomposable R-module, since
R is itself nontrivial but in any direct decomposition we find that one of the direct factors must
be trivial.

This means that over any nontrivial integral domain any free module of finite rank directly de-
composes into the direct product of finitely many copies of the ring and this direct decomposition
is into directly indecomposable modules.

Here is another step we can take in directly decomposing a module.

Fact. Let R be a commutative ring. Suppose M is an R-module, that F is a free R-module, and
the f is a homomorphism from M onto F with kernel N. Then there is a free R-module E so that
M ∼= N×E.

Proof. Let B be a basis for F. For each u ∈ B pick vu ∈ M so that f (vu) = u. The set C = {vu | u ∈ B}
is a linearly independent subset of M . Here is how to see it:

Let w0, . . . , wn−1 be finitely many distinct elements of C and let r0, . . . ,rn−1 ∈ R with

r0w0 +·· ·+ rn−1wn−1 = 0.
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Applying f to both sides we obtain

r0 f (w0)+·· ·+ rn−1 f (wn−1) = 0.

But f (w0), . . . , f (wn−1) are distinct elements of B , which is linearly independent. So
r0 = ·· · = rn−1 = 0, as desired.

Now let E be the submodule of M generated by C . So E is free since C is a basis. I contend that
M ∼= N×E. Here is how to define the isomorphism ϕ:

Let w be an arbitrary element of M . Let f (w) = r0u0+·· ·+rn−1un−1 where u0, . . . ,un−1

are distinct elements of B and all the ri ’s are nonzero. Let v0, . . . , vn−1 be elements of
C so that f (vi ) = ui for all i < n. Put x = r0v0 +·· ·+ rn−1vn−1. Then x ∈ E and f (x) =
f (w). This means w −x ∈ N since N is the kernel of f . So define ϕ(w) = (w −x, x).

It is a straightforward piece of work (done by all hard working graduate students) to see that ϕ is
an isomorphism.

To invoke this last fact for a particular module M we essentially have to find a free submodule of
M. Such a submodule would have a basis C . For w ∈C we would have to have the implication

r w = 0 =⇒ r = 0, for all r ∈ R,

since this is just part of the definition of linear independence. Indeed, when R is an integral
domain, all the elements of E , not just those in C would have to have this property. This suggests
that N should consist of those elements that fail this property. That is elements x ∈ M such that
r x = 0 for some r 6= 0. Such elements are called torsion elements. The 0 of a module is always a
torsion element, provided the ring in nontrivial. The module M is said to be torsion free provided
0 is its only torsion element. The step along the way is the following fact.

Fact. Let R be a nontrivial integral domain and let M be an R-module. Then the set T of torsion
elements is a submodule of M and M/T is torsion free.

Proof. We have already noted that 0 ∈ T . To see that T is closed under addition, let u, v ∈ T . Pick
nonzero elements r, s ∈ R so that r u = 0 = sv . Then r s 6= 0 since R is an integral domain. Now
observe (r s)(u + v) = (r s)u + (r s)v = (sr )u + (r s)v = s(r u)+ r (sv) = 0+0 = 0 is R is commutative.
So u+v ∈ T . Finally, suppose that t ∈ R. Then r (tu) = (r t )u = (tr )U = t (r u) = 0, so tu ∈ T . In this
way, we see that T is closed under the module operations and we can form the submodule T.

To see that M/T is torsion free, pick a nonzero element u/T of M/T and a scalar r ∈ R so that
r (u/T ) = 0/T . Since u/T is nonzero we know that u ∉ T . On the other hand r (u/T ) = (r u)/T =
0/T means that r u ∈ T . So pick a nonzero s ∈ R so that s(r u) = 0. This means that (sr )u = 0. But,
since u ∉ T we know that u is not a torsion element. So sr = 0. Since s 6= 0 and R is an integral
domain, we see that r = 0. This means that u/T is not a torsion element. So M/T is a torsion free
module.

So when is a torsion free module actually free?

Fact. Let R be a nontrivial integral domain. Every finitely generated torsion free R-module is free
of finite rank.
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Proof. Let M be a torsion free R-module generated by the finite set X . Let Y be a maximal linearly
independent subset of X . Let F be the submodule of M generated by Y . Of course, F is free of finite
rank. For each x ∈ X pick sx ∈ R so that sx x ∈ F . This is possible since if x ∈ Y we can let sx = 1,
while if x ∉ Y , then Y ∪{x} is linearly dependent. This means that for some distinct y0, . . . , yn−1 ∈ Y
there are sx ,r0, . . . ,rn−1 ∈ R \ {0} so that

sx x + r0 y0 +·· ·+ rn−1 yn−1 = 0.

In this way, sx x ∈ F . Now let s be the product of all the sx ’s as x runs through X . Then sx ∈ F for
all x ∈ X . Since X generates M, we see that sv ∈ F for all v ∈ M . Now let ϕ get the map from M
into F defined via

ϕ(v) := sv for all v ∈ M .

It is routine to check thatϕ is a homomorphism. The kernel ofϕmust be trivial since M is torsion
free. So ϕ is one-to-one. This means that M is isomorphic with a submodule of the free module
F. Since R is a principal ideal domain, by the Freedom Theorem we conclude that M is free.
Moreover, since F has finite rank, so must M.

The First Decomposition Theorem for Modules over an Integral Domain.
Let R be a nontrivial integral domain, let M be a finitely generated R-module, and let T be the

torsion submodule of M. There is a free module F of finite rank such that

M ∼= T×F.

Moreover, the rank of F is determined by M.

Proof. According to the Facts established above, we can take F to be M/T . So only the “moreover”
part of the theorem remains to be established. To this end, suppose that F′ is some free module
so that

M ∼= T×F′.

The conclusion we want is F ∼= F′.
What are the torsion elements of T×F′? Suppose (u, v) is torsion. Pick r 6= 0 so that r (u, v) =

(0,0). So r v = 0. But v ∈ F ′, which being free is also torsion free. So v = 0. This means that the
torsion elements of T×F′ are exactly the elements of T ′ := {(u,0) | u ∈ T }. In this way we see

F = M/T ∼= (T×F′)/T ′ ∼= F′.

The rightmost isomorphism above comes from the Homomorphism Theorem since T ′ is the ker-
nel of the project of the direct product onto its rightmost direct factor.

