Sample Final Examination
 MATH 241 SECTION H02

Spring Semester 2020

Instructor: Prof. George McNulty

Problem 0 .

Let $\mathbf{u}=\langle 1,2,3\rangle, \mathbf{v}=\langle 3,2,1\rangle$, and $\mathbf{w}=\langle-1,0,1\rangle$. Perform the calculation in each part below.
a. $\quad 2 \mathbf{u}-3 \mathbf{v}$.
b. $\mathbf{u} \cdot \mathbf{v}$
c. $|\mathrm{w}|$
d. $\quad \mathbf{u} \times \mathbf{v}$

Problem 1.

In each part below let \mathbf{u} and \mathbf{v} be any vectors in three dimensional space.
a. Explain why $|\mathbf{u}+\mathbf{v}|^{2}+|\mathbf{u}-\mathbf{v}|^{2}=2|\mathbf{u}|^{2}+2|\mathbf{v}|^{2}$.
b. Explain why $(2 \mathbf{u}+3 \mathbf{v}) \cdot(\mathbf{u} \times \mathbf{v})=0$

Problem 2 (Core).

a. Suppose C is the curve on the plane described by $\mathbf{r}(t)=\sin t \mathbf{i}+2 \cos t \mathbf{j}$. Then the point $\langle\sqrt{2}) / 2, \sqrt{2}\rangle$ lies on the curve C. (What is an appropriate choice for t ?). Find an equation that describes the line tangent to C at $\langle\sqrt{2}) / 2, \sqrt{2}\rangle$.
b. Find an equation that describes the plane which is determined by the points $\langle 0,2,1\rangle,\langle 0,2,-1\rangle$, and $\langle 2,0,0\rangle$.

Problem 3 (Core).

Let $\mathbf{F}(t)=\sin t \mathbf{i}+t^{2} \mathbf{j}+2 \mathbf{k}, \mathbf{G}(t)=t^{2} \mathbf{i}+\cos t \mathbf{j}+e^{t} \mathbf{k}$, and $h(t)=4 t$. Calculate the derivative each function below.
a. $\quad h(t) \mathbf{F}(t)$.
b. $\quad \mathbf{F}(h(t)) \cdot \mathbf{G}(t)$.
c. $\quad \mathbf{F}(t) \times \mathbf{G}(t)$.

Problem 4 (Core).

In each part below find an equation for the plane tangent to the surface it describes at the point given.
a. $\quad x^{2}+y^{2}+z^{2}=3$ at $\langle 1,1,1\rangle$.
b. $z=\ln \left(x^{2}+y^{2}\right)$ at $\langle 1,0,0\rangle$.

SOLUTION

For part (a) let $f(x, y, z)=x^{2}+y^{2}+z^{2}$. Then $\nabla f(x, y . z)=\langle 2 x, 2 y, 2 z\rangle$. So $\nabla f(1,1,1)=\langle 2,2,2\rangle$. Now observe that the point $\langle x, y, z\rangle$ lies on the tangent plane if and only if $\nabla f(1,1,1) \cdot(\langle x, y, z\rangle-\langle 1,1,1\rangle)=0$; that is if and only if

$$
\langle 2,2,2\rangle \cdot\langle x-1, y-1, z-1\rangle=0
$$

So

$$
2(x-1)+2(y-1)+2(z-1)=0
$$

is an equation for the tangent plane. This simplifies to

$$
2 x+2 y+2 z=6 .
$$

For part (b) let $g(x, y, z)=\ln \left(x^{2}+y^{2}\right)-z$. Then $\nabla g(x, y, z)=\left\langle\frac{2 x}{x^{2}+y^{2}}, \frac{2 y}{x^{2}+y^{2}},-1\right\rangle$. So $\nabla g(1,0,0)=\langle 2,0,-1\rangle$. As in part (a) this gives an equation for the tangent plane as follows:

$$
\begin{aligned}
\nabla g(1,0,-1) \cdot(\langle x, y, z\rangle-\langle 1,0,0\rangle & =0 \\
\langle 2,0,-1\rangle \cdot\langle x-1, y, z\rangle & =0 \\
2(x-1)+0 y-z & =0 \\
2 x-z & =2
\end{aligned}
$$

S $x=1$ is an equation for the tangent plain.

Problem 5.

Use the Chain Rule to complete each part below.
a. Calculate $\frac{d w}{d t}$ at $t=0$ where $w=x^{2}+y^{2}, x=\cos t+\sin t$, and $y=\cos t-\sin t$.
b. Express $\frac{\partial z}{\partial r}$ and $\frac{\partial z}{\partial \theta}$ as functions of r and θ where $z=4 e^{x} \ln y, x=\ln (r \cos \theta)$, and $y=r \sin \theta$.

