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Abstract. Let p be a graph parameter that assigns a positive integer value to every graph.
The inverse problem for p asks for a graph within a prescribed class (here, we will only be

concerned with trees), given the value of p. In this context, it is of interest to know whether
such a graph can be found for all or at least almost all integer values of p. We will provide a very
general setting for this type of problem over the set of all trees, describe some simple examples
and finally consider the interesting parameter “number of subtrees”, where the problem can be

reduced to some number-theoretic considerations. Specifically, we will prove that every positive
integer, with only 34 exceptions, is the number of subtrees of some tree.

1. Introduction and a general construction principle

Numerous graph parameters are known and have been thoroughly studied. Many of them are
defined as the number of vertex or edge subsets of some sort. For instance, Klazar [5] describes
twelve different tree parameters and analyses them by means of a generating functions approach.
Recently, the inverse problem has gained a certain importance: given a graph parameter p that
assigns an integer value to every graph within a given family G of graphs and an integer n,
determine some G ∈ G such that p(G) = n. This is of interest in combinatorial chemistry, where
graphical parameters are used as molecular descriptors. For uses in the design of combinatorial
libraries and molecular recognitions, we refer to [7] and the references therein. In this context,
acyclic graphs play a major role, and we will also concentrate on trees in this paper.

We will generally consider rooted trees, which will turn out to be useful for the treatment of
the various parameters. Some of them are even defined for rooted trees only. All rooted trees can
be constructed recursively by means of the following two operations:

• Attach a new vertex to the root, which also serves as the root of the new tree (see Fig. 1)
• Merge two rooted trees by identifying their roots (see Fig. 2)
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Figure 1. Attaching a new vertex to the root
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Figure 2. Merging two rooted trees
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Many graph parameters can be described recursively in a natural way by means of these two
operations. Let us present a few examples.

(1) The number of (nonempty) subtrees has been studied in various papers, see for instance
[11]; in order to obtain a recursion, we distinguish between subtrees containing the root
and those not containing the root. The respective numbers form a pair (a, b) associated
with a tree. If we perform Operation 1 now, the number of subtrees of the former type
is 1 + the number of subtrees containing the root in the old tree (1 for the subtree that
consists only of the root). On the other hand, a subtree that doesn’t contain the root can
be any subtree of the old tree. This means that Operation 1 maps (a, b) to (a + 1, a + b).
Similar reasoning shows that if Operation 2 is applied to two trees with associated pairs
(a1, b1) and (a2, b2), one gets the new pair (a1a2, b1 + b2).

(2) The number of matchings (independent edge subsets, including the empty set) is a pop-
ular parameter in combinatorial chemistry (where it is known as “Hosoya index”, see for
instance [12]) and statistical physics (so-called dimer-monomer model [4]), and of course
it also has interesting mathematical properties. Again, a recursive characterization is
possible. For this purpose, we distinguish between matchings which cover the root and
those which don’t, and we associate a pair (a, b) to each tree again. Then, Operation 1
corresponds to the map

(a, b) 7→ (b, a + b),

whereas Operation 2 maps the pair (a1, b1), (a2, b2) to (a1b2 + b1a2, b1b2).
(3) The number of independent (vertex) subsets (including the empty set again) has similar

properties to the number of matchings and is also a popular chemical parameter (the
“Merrifield-Simmons index” [9, 12]). Yet again it is useful to distinguish two cases: we
associate a pair (a, b) to each tree, where a and b are the number of independent subsets
containing resp. not containing the root. Then, the effects of the two operations are

(a, b) 7→ (b, a + b)

(note that this is the same as for the number of matchings!) and

((a1, b1), (a2, b2)) 7→ (a1a2, b1b2).

(4) The number of maximal independent subsets, see for instance [16], needs three different
auxiliary parameters: A triple (a, b, c) is associated to each tree, where a is the number of
maximal independent sets containing the root, b is the number of maximal independent
sets not containing the root, and c is the number of independent sets which are not maximal
but become maximal if the root (that is necessarily not contained in the set) is removed
from the tree. Similar reasoning to the previous examples yields the two maps

(a, b, c) 7→ (b + c, a, b)

and

((a1, b1, c1), (a2, b2, c2)) 7→ (a1a2, b1b2 + b1c2 + b2c1, c1c2)

corresponding to the two operations.
(5) The number of dominating subsets satisfies a very similar recursion: again, three auxiliary

parameters are necessary, representing the number of dominating sets which contain the
root, those which do not contain the root, and those which dominate all vertices except
for the root. Then, our operations induce the two maps