Both the torsion module T and the free module F may admit further direct decomposition. As
regards the free module, we know it can be decomposed as the direct product of n copies of the
R-module R, which we have seen is directly indecomposable.
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9.2 PROBLEM SET 8

ALGEBRA HOMEWORK, EDITION 8

NINTH WEEK

POLYNOMIALS AGAIN

PROBLEM 31.
Prove that the polynomial x3 y +x2 y −x y2 +x3 + y is irreducible in Z[x, y].

PROBLEM 32.
Let F and M be modules over the same ring and let F be a free module. Let h : M � F be a
homomorphism from M onto F. Prove each of the following.

(a) There is an embedding g : F � M of F into M such that h ◦ g = idF . (Here idF denotes the
identity map of the set F .)

(b) M = kerh ⊕F′, where F′ is the image of F with respect to g .

PROBLEM 33.
Prove that there is a polynomial f (x) ∈R[x] such that

(a) f (x)−1 belongs to the ideal (x2 −2x +1);

(b) f (x)−2 belongs to the ideal (x +1), and

(c) f (x)−3 belongs to the ideal (x2 −9).
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9.3 THE SECOND STEP

Let M be any R-module and X be any subset of M . Define

ann X := {r | r ∈ R and r x = 0 for all x ∈ X }.

This set is called the annihilator of X . It is routine to check that ann X is always an ideal of R,
provided R is commutative. Running this game in the other direction, let S ⊆ R and define

M [S] := {u | u ∈ M and r u = 0 for all r ∈ S}.

Again, it is routine to check that M [S] is closed under the module operations, provided that R is
commutative. So we obtain a submodule M[S] of the module M. For a single element r ∈ R we
write M[r ] for M[{r }].

Let T be a torsion module of a principal ideal domain R. Suppose that the finite set X generates
T. As we did in one of the proofs in the preceding lecture, for each x ∈ X we can pick a nonzero
sx ∈ R so that sx x = 0. Let s be the product of these finitely many sx ’s as x runs through X . Since
R is an integral domain we see that s 6= 0 and since R is commutative and X generates T we see
that su = 0 for all u ∈ T . This means that annT is a nontrivial ideal. Because R is a principal ideal
we can pick r ∈ R so that (r ) = annT . This nonzero element r , which is unique up to associates,
is called the exponent of T.

More generally, if u is a torsion element of an R-module, where R is a principal ideal domain
then there will be a nonzero element r so that (r ) = ann{u}. We call r the order of u and some-
times refer to ann{u} as the order ideal of u. If v is also a torsion element and s is the order of v ,
where r and s are relatively prime, then r s will be the order of u + v . (This could be proven by a
hard working graduate student.)

We are ready to begin decomposing our torsion module.

Fact. Let T be a torsion R-module with exponent r , where R is a principal ideal domain. Suppose
that r = sq where s and q are relatively prime. Then T ∼= T[s]×T[q].

Proof. Using the relative primeness of s and q select elements a,b ∈ R so that 1 = as +bq . So for
any u ∈ T we have

u = 1 ·u = (as +bq)u = q(bu)+ s(au).

Observe that q(bu) ∈ T [s] and s(au) ∈ T [q]. So every element of T can be expressed as a sum of
an element of T [s] and an element of T [q]. The expression is unique since if u = v + w where
v ∈ T [s] and w ∈ T [q], then v −qbu = sau −w ∈ T [s]∩T [q]. But the order of any element of this
intersection must divide both s and q , which are relatively prime. So the intersection is just {0}
and it follows that v = qbu and w = sav . The map that sends u to (v, w) where v ∈ T [s], w ∈ T [q],
and u = v +w is easily seen to be an isomorphism.

Suppose that r is the exponent of our torsion R-module T, where R is a principal ideal domain.
Let p0, . . . , pn−1 ∈ R be distinct primes and let e0, . . . ,en−1 be positive integers so that

r = pe0
0 . . . pen−1

n−1 .

Then applying the Fact above over and over again we find

T ∼= T[pe0
0 ]×·· ·×T[pen−1

n−1 ].
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Modules of the form T[pe ] where p ∈ R is prime and e is a positive integer are said to be primary
or sometimes more specifically p-primary. These are just the torsion modules of exponent a
power of p. So now we know that every finitely generated torsion module over a principal ideal
domain can be decomposed as a product of primary modules. We state this as a theorem.

The Primary Decomposition Theorem.
Every finitely generated module over a principal ideal domain is isomorphic to a direct products

of finitely many primary modules.

Still, these primary modules may admit further direct decomposition.
Which p-primary modules are directly indecomposable?

Fact. Let R be a principal ideal domain and p ∈ R be prime. Every cyclic p-primary R-module is
directly indecomposable.

Proof. Let T be an R-module of exponent pe that is generated by w . Suppose that T ∼= M×N.
We need to argue that one of M and N is trivial. We know that pe w = 0 but pe−1w 6= 0. Pick
u ∈ M and v ∈ N so that (u, v) generates M×N. Then we have pe u = 0 and pe v = 0 and either
pe−1u 6= 0 or pe−1v 6= 0. Without loss of generality, suppose pe−1u 6= 0. This makes M nontrivial,
so our ambition is to show that N is trivial. Now since the element (u, v) generates all elements of
M×N, we see that every element of M×N can be obtained by multiplying (u, v) by an appropriate
scalar. So pick r ∈ R so that r (u, v) = (0, v). It follows that r u = 0 and r v = v . Since the order of u
is pe , we have that pe | r . So r = spe for some s. But then v = r v = spe v = 0. But this entails that
N is trivial.

Of course, we can get a cyclic submodule easily enough just by selecting a single element and
using it to generate a submodule. Something more clever is possible.

Fact. Let R be a principal ideal domain and let T be a torsion R-module of exponent r . Then T
has an element of order r .

Proof. Pick distinct primes p0, . . . , pn−1 ∈ R and positive integers e0, . . . ,en−1 so that

r = pe0
0 . . . pen−1

n−1 .

For each j < n, let r j = r
p j

= pe0 . . . p
e j−1

j−1 p
e j−1
j p

e j+1

j+1 . . . pen−1
n−1 . Notice that r - r j for all j < n. This

allows us, for each j < n, to pick u j ∈ T so that r j u j 6= 0. Now, for each j < n, put

v j = r

p
e j

j

u j .

Then, for each j < n, we have p
e j

j v j = 0 but p
e j−1
j v j 6= 0. So v j is an element of order p

e j

j . It now
follows that v0 +·· ·+ vn−1 is an element of order r , as desired.

