SAMPLE FINAL EXAMINATION MATH 241 SECTION H02 Spring Semester 2020

INSTRUCTOR: PROF. GEORGE MCNULTY

Problem 0.

Let $\mathbf{u} = \langle 1, 2, 3 \rangle$, $\mathbf{v} = \langle 3, 2, 1 \rangle$, and $\mathbf{w} = \langle -1, 0, 1 \rangle$. Perform the calculation in each part below. a. $2\mathbf{u} - 3\mathbf{v}$.

- b. $\mathbf{u} \cdot \mathbf{v}$
- c. |w|
- d. $\mathbf{u} \times \mathbf{v}$

PROBLEM 1.

In each part below let \mathbf{u} and \mathbf{v} be any vectors in three dimensional space.

- a. Explain why $|\mathbf{u} + \mathbf{v}|^2 + |\mathbf{u} \mathbf{v}|^2 = 2|\mathbf{u}|^2 + 2|\mathbf{v}|^2$.
- b. Explain why $(2\mathbf{u} + 3\mathbf{v}) \cdot (\mathbf{u} \times \mathbf{v}) = 0$

PROBLEM 2 (CORE).

- a. Suppose C is the curve on the plane described by $\mathbf{r}(t) = \sin t \mathbf{i} + 2 \cos t \mathbf{j}$. Then the point $\langle \sqrt{2} \rangle / 2, \sqrt{2} \rangle$ lies on the curve C. (What is an appropriate choice for t?). Find an equation that describes the line tangent to C at $\langle \sqrt{2} \rangle / 2, \sqrt{2} \rangle$.
- b. Find an equation that describes the plane which is determined by the points (0, 2, 1), (0, 2, -1), and (2, 0, 0).

PROBLEM 3 (CORE).

Let $\mathbf{F}(t) = \sin t \mathbf{i} + t^2 \mathbf{j} + 2\mathbf{k}$, $\mathbf{G}(t) = t^2 \mathbf{i} + \cos t \mathbf{j} + e^t \mathbf{k}$, and h(t) = 4t. Calculate the derivative each function below.

a. $h(t)\mathbf{F}(t)$.

- b. $\mathbf{F}(h(t)) \cdot \mathbf{G}(t)$.
- c. $\mathbf{F}(t) \times \mathbf{G}(t)$.

PROBLEM 4 (CORE).

In each part below find an equation for the plane tangent to the surface it describes at the point given.

a. $x^2 + y^2 + z^2 = 3$ at $\langle 1, 1, 1 \rangle$. b. $z = \ln(x^2 + y^2)$ at $\langle 1, 0, 0 \rangle$.

SOLUTION

For part (a) let $f(x, y, z) = x^2 + y^2 + z^2$. Then $\nabla f(x, y, z) = \langle 2x, 2y, 2z \rangle$. So $\nabla f(1, 1, 1) = \langle 2, 2, 2 \rangle$. Now observe that the point $\langle x, y, z \rangle$ lies on the tangent plane if and only if $\nabla f(1, 1, 1) \cdot (\langle x, y, z \rangle - \langle 1, 1, 1 \rangle) = 0$; that is if and only if

$$\langle 2, 2, 2 \rangle \cdot \langle x - 1, y - 1, z - 1 \rangle = 0.$$

So

$$2(x-1) + 2(y-1) + 2(z-1) = 0$$

is an equation for the tangent plane. This simplifies to

$$2x + 2y + 2z = 6.$$

For part (b) let $g(x, y, z) = \ln(x^2 + y^2) - z$. Then $\nabla g(x, y, z) = \langle \frac{2x}{x^2 + y^2}, \frac{2y}{x^2 + y^2}, -1 \rangle$. So $\nabla g(1, 0, 0) = \langle 2, 0, -1 \rangle$. As in part (a) this gives an equation for the tangent plane as follows:

$$\nabla g(1,0,-1) \cdot (\langle x,y,z \rangle - \langle 1,0,0 \rangle = 0$$

$$\langle 2,0,-1 \rangle \cdot \langle x-1,y,z \rangle = 0$$

$$2(x-1) + 0y - z = 0$$

$$2x - z = 2$$

S x = 1 is an equation for the tangent plain.

PROBLEM 5.

Use the Chain Rule to complete each part below.

- Calculate $\frac{dw}{dt}$ at t = 0 where $w = x^2 + y^2$, $x = \cos t + \sin t$, and $y = \cos t \sin t$. a.
- Express $\frac{\partial z}{\partial r}$ and $\frac{\partial z}{\partial \theta}$ as functions of r and θ where $z = 4e^x \ln y, x = \ln(r \cos \theta)$, and b.