(a, b, c) 7→ (a + b + c, a, b)

and

((a1, b1, c1), (a2, b2, c2)) 7→ (a1a2, b1b2 + b1c2 + b2c1, c1c2)

on triples associated to trees.
(6) The Wiener index is one of the most popular graph-theoretical parameters, see for instance

the survey paper [1]. It is defined as the sum of all the distances between pairs of vertices.
As shown in [2], it also satisfies certain recursive relations: this time, we associate a triple
(a, b, c) consisting of the number of vertices, the sum of all distances from the root and
the Wiener index itself to a tree. It is not difficult to show that this yields the two maps

(a, b, c) 7→ (a + 1, a + b, a + b + c)
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and

((a1, b1, c1), (a2, b2, c2)) 7→ (a1 + a2 − 1, b1 + b2, c1 + c2 + b1(a2 − 1) + b2(a1 − 1))

corresponding to Operation 1 and Operation 2 respectively.
(7) The number of chains [5] is a parameter that only makes sense for rooted trees: a rooted

tree can be regarded as a partially ordered set, where u ≤ v holds for two vertices u and v
iff u lies on the unique path between v and the root. A chain is a nonempty set of pairwise
comparable vertices. The number of chains in a rooted tree satisfies very simple recursions
with respect to our two operations—no auxiliary parameters are necessary. Operation 1
induces the map

a 7→ 2a + 1

(the new root can be added to any chain and also to the empty set), Operation 2 yields
the map

(a1, a2) 7→ a1 + a2 − 1

(a chain in the new tree is a chain in one of the old trees, and the chain that only includes
the root is counted twice).

(8) Finally, we consider the analogous parameter “number of antichains” [5]: an antichain is
a nonempty set of mutually incomparable vertices. Again, no auxiliary parameters are
necessary, and we obtain the two maps

a 7→ a + 1

(under Operation 1) and

(a1, a2) 7→ a1a2

(under Operation 2).

Note that all these recursive characterizations share a common scheme: in each case, a k-
tuple (c1, c2, . . . , ck) is associated with each tree, the parameter we are actually interested in is
some polynomial of the ci (typically linear), and our two operations induce polynomial maps

f : R
k → Rk and g : R

k ×R
k → R

k.

2. Examples for the inverse problem over the set of trees

2.1. Number of matchings. For this parameter, the problem is essentially trivial, as has also
been noticed in [7]: every integer is the number of matchings of some star, since a star with n
vertices has exactly n matchings (the empty set and n−1 single edges). Nevertheless, the problem
can become much harder if one imposes further restrictions. For instance, it is not quite clear
whether almost every positive integer is the number of matchings of some binary tree.

2.2. Number of antichains. This example is also quite trivial, since it is easily observed that
the number of antichains of a path, rooted at one of its ends, it just the number of its vertices
(the only antichains are single vertices in this case).

2.3. Number of chains. This example is also very simple, but it shows a new phenomenon: it is
easy to check from the recursive definition that the number of chains in any rooted tree is always
odd. On the other hand, the inverse problem can be solved for all odd integers: indeed, one finds
that a star with n vertices, rooted at its center, has exactly 2n− 1 chains (note that all chains are
either single vertices or pairs consisting of the root and any leaf), proving the claim.

2.4. Wiener index. This problem is somewhat harder than the previous ones. In their paper
[6], Lepović and Gutman conjecture that every positive integer, with only 49 explicit exceptions,
is the Wiener index of some tree. This conjecture was verified independently in [13] and [15] and
further extended to the class of trees with maximum degree 3 in [14]. It should be noted that the
Wiener index W (T ) of a tree T with n vertices can be estimated above and below as follows:

(n − 1)2 ≤ W (T ) ≤

(

n + 1

3

)

.
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This implies that the minimum does not increase linearly any more, which explains why no simple
construction as in the previous examples can be given. However, since the growth is only polyno-
mial, the problem can be reduced to number-theoretic considerations similar to those presented
in the following section.

2.5. Number of independent subsets. Here, the situation is much harder. It is conjectured,
yet unproven that almost every positive integer is the number of independent subsets of some
tree. This is a question that is also of relevance in combinatorial chemistry: [7] provides an
algorithm for constructing such a tree provided that one exists. The biggest difference to the
previously considered parameters lies in the fact that the minimum over all trees of size n grows
exponentially with n, making it less amenable to the Diophantine methods applied in [14] and
also in this paper. However, Linek [8] gives a partial result in this direction: he shows that every
positive integer is the number of independent sets of some bipartite graph.

2.6. Number of subtrees. This problem will form the main part of the paper. “On average”,
the behavior of this parameter is similar to the number of independent subtrees, but the minimum
only grows polynomially, which allows us the construction of a reasonably rich set of trees for
which the inverse problem can be reduced to a question of elementary number theory. Specifically,
we will prove the following theorem in the next section:

Theorem 1. All positive integers, except for the 34 numbers 2, 4, 5, 7, 8, 9, 12, 13, 14, 16, 18,
19, 22, 23, 26, 27, 29, 31, 33, 35, 38, 39, 42, 43, 46, 50, 52, 54, 60, 65, 68, 72, 77 and 89, can be

expressed as the number of subtrees of some tree.