There is one additional fact that proves useful.

Fact. Let T be a torsion R-module of exponent r , where R is a principal ideal domain. Let M and
N be submodules of T, where M is generated by an element of order r . Let f be a homomorphism
from N into M. Finally, let v ∈ T with v ∉ N . Then f can be extended to a homomorphism from
the submodule generated by N ∪ {v} into M.
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Proof. Let u be the element of order r that generates M. Let N′ be the submodule generated by
N ∪ {v}. Evidently, r v = 0 ∈ N , so v/N has some nonzero order s in N′/N and s | r . So sv ∈ N . Pick
p ∈ R so that

r = ps.

Now f (sv) ∈ M and p f (sv) = f (psv) = f (r v) = f (0) = 0. So the order of f (sv) divides p.
Since f (sv) ∈ M and M is generated by u pick q ∈ R so that f (sv) = qu. Then we see 0 = p f (sv) =

pqu. This means
r | pq.

Hence, ps | pq . Since R is an integral domain, we have

s | q.

So pick t ∈ R such that
q = st .

This entails f (sv) = qu = stu. Let w = tu ∈ M . So f (sv) = sw .
Now every element of N ′ can be written in the form y +av for some choices of y ∈ N and a ∈ R.

There may be several ways to make these choices.
Here is how we define our extension f ′ of f :

f ′(y +av) = f (y)+aw.

It is not clear that this definition is sound. Let us verify that. Suppose that y +av = y ′+a′v where
y, y ′ ∈ N and a, a′ ∈ R. We need to see that

f (y)+aw = f (y ′)+a′w or written another way f (y)− f (y ′) = (a′−a)w.

But notice that y − y ′ = (a′ − a)v . So (a′ − a)v ∈ N . This means s | a′ − a. Pick m ∈ R so that
a′−a = ms. But this leads to

f (y)− f (y ′) = f (y − y ′) = f ((a′−a)v) = f (msv) = m f (sv) = msw = (a′−a)w,

just as we desire. So our definition is sound. Since f ′(y) = f ′(y +0v) = f (y)+0w = f (y), for all
y ∈ N , we see that f ′ extends f . We must also check that f ′ is a homomorphism, a task we leave
to hard working graduate students.

So our scheme is to grab an element whose order is the exponent of T, let M be the submodule
generated by that element, and hope to find another submodule N so that T ∼= M×N. If we are
lucky maybe the exponent of N will be smaller. Here is what we need.

Fact. Let R be a principal ideal domain and let T be a torsion R-module of exponent r . Then T has
a cyclic submodule M of exponent r and a submodule N of exponent s so that s | r and T ∼= M×N.

Proof. Let u ∈ T have order r and let M be the submodule of T generated by u. Let f be the
identity map on M. Let

F = {g | g : N → M is a homomorphism extending f for some submodule N with M ⊆ N ⊆ T }.

We will apply Zorn’s Lemma to F , which is partially ordered by set-incluion. Notice that f ∈ F ,
so F is not empty. Let C be a nonementy chain in F . Certainly

⋃
C is an upper bound on C . We
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must show it is in F . We have noted before that the union of a chain of functions is again a func-
tion. The hard-working graduate students will see that the union of a chain of homomorphism is
itself a homomorphism. It is routine to see that the union of a chain of submodules (the domains
of those homomorphisms) is again a submodule. So we see indeed that

⋃
C belongs to F . Let g

be a maximal element of F . Since the fact just above would otherwise allow the extension of g
to larger member of F , a thing impossible by the maximality of g , we see that g is a homomor-
phism from T into M which extends the identity map on M. Let N be the kernel of g . Let s be the
exponent of N. Evidently, s | r .

For any w ∈ T we have g (w) ∈ M . But then g (g (w)) = f (g (w)) since g extends f . But f is the
identity map. So we see that g (g (w)) = g (w) for all w ∈ T . But notice

g (w − g (w)) = g (w)− g (g (w)) = g (w)− g (w) = 0.

This means that w − g (w) ∈ N for all w ∈ T , since N is the kernel of g . So we find that

w = g (w)+ (w − g (w)) ∈ M +N , for all w ∈ T.

Another way to write this is
T = M +N .

Now suppose w ∈ M ∩N . Then, on the one hand, g (w) = f (w) = w since w ∈ M and g extends
f (which is the identity function), while on the other hand g (w) = 0 since w ∈ N = ker g . Taken
together we find that w = 0. This means

M ∩N = {0}.

So we see that T = M⊕N. This yields our desired conclusion.

The Invariant Factor Theorem.
Let T be a nontrivial finitely generated torsion R-module, where R is a principal ideal domain.

Then for some natural number n there are r0,r1, . . . ,rn ∈ R with

rn | rn−1 | · · · | r1 | r0

and cyclic submodules M0 of exponent r0,. . . , Mn of exponent rn so that

T ∼= M0 ×·· ·×Mn .

Proof. Let the order of T be r0. (Recall that we have already proven that a nontrivial finitely gen-
erated torsion module has an exponent.) Let u0 ∈ T have order r0 and let M0 be the submodule
generated by u0. By the preceding Fact, there is a submodule N0 of order r1 with r1 | r0 such that
T ∼= M0 ×N0. If N0 is trivial, we can stop since T ∼= M0 in that case. Otherwise, pick u1 ∈ N0 with
order r1. Take M1 to be the submodule of generated by u1 and invoke the immediately preceding
fact to get a proper submodule N1 of N0 of exponent r2 so that r2 | r1 and N0

∼= M1 ×N1. At this
stage we have

T ∼= M0 ×M1 ×N1 and r2 | r1 | r0 and N1 á N0,

where the exponent of M0 is r0, the exponent of M1 is r1, and the exponent of N1 is r2. Again our
process terminates in the event N1 is trivial, but otherwise the process can be continued. In this
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process to chains of submodules of T are constructed. One is the descending chain consisting of
the submodules N j . The other is the ascending chain

M0 á M0 ⊕M1 á . . . .

Now we know, as a corollary of the Freedom Theorem that every submodule of T is finitely gener-
ated. We saw for rings that if every ideal was finitely generated then there could be no infinite as-
cending chains of ideals. The same reasoning applies here (as the hard working graduate student
will establish) to see that there can be no infinite ascending chair of submodules of T. This must
mean the process described above terminates at some finite stage. This completes our proof.

The r0,r1, . . . ,rn mentioned in the theorem are called invariant factors.
Now we are ready for the chief existence theorem for direct decomposition of finitely generated

modules.