SOLUTION

For part (a).
The Chain Rule tells of that

$$
\frac{d w}{d t}=\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t}
$$

Since $w=x^{2}+y^{2}$ we see that $\frac{\partial w}{\partial x}=2 x$ and $\frac{\partial w}{\partial y}=2 y$. Given also the definitions of x and y above, we have

$$
\frac{d x}{d t}=-\sin t+\cos t \text { and } \frac{d y}{d t}=-\sin t-\cos t .
$$

Putting all these together, we get

$$
\begin{aligned}
& \frac{d w}{d t}=(2 x)(-\sin t+\cos t)+(2 y)(-\sin t-\cos t) \\
& \frac{d w}{d t}=(2(\cos t+\sin t))(-\sin t+\cos t)+(2(\cos t-\sin t))(-\sin t-\cos t)
\end{aligned}
$$

When we evaluate this at $t=0$, we obtain

$$
\left.\frac{d w}{d t}\right|_{t=0}=(2)(1)+(2)(-1)=0
$$

For part (b):

It helps at the outset to compute a number of partial derivatives and express them in terms of r and θ.

$$
\begin{aligned}
\frac{\partial z}{\partial x} & =4 e^{x} \ln y \\
& =4 e^{\ln (r \cos \theta)} \ln (r \sin \theta) \\
& =4 r \cos \theta \ln r \sin \theta
\end{aligned}
$$

$$
\frac{\partial z}{\partial y}=\frac{4 e^{x}}{y}
$$

$$
=\frac{4 e^{\ln r \cos \theta}}{r \sin \theta}
$$

$$
=\frac{4 r \cos \theta}{r \sin \theta}
$$

$$
=4 \cot \theta
$$

$$
\begin{aligned}
\frac{\partial x}{\partial r} & =\frac{\cos \theta}{r \cos \theta} \\
& =\frac{1}{r}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial x}{\partial \theta} & =\frac{-r \sin \theta}{r \cos \theta} \\
& =-\tan \theta
\end{aligned}
$$

$$
\frac{\partial y}{\partial r}=\sin \theta
$$

$$
\frac{\partial y}{\partial \theta}=r \cos \theta
$$

We have two tasks. Here is the first.

$$
\begin{aligned}
\frac{\partial z}{\partial r} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial r} \\
& =(4 r \cos \theta \ln r \sin \theta) \frac{1}{r}+4 \cot \theta \sin \theta \\
& =4 \cos \theta \ln r \sin \theta+4 \cos \theta=4 \cos \theta(1+\ln r \sin \theta)
\end{aligned}
$$

And here is the second.

$$
\begin{aligned}
\frac{\partial z}{\partial \theta} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial \theta} \\
& =(4 r \cos \theta \ln r \sin \theta)(-\tan \theta)+(4 \cot \theta)(r \cos \theta) \\
& =-4 r \sin \theta \cot \theta \ln r \sin \theta+4 r \cot \theta \cos \theta
\end{aligned}
$$

Problem 6.

Complete each part below.
a. Calculate the gradient of $f(x, y, z)=x^{2}+y^{2}-2 z^{2}+z \ln x$ at $\langle 1,1,1\rangle$.
b. Calculate the derivative of $f(x, y, z)=3 e^{x} \cos y z$ at $\langle 0,0,0\rangle$ in the direction of $\mathbf{v}=2 \mathbf{i}+\mathbf{j}-2 \mathbf{k}$.

SOLUTION

For part (a):

$$
\nabla f(x, y, z)=\left\langle 2 x+\frac{z}{x}, 2 y,-4 z+\ln x\right\rangle
$$

Evaulating this at $\langle 1,1,1\rangle$ we get

$$
\nabla f(1,1,1)=\langle 3,2,-4\rangle
$$

For part (b):
First, let us calculate the unit vector \mathbf{u} in the direction of \mathbf{v}. We see $|\mathbf{v}|=$ $\sqrt{2^{2}+1^{2}+(-2)^{2}}=3$. So we get

$$
\mathbf{u}=\frac{1}{3}\langle 2,1,-2\rangle=\left\langle\frac{2}{3}, \frac{1}{3}, \frac{-2}{3}\right\rangle .
$$

We know that

$$
\frac{d f(0,0,0)}{d \mathbf{u}}=\nabla f(0,0,0) \cdot \mathbf{u} .
$$

Calculating $\nabla f(x, y, z)$ we get $\left\langle 3 e^{x} \cos x y,-3 z e^{z} \sin y z\right\rangle,-3 y e^{x} \sin y z$. Evaluating this at $\langle 0,0,0\rangle$ we find $\nabla f(0,0,0)=\langle 3,0,0\rangle$. Now plug this into the formula above for the directional derivative.