3. Proof of Theorem 1

Figure 3. The caterpillar tree C(1, 0, 3, 1, 0, 0, 2)

We will show that it is sufficient to consider caterpillar trees, see Fig. 3. These can be
constructed recursively by means of our two operations, where we only use a particular special
case of Operation 2. In each step, we attach exactly one new vertex to the root; there are two
possibilities for doing so, namely

• The attached vertex becomes the new root—this is exactly our Operation 1.
• The old root is also the root of the new tree—this is a special case of Operation 2 (merge

with a two-vertex tree).

These operations have the following effects on pairs (a, b) as described in the previous chapter:

(a, b) 7→ (a + 1, a + b) or (a, b) 7→ (2a, b + 1).

To construct caterpillars, we proceed as follows: start with a single vertex. Now apply Operation 1
a0 times, then our special case of Operation 2, then a1 times Operation 1 again, etc. The final step
involves ak applications of Operation 1. The variables ai can be interpreted as the number of edges
between subsequent “legs” of the caterpillar. Let the resulting tree be denoted by C(a0, . . . , ak).

Straightforward induction yields the following lemma:

Lemma 2. The number of subtrees of C(a0, . . . , ak) containing resp. not containing the root is

2k



1 +

k
∑

j=0

2−jaj
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resp.

k +

k
∑

j=0

(

2jaj +
aj(aj − 1)

2

)

+

k
∑

j=0

j−1
∑

i=0

2j−iaiaj .

Thus the total number of subtrees of C(a0, . . . , ak) is given by

(1) 2k + k +
k

∑

j=0

(

2k−jaj + 2jaj +
aj(aj − 1)

2

)

+
k

∑

j=0

j−1
∑

i=0

2j−iaiaj .

Proof. This is obviously true for a single vertex (k = 0, ak = 0), and it is easily seen that it also
holds for the path (a0 applications of Operation 1). Now the number of subtrees of C(a0, . . . , ak)
can be calculated from C(a0, . . . , ak−1) inductively:

After the application of our second operation, the pair becomes

2k



1 +
k−1
∑

j=0

2−jaj



 and k +
k−1
∑

j=0

(

2jaj +
aj(aj − 1)

2

)

+
k−1
∑

j=0

j−1
∑

i=0

2j−iaiaj ,

and ak-fold application of Operation 1 yields

ak + 2k



1 +

k−1
∑

j=0

2−iai





and

k +

k−1
∑

j=0

(

2jaj +
aj(aj − 1)

2

)

+

k−1
∑

j=0

j−1
∑

i=0

2j−iaiaj + ak · 2k



1 +

k−1
∑

j=0

2−iai



 +

ak−1
∑

ℓ=0

ℓ,

which completes the proof after some simplifications. �

The formula for the number of subtrees C(a0, . . . , ak) represents a quadratic form, but it is not
very practical as it stands. However, a carefully chosen substitution simplifies matters decisively:
we set aj = xj − 2xj−1, where x−1 = 1

2 . Then, (1) reduces to

2k + k +

k
∑

j=0

(

2k−j(xj − 2xj−1) + 2j(xj − 2xj−1) +
(xj − 2xj−1)(xj − 2xj−1 − 1)

2

)

+
k

∑

j=0

j−1
∑

i=0

2j−i(xi − 2xi−1)(xj − 2xj−1)

= 2k + k +

k
∑

j=0

(

2k−j + 2j
)

xj −

k−1
∑

j=−1

(

2k−j + 2j+2
)

xj +

k
∑

j=0

x2
j

2
−

k
∑

j=0

2xjxj−1 +

k−1
∑

j=−1

2x2
j −

k
∑

j=0

xj

2

+

k−1
∑

j=−1

xj +

k
∑

j=0

j−1
∑

i=0

2j−ixixj −

k−1
∑

j=−1

j
∑

i=0

2j−i+2xixj −

k
∑

j=0

j−2
∑

i=−1

2j−ixixj +

k−1
∑

j=−1

j−1
∑

i=−1

2j−i+2xixj

= 2k + k − 3
k−1
∑

j=0

2jxj + (2k + 1)(xk − 1) +
k−1
∑

j=0

5x2
j + xj

2
+

x2
k − xk

2
+ 1 −

k
∑

j=0

2jxj +
k−1
∑

j=−1

2j+2xj − 4
k−1
∑

j=−1

x2
j

= k +
xk(xk + 1)

2
−

k−1
∑

j=0

3x2
j − xj

2
=

xk(xk + 1)

2
−

k−1
∑

j=0

3x2
j − xj − 2

2
.