The Elementary Divisor Theorem.
Let T be a nontrivial finitely generated torsion R-module, where R is a principal ideal domain.

Then for some natural number n, there are cyclic primary submodules M0 . . .Mn of T so that

T ∼= M0 ×·· ·×Mn .

The exponents of the various cyclic primary submodules are referred to as the elementary di-
visors of T. The proof of the Elementary Divisor Theorem is obtained by applying the Invariant
Factor Theorem to each of the direct factors arising from an application of the Primary Decom-
postion Theorem.
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9.4 PROBLEM SET 9

ALGEBRA HOMEWORK, EDITION 9

TENTH WEEK

A GRAB BAG

PROBLEM 34.
Let A be the 4×4 real matrix

A =


1 1 0 0
−1 −1 0 0
−2 −2 2 1
1 1 −1 0


(a) Determine the rational canonical form of A.

(b) Determine the Jordan canonical form of A.

PROBLEM 35.
Suppose that N is a 4×4 nilpotent matrix over a field F with minimal polynomial x2. What are
the possible rational canonical forms for N ?

PROBLEM 36.
Let F be the subring of the field of complex numbers consisting of those numbers of the form
a+i b where a and b are rational. Let G be the subring of the field of complex numbers consisting
of those numbers of the form m +ni where m and n are integers.

(a) Describe all the units of G.

(b) Prove that F is (isomorphic to) the field of fractions of G.

(c) Prove that G is a principal ideal domain.

[Hint: In this problem it is helpful to consider the function that sends each complex number z to
zz̄ = |z|2.]
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THE STRUCTURE OF FINITELY GENERATED

MODULES OVER A PID

Here is one of the key results in our course.

The Structure Theorem for Finitely Generated Modules over a Principal Ideal Domain. Let M
be a finitely generated R-module, where R is a principal ideal domain. There is a natural number
n such that:

(a) there are n finitely generated directly indecomposable submodules M0, . . . ,Mn−1 of M such that

M ∼= M0 ×·· ·×Mn−1, and

(b) for any natural number m, if N0, . . . ,Nm−1 are directly indecomposable R-modules such that
M ∼= N0 ×·· ·×Nm−1, then n = m and there is permutation σ of {0, . . . ,n −1} so that Mi

∼= Nσ(i )

for all i < n.

Moreover, the finitely generated directly indecomposable R-modules are, up to isomorphism, the
R-module R (that is the free R-module of rank 1), and the R-modules of the form R/(r ) where r
is a positive power of some prime element of the ring R (these are the cyclic primary R-modules).
Finally, the free R-module of rank 1 is not primary and if r, s ∈ R are prime powers and R/(r ) ∼=
R/(s), then r and s are associates in the ring R.

Before turning to the proof a few remarks are in order.
First, we have allowed n = 0. This results in the direct product of an empty system of R-modules.

A careful, but easy, examination of the definition of direct products reveals that such a direct
product produces the trivial R-module—that is the module whose only element is 0. Evidently,
the trivial R-module is the direct product of exactly one system of directly indecomposable R-
modules, namely of the empty system.

This theorem has three parts:

83
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• the assertion of the existence of a decomposition into indecomposables,

• the assertion that such a decomposition is unique, and

• a description of the indecomposables.

These are the hallmarks of a good structure theorem. There are other theorems of this kind in
mathematics. Perhaps the most familiar is the Fundamental Theorem of Arithmetic. To make
the connection plain, consider the least complicated algebraic systems, namely just nonempty
sets equipped with no operations. Then the finitely generated algebraic systems are just the fi-
nite nonempty sets and isomorphisms are just one-to-one correspondences. So two of these
algebraic systems will be isomorphic if and only if they have the same number of elements. The
Fundamental Theorem of Arithmetic says that every finite set is isomorphic to a direct product
of directly indecomposable finite sets in a way that is unique up to isomorphism and rearranging
the factorization and that a set is directly indecomposable if and only if it has a prime number of
elements.

This theorem also resonates with the notion of a unique factorization domain. We could refor-
mulate our structure theorem to make this more apparent. Each finitely generated R-module is
isomorphic to a lot of other R-modules (in fact, to a proper class of R-modules). Pick a represen-
tative from each of these isomorphism classes, taking care to include among these representatves
the R-modules R and R/(r ) where r ∈ R is a positive power of some prime element of R. Let M be
the set of all these representative and let 1 be the representative trivial R-module. Then 〈M ,×,1〉
is an algebraic system (actually a monoid) with the unique factorization property.

Finally, the structure theorem above has a number of far-reaching consequences. Taking R to be
Z we obtain a structure theorem for finitely generated Abelian group. Taking R to be F[x], where
F is field leads to the canonical form theorems of linear algebra.

Proof. Let us first dispose of the descriptions of the directly indecomposable R-modules that
could arise in any factorization of M. These must be finitely generated because they will be
isomorphic to submodules of M and, according to the Corollary of the Freedom Theorem ev-
ery submodule of M must be finitely generated. We have already seen that the free R-module of
rank 1 (namely the module R) is directly indecomposable and every other free R-module of finite
n > 1 is a direct product of n-copies of R. We have also seen that the cyclic primary R-modules
are the only finitely generated directly indecomposable torsion modules. Can there be any oth-
ers finitely generated directly indecomposable R-module? By the First Decomposition Theorem
every finitely generated R-module is isomorphic to a direct product of the form T×F, where T is
the torsion submodule and F is a submodule that is free. For a directly indecomposable module
we must have either F trivial (and the our module would be torsion) or else T trivial (and the our
module would be free). So the only finitely generated directly indecomposable R-modules are
the ones already in hand, the R-module R and the cyclic primary R-modules.

We can say more about the cyclic primary R-modules. Let r ∈ R be a positive power of a prime
element of R. Then the ideal (r ) is a submodule of the R-module R. The element 1/(r ) of the
quotient module R/(r ) generates the quotient module and has order r . So the quotient module is
cyclic and of exponent r . In this way we know cyclic R-modules of exponent r exist. Suppose that
N is an R-module of exponent r which is generated by the single element u. Since {1} is a basis
for R, we know there is a homomorphism h from R onto N that takes 1 to u. Now for all s ∈ R we
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have h(s) = h(s ·1) = sh(1) = su. From this we see that

s ∈ kerh ⇔ h(s) = 0 ⇔ su = 0 ⇔ r | s ⇔ s ∈ (r ).