SOLUTION

For part (a).

The Chain Rule tells of that

$$\frac{dw}{dt} = \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial y}\frac{dy}{dt}.$$

Since $w = x^2 + y^2$ we see that $\frac{\partial w}{\partial x} = 2x$ and $\frac{\partial w}{\partial y} = 2y$. Given also the definitions of xand y above, we have

$$\frac{dx}{dt} = -\sin t + \cos t$$
 and $\frac{dy}{dt} = -\sin t - \cos t$.

Putting all these together, we get

$$\frac{dw}{dt} = (2x)(-\sin t + \cos t) + (2y)(-\sin t - \cos t)$$
$$\frac{dw}{dt} = (2(\cos t + \sin t))(-\sin t + \cos t) + (2(\cos t - \sin t))(-\sin t - \cos t).$$

When we evaluate this at t = 0, we obtain

$$\frac{dw}{dt}\Big|_{t=0} = (2)(1) + (2)(-1) = 0.$$

For part (b):

It helps at the outset to compute a number of partial derivatives and express them in terms of r and θ .

$$\frac{\partial z}{\partial x} = 4e^x \ln y$$

$$= 4e^{\ln(r\cos\theta)} \ln(r\sin\theta)$$

$$= 4r\cos\theta \ln r\sin\theta$$

$$\frac{\partial z}{\partial y} = \frac{4e^x}{y}$$

$$= \frac{4e^{\ln r\cos\theta}}{r\sin\theta}$$

$$= 4r\cos\theta$$

$$\frac{\partial x}{r} = \frac{\cos\theta}{r\cos\theta}$$

$$= \frac{1}{r}$$

$$\frac{\partial x}{\partial \theta} = \frac{-r\sin\theta}{r\cos\theta}$$

$$= -\tan\theta$$

$$\frac{\partial y}{\partial r} = \sin\theta$$

$$\frac{\partial y}{\partial \theta} = r\cos\theta$$

the first.

$$+ \frac{\partial z}{\partial y} \frac{\partial y}{\partial r}$$

$$\begin{aligned} \frac{\partial z}{\partial r} &= \frac{\partial z}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial r} \\ &= (4r\cos\theta\ln r\sin\theta) \frac{1}{r} + 4\cot\theta\sin\theta \\ &= 4\cos\theta\ln r\sin\theta + 4\cos\theta = 4\cos\theta(1+\ln r\sin\theta) \end{aligned}$$

And here is the second.

We have two tasks. Here is

$$\frac{\partial z}{\partial \theta} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial \theta}$$

= $(4r \cos \theta \ln r \sin \theta)(-\tan \theta) + (4 \cot \theta)(r \cos \theta)$
= $-4r \sin \theta \cot \theta \ln r \sin \theta + 4r \cot \theta \cos \theta.$

PROBLEM 6.

Complete each part below.

- a. Calculate the gradient of $f(x, y, z) = x^2 + y^2 2z^2 + z \ln x$ at $\langle 1, 1, 1 \rangle$.
- b. Calculate the derivative of $f(x, y, z) = 3e^x \cos yz$ at $\langle 0, 0, 0 \rangle$ in the direction of $\mathbf{v} = 2\mathbf{i} + \mathbf{j} 2\mathbf{k}$.

SOLUTION For part (a):

$$\nabla f(x, y, z) = \langle 2x + \frac{z}{x}, 2y, -4z + \ln x \rangle.$$

Evallating this at $\langle 1, 1, 1 \rangle$ we get

$$\nabla f(1,1,1) = \langle 3,2,-4 \rangle.$$

For part (b):

First, let us calculate the unit vector \mathbf{u} in the direction of \mathbf{v} . We see $|\mathbf{v}| = \sqrt{2^2 + 1^2 + (-2)^2} = 3$. So we get

$$\mathbf{u} = \frac{1}{3} \langle 2, 1, -2 \rangle = \langle \frac{2}{3}, \frac{1}{3}, \frac{-2}{3} \rangle.$$

We know that

$$\frac{df(0,0,0)}{d\mathbf{u}} = \nabla f(0,0,0) \cdot \mathbf{u}.$$

Calculating $\nabla f(x, y, z)$ we get $\langle 3e^x \cos xy, -3ze^z \sin yz \rangle, -3ye^x \sin yz$. Evaluating this at $\langle 0, 0, 0 \rangle$ we find $\nabla f(0, 0, 0) = \langle 3, 0, 0 \rangle$. Now plug this into the formula above for the directional derivative.

$$\frac{df(0,0,0)}{d\mathbf{u}} = \langle 3,0,0 \rangle \cdot \langle \frac{2}{3}, \frac{1}{3}, \frac{-2}{3} \rangle = 2.$$

PROBLEM 7 (CORE).