$$
\frac{d f(0,0,0)}{d \mathbf{u}}=\langle 3,0,0\rangle \cdot\left\langle\frac{2}{3}, \frac{1}{3}, \frac{-2}{3}\right\rangle=2 .
$$

PROBLEM 7 (CORE).
In each part below find all the local critical points. For each extreme point, determine whether it is a local minimum, a local maximum, or a saddle point.
a. $\quad f(x, y)=x y-x^{2}-y^{2}-2 x-2 y+4$
b. $\quad g(x, y)=\frac{1}{x}+x y+\frac{1}{y}$

SOLUTION

For part (a):
First we find the critical points. To do this we need that first partial derivatives.

$$
\begin{aligned}
& f_{x}(x, y)=y-2 x-2 \\
& f_{y}(x, y)=x-2 y-2
\end{aligned}
$$

Setting these to 0 we find

$$
\begin{aligned}
& y=2(x+1) \\
& x=2(y+1)
\end{aligned}
$$

Subsituting the first into the second we get

$$
\begin{aligned}
x & =2((2(x+1))+1)=4 x+6 \\
-6 & =3 x \\
-2 & =x
\end{aligned}
$$

But we know $y=2 x+2$, so

$$
-2=y
$$

So there is just one critical point and it is $\langle-2,-2\rangle$.
To figure out what sort of critical point it is we need more partial derivatives.

$$
\begin{aligned}
f_{x x}(x, y) & =-2 \\
f_{y y}(x, y) & =-2 \\
f_{x y}(x, y) & =1 \\
D(x, y) & =(-2)(-2)-1=3>0
\end{aligned}
$$

Since $D(-2,-2)>0$ and $f_{x x}(-2,-2)=-2<0$, we conclude that $\langle-2,-2\rangle$ is a local maximum.

For part (b) we do a similar analysis.

$$
\begin{aligned}
& g_{x}(x, y)=-\frac{1}{x^{2}}+y \\
& g_{y}(x, y)=-\frac{1}{y^{2}}+x
\end{aligned}
$$

Setting these to 0 we find

$$
\begin{aligned}
& y=\frac{1}{x^{2}} \\
& x=\frac{1}{y^{2}}
\end{aligned}
$$

Substituting the first into the second we get

$$
\begin{aligned}
& x=\frac{1}{\left(\frac{1}{x^{2}}\right)^{2}}=x^{4} \\
& 0=x^{4}-x=x\left(x^{3}-1\right)
\end{aligned}
$$

But $x=0$, regardless of the value of y is not in the domain of g. So we can cancel an x

$$
\begin{aligned}
& 0=x^{3}-1 \\
& 1=x \\
& 1=y
\end{aligned}
$$

So again there is jst one critical point and it is $\langle 1,1\rangle$.

$$
\begin{aligned}
g_{x x}(x, y) & =\frac{2}{x^{3}} \\
g_{y y}(x, y) & =\frac{2}{y^{3}} \\
g_{x y}(x, y) & =1 \\
D(x, y) & =\frac{4}{x^{3} y^{3}}-1
\end{aligned}
$$

Since $D(1,1)=4-1=3>0$ and $g_{x x}(1,1)=2>0$, we conclude that $\langle 1,1\rangle$ is a local minimum.

Problem 8 (Core).

Do each part below.
a. Evaluate $\iint_{D} x+2 y d A$ where D is the region bounded by the parabolas described by $y=2 x^{2}$ and $y=1+x^{2}$.
b. Find the volume of the solid bounded by the plane described by $z=0$ and the paraboloid described by $z=1-x^{2}-y^{2}$.

Problem 9 (Core).

Do each part below.
a. Evaluate $\int_{C} 2 x+9 z d s$ where C is the curve parameterized by $x=t, y=t^{2}$, and $z=t^{3}$ for $0 \leq t \leq 1$.
b. Evaluate $\int_{C} e^{x} \sin y d x+e^{x} \cos y d y$, where C is any curve connecting $(0,0)$ to (1, $\pi / 2$).

Problem 10.
Evaluate the integral in each part below.
a. $\quad \oint_{C} 3 y-e^{\sin x} d x+\left(7 x+\sqrt{y^{4}+1}\right) d y$ where C is the circle described by $x^{2}+y^{2}=9$.
b. Let $\mathbf{F}=\left(x^{2}+y^{2}\right) \mathbf{i}+2 x y \mathbf{j}$ and let C be the boundary of the unit square with vertices at $(0,0),(1,0),(1,1)$, and $(0,1)$. Evaluate $\oint_{C} \mathbf{F} \cdot \mathbf{T} d s$.

Problem 11.
Find the surface area of that part of the cylinder described by $y^{2}+z^{2}=9$ that is directly over the rectangle in the $X Y$-plane with vertices $(0,0),(2,0),(2,3)$, and $(0,3)$.