That is, kerh = (r ). So by the Homomorphism Theorem N ∼= R/(r ). So, up to isomorphism, the
only cyclic R-module of exponent r (where r is a positive power of some prime) is R/(r ).

Now observe that the free R-module R of rank 1 is not a torsion module since s ·1 = 0 =⇒ s = 0.
So the R-module R cannot be isomorphic with any of the modules R/(r ) where r is a positive
power of some prime. (One needs to observe here, as the hard-working graduate students will
verify, that r cannot be a unit.) Now suppose that r and s are both positive powers of primes (we
don’t assume the primes are tne same) and that R/(r ) ∼= R/(s). Then r is the order of a generator
of this cyclic module and so is s. This means that r | s and s | r . Consequently, (r ) = (s) and r and
s are associates.

Now consider part (a) of the theorem. This is an immediate consequence of the First Decompo-
sition Theorem and the Elementary Divisor Theorem.

Finally, consider part (b). Some of the Ni ’s can be cyclic primary modules and others can be free
of rank 1, according to our description of the directly indecomposable finitely generated modules.
Without loss of generality, we assume that the primary modules come first. So pick k ≤ m so that
N0, . . . ,Nk−1 are cyclic primary modules and Nk , . . . ,Nm−1 are free of rank 1. Let T be the direct
product of the first group and F be the direct product of the second. So we find M ∼= T×F. It is
routine (according to hard-working graduate students) that T is a torsion module and also that F
is free of m−k. Let (v,u) ∈ T ×F be a torsion element of order r . Then (0,0) = r (v,u) = (r v,r u). In
particular, r u = 0. The element u can be written as a linear combination of the basis elements of
F. By distributing r through the linear combination and invoking both linear independence and
the fact the r is a nonzero element of an integral domain, we see that u = 0. What we conclude
is that the torsion elements of T×F are exactly those of the form (v,0) where v ∈ T is nonzero.
Thus under the isomorphism M ∼= T×F, the module T corresponds to the torsion submodule of
M. Then according to the First Decomposition Theorem the rank of F is determined by M.

It remains to show that if T ∼= M0 × ·· · ×M`−1
∼= N0 × ·· · ×Nk−1, where all the Mi ’s and N j ’s are

cyclic primary R-modules, then `= k and, after a suitable reindexing Mi
∼= Ni for all i < `.

Let p ∈ R be prime. For any R-module Q let

Q(p) = {v | v ∈Q and pe v = 0 for some positive integer e}.

It is routine to check that this set is closed under the module operations, show we have the sub-
module Q(p). It is also not hard to see (as hard-working graduate students will check) that

T(p) ∼= M0(p)×·· ·×M`−1(p) ∼= N0(p)×·· ·×Nk−1(p).

In this decomposition, if Mi (or N j ) were primary with respect to a prime not associate to p, then
the module Mi (p) (respectively N j (p)) would be trivial. On the other hand, if they were primary
with respect to an associate of p, then Mi (p) = Mi and N j (p) = N j . Since this holds for arbitrary
primes p, we do not lose any generality by assuming the the primes underlying all the Mi ’s and
N j ’s are the same prime p.

Now suppose Q is a cyclic primary R-module, where pe is the exponent and u is a generator.
Then Q[p] is generated by pe−1u. So Q[p] is cyclic of exponent p. In this case, we know that
Q[p] ∼= R/(p). Now (p) is a prime ideal of the ring R. In a principal ideal domain, the maximal
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ideals and the prime ideals coincide. So the ring R/(p) is a field. This allows us to construe the
R-module Q[p] as a one-dimensional vector space over the field R/(p). In doing this, we are
changing the scalar multiplication, but leaving the addition and the zero the same. Now we have

T[p] ∼= M0[p]×·· ·×M`−1[p] ∼= N0[p]×·· ·×Nk−1[p]

construed as vector spaces over the field R/(p), with each of the direct factors being a copy of the
one-dimensional vector space. This means

`= dimT[p] = k.

So we have discovered that `= k, one of our desired conclusions.
So we are reduced to considering the following situation:

T ∼= M0 ×·· ·×M`−1

∼= N0 ×·· ·×N`−1

where Mi is a cyclic module of exponent pei and Ni is a cyclic module of exponent p fi for all i < `
and

e0 ≥ e1 ≥ ·· · ≥ e`−1

f0 ≥ f1 ≥ ·· · ≥ f`−1.

It remains only to show that ei = fi for all i < `. Suppose, for the sake of contradiction, that this
were not so. Let i be as small as possible so that ei 6= fi . It is harmless to also suppose that ei > fi .
Let r = p fi . Now multiplication by r is homomorphism and it is easy to also see that

r T ∼= r M0 ×·· ·× r Mi−1 × r Mi ×·· ·× r M`−1

∼= r N0 ×·· ·× r Ni−1 × r Ni ×·· ·× r N`−1.

Being homomorphic images of cyclic modules, each of the direct factors above is also cyclic.
Because r is a positive power of the prime p, we see that the factor modules above are either
primary (with prime p) or trivial. But exponents of all the N j ’s where i ≤ j are factors of r , we see
that these modules are all trivial. On the other hand, the exponent of Mi is pei whereas r = p fi

with ei > fi . So r Mi is not trivial. This would mean

r T ∼= r M0 ×·· ·× r Mi−1 × r Mi ×·· ·× r M`−1

∼= r N0 ×·· ·× r Ni−1,

where the top direct factorization has at least i+1 nontrivial cyclic primary factors but the bottom
has only i . But we have just proven that the number of such factors must be the same no matter
how the direct factorization is accomplished. This contradiction means our supposition must be
rejected. So ei = fi for all i < `. This establishes the uniqueness of our direct factorization into
directly indecomposable modules. The proof of the last remaining part of our theorem, namely
part (b), is complete.

The Structure Theorem above is an extension of the Elementary Divisor Theorem formulated in
the previous lecture. We can also extend the Invariant Factor Theorem.
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The Extended Invariant Factor Theorem.
Let T be a nontrivial finitely generated torsion R-module, where R is a principal ideal domain.

Then for some natural number n there are r0,r1, . . . ,rn ∈ R with

rn | rn−1 | · · · | r1 | r0

and cyclic submodules M0 of exponent r0,. . . , Mn of exponent rn so that

T ∼= M0 ×·· ·×Mn .