In each part below find all the local critical points. For each extreme point, determine whether it is a local minimum, a local maximum, or a saddle point.

a.
$$f(x,y) = xy - x^2 - y^2 - 2x - 2y + 4$$

b. $g(x,y) = \frac{1}{x} + xy + \frac{1}{y}$

SOLUTION

For part (a):

First we find the critical points. To do this we need that first partial derivatives.

$$f_x(x,y) = y - 2x - 2$$

$$f_y(x,y) = x - 2y - 2$$

Setting these to 0 we find

$$y = 2(x+1)$$
$$x = 2(y+1)$$

Subsituting the first into the second we get

$$x = 2((2(x + 1)) + 1) = 4x + 6$$

-6 = 3x
-2 = x
, so

But we know y = 2x + 2, so

$$2 = y$$

So there is just one critical point and it is $\langle -2, -2 \rangle$.

To figure out what sort of critical point it is we need more partial derivatives.

$$f_{xx}(x, y) = -2$$

$$f_{yy}(x, y) = -2$$

$$f_{xy}(x, y) = 1$$

$$D(x, y) = (-2)(-2) - 1 = 3 > 0$$

Since D(-2,-2)>0 and $f_{xx}(-2,-2)=-2<0$, we conclude that $\langle -2,-2\rangle$ is a local maximum.

For part (b) we do a similar analysis.

$$g_x(x,y) = -\frac{1}{x^2} + y$$
$$g_y(x,y) = -\frac{1}{y^2} + x$$

Setting these to 0 we find

$$y = \frac{1}{x^2}$$
$$x = \frac{1}{y^2}$$

Substituting the first into the second we get

$$x = \frac{1}{(\frac{1}{x^2})^2} = x^4$$
$$0 = x^4 - x = x(x^3 - 1)$$

But x = 0, regardless of the value of y is not in the domain of g. So we can cancel an x

$$0 = x^3 - 1$$
$$1 = x$$
$$1 = y$$

So again there is jst one critical point and it is $\langle 1,1 \rangle$.

$$g_{xx}(x,y) = \frac{2}{x^3}$$
$$g_{yy}(x,y) = \frac{2}{y^3}$$
$$g_{xy}(x,y) = 1$$
$$D(x,y) = \frac{4}{x^3y^3} - 1$$

Since D(1,1) = 4 - 1 = 3 > 0 and $g_{xx}(1,1) = 2 > 0$, we conclude that $\langle 1,1 \rangle$ is a local minimum.

PROBLEM 8 (CORE).

Do each part below.

- Evaluate $\iint_D x + 2y \, dA$ where D is the region bounded by the parabolas described by a. $y = 2x^2$ and $y = 1 + x^2$.
- Find the volume of the solid bounded by the plane described by z = 0 and the paraboloid b. described by $z = 1 - x^2 - y^2$.

PROBLEM 9 (CORE).

Do each part below.

- Evaluate $\int_C 2x + 9z \, ds$ where C is the curve parameterized by $x = t, y = t^2$, and a. $z = t^3 \text{ for } 0 \le t \le 1.$
- Evaluate $\int_C e^x \sin y \, dx + e^x \cos y \, dy$, where C is any curve connecting (0,0) to b. $(1, \pi/2)$.

PROBLEM 10.

Evaluate the integral in each part below.

- $\oint_C 3y e^{\sin x} \, dx + (7x + \sqrt{y^4 + 1}) \, dy \text{ where } C \text{ is the circle described by } x^2 + y^2 = 9.$ a.
- Let $\mathbf{F} = (x^2 + y^2)\mathbf{i} + 2xy\mathbf{j}$ and let C be the boundary of the unit square with vertices b. at (0,0), (1,0), (1,1), and (0,1). Evaluate $\oint_C \mathbf{F} \cdot \mathbf{T} \, ds$.

PROBLEM 11.

Find the surface area of that part of the cylinder described by $y^2 + z^2 = 9$ that is directly over the rectangle in the XY-plane with vertices (0,0), (2,0), (2,3), and (0,3).