Note that 3x2−x
2 is a so-called pentagonal number. It is part of a more general theorem (see

[10]) that every positive integer is a sum of five pentagonal numbers. However, it is not possible
to apply this theorem to our problem, since we have aj ≥ 0 for all j, which yields the restrictions
x0 ≥ 1 and xj ≥ 2xj−1 for 1 ≤ j ≤ k. However, we can show the following, which will be sufficient
for our purposes:
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Proposition 3. Every positive integer n ≥ 11034 can be written as

n =

k−1
∑

j=0

3x2
j − xj − 2

2
,

where x0 ≥ 1 and xj ≥ 2xj−1 for 1 ≤ j ≤ k − 1.

Proof. We show that all integers within the closed interval [11034, 3(ℓ+1)2−(ℓ+1)−2
2 +11033] can be

written in the above form, where additionally xk−1 ≤ ℓ. This is done by induction on ℓ, the first
case being ℓ = 160, which can be checked directly by means of a computer. To proceed from ℓ− 1

to ℓ, note that if n can be represented in the above form with xk−1 ≤ ℓ/2, then n + 3ℓ2−ℓ−2
2 can

be written in this form as well, where now k − 1 is replaced by k and xk = ℓ. Therefore, under
the induction hypothesis, all numbers in the union

[

11034 +
3ℓ2 − ℓ − 2

2
,
3(⌊ℓ/2⌋ + 1)2 − (⌊ℓ/2⌋ + 1) − 2

2
+ 11033 +

3ℓ2 − ℓ − 2

2

]

∪

[

11034,
3ℓ2 − ℓ − 2

2
+ 11033

]

⊇

[

11034,
3(ℓ + 1)2 − (ℓ + 1) − 2

2
+ 11033

]

(for the inclusion, simply note that 3(⌊ℓ/2⌋+1)2−(⌊ℓ/2⌋+1)−2
2 ≥ 3ℓ+1 for ℓ ≥ 160) can be represented

in the desired form, proving the claim. �

An immediate consequence of the preceding proposition and its proof is that every integer
within the interval

[

2ℓ(2ℓ + 1)

2
−

(

3(ℓ + 1)2 − (ℓ + 1) − 2

2
+ 11033

)

,
2ℓ(2ℓ + 1)

2
− 11034

]

is the number of subtrees of some caterpillar tree, provided that ℓ ≥ 160 (simple take xk = 2ℓ
in the above formula). Taking the union over all ℓ ≥ 160 (where we note that subsequent intervals
overlap, since

2ℓ(2ℓ + 1)

2
−

(

3(ℓ + 1)2 − (ℓ + 1) − 2

2
+ 11033

)

≤
2ℓ(2ℓ − 1)

2
− 11034

holds for all ℓ ≥ 1), we find that all integers ≥ 1527 can be represented in this way. An additional
computer search shows that in fact all positive integers, except for 2, 4, 5, 7, 8, 9, 12, 13, 14, 16,
18, 19, 22, 23, 26, 27, 29, 31, 33, 35, 38, 39, 42, 43, 46, 48, 50, 52, 54, 60, 61, 64, 65, 68, 72, 77,
79, 85, 89, 93, 96, 123, 157 and 183, are the number of subtrees of some caterpillar. Finally, it is
not difficult to compute the number of subtrees of all trees with ≤ 18 vertices (by means of our
recursions or directly in a brute-force manner) to obtain the final list. This is sufficient, since a
tree with n vertices has at least

(

n+1
2

)

subtrees (and thus at least 190 if the number of vertices
is ≥ 19): consider any pair of two (possibly equal) vertices; then the unique path between them
forms a subtree, proving that the total number of subtrees is indeed at least

(

n+1
2

)

.

4. Conclusion

It is tempting to conjecture that an approach as presented in the previous section works for
many instances. Of course it can happen that only specific residue classes are covered, as in the
case of chains. Generally, a heuristic argument is the following: if the number of trees with n
vertices grows faster than the corresponding maximum value of a parameter (the number of non-
isomorphic trees grows exponentially with an exponential base of 2.955765 —see [3]), then almost
all integer values (or at least those in certain residue classes) should be covered. A Diophantine
approach as shown in the preceding section for the number of subtrees is only likely to work if a
sufficiently rich set of trees can be constructed for which the graph parameter can be expressed as
a polynomial.

A general, but probably extremely hard problem can be stated as follows: given a parameter
that is characterized by a certain set of polynomial maps on R

k (as in our examples in the
introduction) and one or more initial values, are there criteria which guarantee that the inverse
problem can be solved for all (almost all) positive integers? It might be possible to provide such
criteria if all the involved maps are linear, but beyond that the problem is probably intractable.
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