Moreover, the natural number n is uniquely determined by T, the sequence rn | rn−1 | · · · | r1 | r0

is uniquely determined up to associates, and cyclic submodules M0, . . . ,Mn are determined but to
isomorphism.

Only the various aspects of uniqueness require proof at this point. However, these proofs follow
the lines of the uniqueness portion of the proof and the Structure Theorem. We leave the details in
the hands of the hard working graduate students. It is useful to note that the cyclic modules which
are the factors in this direct decomposition may not themselves be directly indecomposable.

Using the Structure Theorem, for each principal ideal domain R we can define a function d such
that d(pe ,M) to be the number of direct factors isomorphic to the module R/(pe ) in any direct
factorization of M into directly indecomposable modules, where p ∈ R is prime, e is a positive
natural number, and M is a finitely generated R-module. In addition, we take d(0,M) to be the
number of direct factors isomorphic to the R-module R (that is, the directly indecomposable free
module).

Then we have the useful

Corollary. Let R be and principal ideal domain and M and N be finitely generated R-modules.
Then M ∼= N if and only if d(q,M) = d(q,N) for all q such that either q = 0 or q is a positive power
of a prime in R.

What this corollary asserts is that the system natural numbers

〈d(q,M) | q = 0 or q is the positive power of a prime of R〉

is a complete system of invariants of M—that is this system of natural numbers determines M up
to isomorphism.

As noted earlier, modules over the ring Z of integers are essentially the same as Abelian groups
since, for instance, 3u = (1+ 1+ 1)u = u +u +u and −7v = −(v + v + v + v + v + v + v). In this
way, we see that for a Z-module M = 〈M ,+,−,0, a·〉a∈Z the scalar multiplication is expressible
by means of the additive structure +,−, and 0. In particular, any map between Z-modules that
respects +,−, and 0 must also respect the scalar multiplication, any subset of a Z-module that
is closed under +,1, and contains 0 will also be closed under all the scalar multiplications, and
a similar remark holds for direct products—in any of these constructions one may ignore the
scalar multiplications along the way, but impose then on the result (the homomorphic image,
the subalgebra, or the direct product) by means of repeated addition.

With this in mind, noting that Z is a principal ideal domain, we obtain

The Fundamental Theorem for Finitely Generated Abelian Groups.
Let A be a finitely generated Abelian group. There is a natural number n such that:
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(a) there are n finitely generated directly indecomposable subgroups A0, . . . ,An−1 of A such that

A ∼= A0 ×·· ·×An−1, and

(b) for any natural number m, if B0, . . . ,Bm−1 are directly indecomposable Abelian groups such
that A ∼= B0×·· ·×Bm−1, then n = m and there is permutationσ of {0, . . . ,n−1} so that Ai

∼= Bσ(i )

for all i < n.

Moreover, the finitely generated directly indecomposable Abelian groups are, up to isomorphism,
the group 〈Z,+,−,0〉 of integers with respect to addition (that is the free Abelian group of rank 1),
and the cyclic groups of prime power order (these are the groupsZq where q is a positive power of a
prime number, the set of elements is {0,1, . . . , q−1}, and addition works modulo q). Finally, the free
Abelian group of rank 1 is not of prime power order and if r, s ∈ R are prime powers and Zr

∼= Zs ,
then r = s.

This could be regarded as the elementary divisor version of the structure theorem for finitely
generated Abelian groups. One could as easily formulate a structure theorem from the invariant
factor point of view. To see how these two points of view compare consider a description, up to
isomorphism, of all the Abelian groups of order 100. The prime factorization gives 100 = 2252.
Using the elementary divisor perspective we see that the list, representative up to isomorphism
and also pairwise nonisomorphic, of Abelian groups of order 100 is

Z4 ×Z25 Z2 ×Z2 ×Z25 Z4 ×Z5 ×Z5 Z2 ×Z2 ×Z5 ×Z5

while from the invariant factor perspective the list is

Z100 Z2 ×Z50 Z5 ×Z20 Z10 ×Z10.

At work here are the following direct decompositions:

Z100
∼=Z4 ×Z25 Z50

∼=Z2 ×Z25 Z20
∼=Z4 ×Z5 Z10

∼=Z2 ×Z5.
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DECOMPOSING MODULES

PROBLEM 37.
Let R be a nontrivial integral domain and M be an R-module. Prove the set T of torsion elements
is a submodule of M and M/T is torsion free.

PROBLEM 38.
Let R be a principal ideal domain and let T be a torsion R-module of exponent r . Prove that T has
an element of order r .

PROBLEM 39.
Prove that the sequence of invariant factors (i.e. the sequence r0,r1, . . . ,rn) mentioned in the
Invariant Factor Theorem is uniquely determined by the module.

PROBLEM 40.
Let M be a finitely generated R-module, where R is a principal ideal domain. Prove each of the
following.

(a) The direct decomposition using the Invariant Factor Theorem is the one using the smallest
number of factors that are all cyclic.

(b) The direct decomposition using the Elementary Divisor Theorem is the one using the largest
number of factors that are all cyclic.
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DECOMPOSITION OF VECTOR SPACE WITH A

DESIGNATED LINEAR OPERATOR

Let V be a finite dimensional vector space over a field F and let T be a linear operator on V—that
is, T is an endomorphism of the vector space V. Our objective here is to decompose V as a di-
rect product of subspaces that are invariant with respect to T . The most straightforward way to
proceed with such a project is to adjoin T to the vector space as a new one place operation. This
new algebraic system would have a binary operation + (the old vector addition), a designated
element 0 (the zero vector), a one-place operation − of forming negations, a one-place operation
aI for each a ∈ F (the scalar muliplications), and the new one-place operation T . The program
would then become the direct decomposition of this new algebraic system into directly inde-
composable factors. It is possible to carry out this program, to prove the corresponding structure
theorem (which would prove the existence and uniqueness of such decompositions and describe
the directly indecomposable algebras, much as in the last section).

However, there is an alternate route to the same result that allows us to take advantage of the
work we have done with modules. The idea is to regard V as a module over the principal ideal
domain F[x] instead of over the field F. This means we have to define what f (x) · v means for
every vector v ∈V and every polynomial f (x) ∈ F[x]. Here is the definition:

f (x) · v := f (T )(v).

Here f (T ) = a0I +a1T +a2T 2 +·· ·+anT n where f (x) = a0 +a1x +·· ·+an xn and T 2 = T ◦T,T 3 =
T ◦T ◦T , and so on. It is easy to see that each f (T ) is a linear operator (that is, an endomorphism
of the vector space V). The polynomials of degree 0 provide the ordinary scalar multiplications of
the vector space. So construing V as a module over F[x] in effect adjoins many more one-place
operations than our first approach, but they are all built up from the a · I and T by addition and
composition. This is why the two approaches are equivalent.

Recall from linear algebra that the linear operators on a finite-dimensional vector space V con-
stitute a finite dimensional vector space themselves. So for any linear operator T the set {I ,T,T 2,T 3, . . . }
is linearly dependent. This means that for some natural number m there are a0, a1, . . . , am ∈ F

90
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with am 6= 0 so that a0I + a1T + ·· · + amT m = 0. In other words, there is a nonzero polynomial
f (x) ∈ F[x] so that f (T ) is the zero linear operator (the map taking all vectors to the zero vec-
tor). Evidently, { f (x) | f (T ) is the zero operator} is an ideal of F[x]. Since F[x] is a principal ideal
domain first ideal is generated by a single polynomial. In fact we can take this polynomial to be
the monic polynomial mT (x) of least degree in this ideal. This polynomial is called the minimal
polynomial of T .

Now fix a linear operator T on the finite dimensional vector space V. We use VT to denote
the module over F[x] described above. We know that this module can be decomposed into a
direct product of cyclic submodules. What do these cyclic submodules look like? Well, suppose
that v ∈ V is a generator. Then the submodule consists of all the vectors of the form f (T )(v) as
f (x) runs through the ring of polynomials. Hence the linear span of the set {v,T v,T 2v, . . . } is the
whole submodule. Since this submodule is, among other things, a subspace of V (with additional
operations), we know that some finite subset must span the submodule. Let m be as small as
possible so that {v,T v, . . . ,T m v} spans the submodule. Then there are a0, . . . , am ∈ F so that

T m+1v = a0v +·· ·+amT m v.

This leads to

T m+2v = a0T v +·· ·+amT m+1v = a0T v +·· ·+ (a0v +·· ·+amT m v).

In this way we see that m is also the smallest natural number so that T m+1v is a linear combina-
tion of {v,T v, . . . ,T m v}. I contend that this set is linearly independent. Suppose

b0v +b1T v +·· ·+bmT m v = 0.

Now bm must be 0, otherwise T m v = − b0
bm

v − ·· ·− bm−1
bm

T m−1v . Once the term bmT m v has been
eliminated (because it is 0), we can apply the same reasoning the see that bm−1 = 0, and then that
bm−2 = 0, and so on. In this way we establish the linear independence of {v,T v, . . . ,T m v}. Thus
we see that our cyclic submodule, construed as an ordinary vector space over the field F has a
very nice basis. We call this kind of basis a T -cyclic basis.

Here is what happens if we represent T with respect to this basis. Put

v0 = v, v1 = T v, . . . , vm = T m v.

Then

T v0 = v1 = 0v0 +1v1 +0v2 +·· ·+0vm

T v1 = v2 = 0v0 +0v1 +1v2 +·· ·+0vm

...

T vm−1 = vm = 0v0 +0v1 +0v2 +·· ·+1vm

T vm = a0v0 +a1v1 +·· ·+am vm

This produces the matrix 

0 0 0 . . . 0 a0

1 0 0 . . . 0 a1

0 1 0 . . . 0 a2
...

...
...

. . .
...

...
0 0 0 . . . 0 am−1

0 0 0 . . . 1 am


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This is a very pleasant matrix with lots of entries 0 and the nonzero entries located in rather
restrained positions. Let us rewrite that last equation:

T vm = a0v0 +a1v1 +·· ·+am vm

T m+1v = a0v +a1T v +·· ·+am t m v

0 =−T m+1v +amT m v +·· ·+a1T v +a0v

0 = T m+1v −amT m v −·· ·−a1T v −a0v

0 = (T m+1 −amT m −·· ·−a1T −a0)v

0 = mT (T )v

where mT (x) = xm+1−am xm−·· ·−a0 ∈ F[x]. Notice that this is a monic polynomial of least degree
which belongs to the annihilator of VT . So it is an exponent of the module VT .

We could start with any monic polynomial f (x) = b0+b1x+·· ·+bm xm+xm+1 of positive degree.
If this polynomial happened to be the minimal polynomial of some linear operator T so that VT

was a cyclic module, then the associated matrix, as above, would be

C f =



0 0 0 . . . 0 −b0

1 0 0 . . . 0 −b1

0 1 0 . . . 0 −b2
...

...
...

. . .
...

...
0 0 0 . . . 0 −bm−1

0 0 0 . . . 1 −bm


.

This matrix is called the companion matrix of the polynomial f (x). Observe that this is a m +
1×m +1 matrix, where m +1 is the degree of f (x). It easy to write down the companion matrix
given the monic polynomial and, vice versa, given the companion matrix to write down the monic
polynomial. A routine calculation also reveals that for any monic polynomial f (x) we have

f (x) = det(xI −C f ).

This means that f (x) is the characteristic polynomial of its companion matrix.
We summarize these findings in the following Fact.

Fact. Let V be a finite dimensional vector space over a field F and T be a linear operator on V
such that VT is a cyclic module over F[x] with generator v and with minimal polynomial mT (x) of
degree n +1. Then {v,T v,T 2v, . . . ,T n v} is a basis for VT and, with respect to this basis, the matrix
of T is the companion matrix of mT (x) and the characteristic polynomial of T is the same as the
minimal polynomial of T .

Now let’s apply the Invariant Factor Theorem:

The Rational Canonical Form Theorem.
Let V be a finite dimensional vector space over the field F. Let T be a linear operator of V . Then

for some natural number n there are monic polynomials f0(x), f1(x), . . . , fn(x) ∈ F[x] with f0(x) =
mT (x), the minimal polynomial of T , such that

fn(x) | fn−1(x) | · · · | f1(x) | f0(x)
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and cyclic submodules of VT (sometimes called T -cyclic subspaces of V) V0 of exponent f0(x),. . . ,
Vn of exponent fn(x) so that

VT
∼= V0 ×·· ·×Vn .

Moreover, the natural number n is uniquely determined by T , the sequence fn(x) | fn−1(x) | · · · |
f1(x) | f0(x) of monic polynomials is uniquely determined, and cyclic submodules V0, . . . ,Vn are
determined up to isomorphism. Furthermore, each of the submodules Vk for k ≤ n has a T -cyclic
basis Bk , and Bn ∪·· ·∪B0 is a basis for V. The linear operator T is represented with respect to this
basis by 

C fn 0 0 . . . 0
0 C fn−1 0 . . . 0
0 0 C fn−2 . . . 0
...

...
...

. . .
...

0 0 0 . . . C f0


where the companion matrices of the fk (x)’s are placed in order as square blocks along the diago-
nal, with all remaining entries of the matrix 0.

The matrix representing T in this theorem is said to be in rational canonical form. The unique-
ness assertions of the Extended Invariant Factor Theorem ensure that a linear operator has ex-
actly one rational canonical form. The following important theorem is now a corollary.

The Cayley-Hamilton Theorem.
Let T be a linear operator on a finite dimensional vector space over a field. The minimal poly-

nomial of T divides the characteristic polynomial of T . Hence, f (T ) is the constantly zero linear
operator, when f (x) is the characteristic polynomial of T .

Actually, it is easy to see that the characteristic polynomial is just the product of the invariant
factors.

Recall from linear algebra that if A and B are m×m matrices with entries in the field F, then we
say that A and B are similar provided there is a linear operator T on the m-dimensional vector
space over F such that T can be represented by both A and B (using appropriated bases). So we
find

Rational Canonical Form Theorem: Matrix Version.
Let F be a field and m be a positive natural number. Every m×m matrix with entries is F is similar
to exactly one matrix in rational canonical form.

Now let’s turn to the elementary divisor perspective. Consider the case when VT is a cyclic
primary F[x] module. In this case, there is a vector v ∈V , an irreducible monic polynomial f (x) ∈
F[x], and a positive natural number e so that ( f (x))e is the order of v . As long as the field F is
arbitrary, the polynomial f (x) could be quite complicated—for instance it might have arbitrarily
large degree. In such a situation, it would be difficult to improve on the process we used above
the obtain the rational canonical form. However, two fields immediately come to mind wherre
the situation is much more restrained. The field C of complex numbers has the property that all
irreducible polynomials in C[x] have degree 1, while over the field R of real numbers there can
also be irreducible polynomials of degree 2 but of no higher degrees. Both of these facts willl be



Lecture 11 Canonical Forms 94

proved in the next semester. So let us consider that f (x) = x −a for some a ∈ F . Then put

v0 = v

v1 = (T −aI )v0 = T v0 −av0

v2 = (T −aI )v1 = T v1 −av1

...

ve1 = (T −aI )ve−2 = T ve−2 −ave−2

0 = (T −aI )ve−1 = T ve−1 −ave−1

Rearranging this just a bit we get

T v0 = av0 + v1

T v1 = av1 + v2

...

T ve2 = ave−2 + ve−1

T ve−1 = ave−1

Now by an argument similar (hard working graduate students will provide the variations needed)
to the ones used above, we can see that the e distinct vectors v0, v1, . . . , ve−1 form a basis for the
vector space V. With respect to this basis, the linear operator T has the following matrix

a 0 0 0 . . . 0 0
1 a 0 0 . . . 0 0
0 1 a 0 . . . 0 0
0 0 1 a . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . a 0
0 0 0 0 . . . 1 a


.

A matrix of this form is called a Jordan block and the basis underlying is called a Jordan basis.
Observe that it is easy given the polynomial (x − a)e to write down its Jordan block and, vice

versa, given the Jordan block, the polynomial can be recovered at once. Moreover, (x −a)e is the
characteristic polynomial det(xI − J ) of the Jordan block J .

This time, appealing the the Structure Theorem we get

The Jordan Canonical Form Theorem.
Let V be a finite dimensional vector space over the field F. Let T be a linear operator of V such

that the irreducible factors of the minimal polynomial of T are all of degree 1. Then for some
natural number n there are polynomials (x −a0)e0 , (x −a1)e1 , . . . , (x −an−1)en−1 ∈ F[x], namely the
elementary divisors of VT , and and cyclic primary submodules of VT V0 of exponent (x −a0)e0 ,. . . ,
Vn of exponent (x −an−1)en−1 so that

VT
∼= V0 ×·· ·×Vn−1.

Moreover, the natural number n is uniquely determined by T , the polynomials (x − ak )ek for k <
n are uniquely determined, and cyclic submodules V0, . . . ,Vn are determined up to isomorphism.
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Furthermore, each of the submodules Vk for k ≤ n has a Jordan basis Bk , and Bn ∪·· ·∪B0 is a basis
for V. The linear operator T is represented with respect to this basis by

J0 0 0 . . . 0
0 J1 0 . . . 0
0 0 J2 . . . 0
...

...
...

. . .
...

0 0 0 . . . Jn−1


where the Jordan blocks of the (x−ak )ek ’s are placed in some order as square blocks along the diag-
onal, with all remaining entries of the matrix 0.

The matrix mentioned at the conclusion of this theorem is said to be in Jordan canonical form.
It should be noted here, that there may be several matrices in Jordan form associated with the
linear operator T according to this theorem. This happens because the order in which the Jordan
blocks appear along the diagonal is arbitrary. The uniqueness part of the Structure Theorem The
permutation mentioned in the statement of the Structure Theorem reflects the same point. It
is clear that if A and B are two matrices in Jordan form that can be obtained from each other
by rearranging the Jordan blocks along the diagonal, the A and B are similar. So the Structure
Theorem gives us

Jordan Canonical Form Theorem: Matrix Version.
Let F be a field and m be a positive natural number. Let A m ×m matrix with entries is F with

the additional property that the irreducible factors of the minimal polynomial of the matrix are
all of degree 1. Then A is similar to a matrix in Jordan canonical form and any matrices in Jordan
canonical form that are similar to A can be obtained from each other by rearranging the Jordan
blocks.



11.1 Problem Set 11 96

11.1 PROBLEM SET 11

ALGEBRA HOMEWORK, EDITION 11

TWELFTH WEEK

MODULES

PROBLEM 41.
Let R and S be commutative Noetherian rings. Prove that R×S is also Noetherian.

PROBLEM 42.
Let R be a commutative ring such that every submodule of a free R-module is also a free R-
module. Prove that R is a principal ideal domain.

PROBLEM 43.
Let R by a principal ideal domain and let M and N be finitely generated R-modules such that
M×M ∼= N×N. Prove M ∼= N.

PROBLEM 44.
Give an example of two 4×4 matrices with real entries that have the same minimal polynomial
and the same characteristic polynomial but are not similar.
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